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Abstract 
Cancer genomes change during the disease progression in a series of rearrangements. These 

rearrangements include, among others, segmental deletions, insertions, translocations and 

inversions. 

The result is a highly complex, patient-specific cancer karyotype. Using high-throughput 

technologies of deep sequencing and microarrays it is possible to interrogate a cancer 

genome  and produce chromosomal copy number profiles and a list of breakpoints ("jumps") 

relative to the normal genome. This information is very detailed but local in nature, and 

does not give the overall picture of the cancer genome. One of the basic challenges in cancer 

genome research is to use such information to infer the cancer karyotype. 

We present here an algorithmic approach, based on graph theory and integer linear 

programming, that receives segmental copy number and breakpoint data as input and 

produces a cancer karyotype that is most concordant with them. We used simulations to 

evaluate the utility of our approach, and applied it to real data. 

By using a simulation model, we were able to estimate the correctness and robustness of 

the algorithm in a spectrum of scenarios. Under the conditions of our base scenario, 

designed according to observations in real data, the algorithm correctly inferred 69% of the 

karyotypes. However, when using correctness metrics that are less strict and account for 

incomplete and noisy data, 87% of the tested cases were correct. Furthermore, in scenarios 

where the data were very clean and complete, accuracy was shown to be between 90%-

100%. Some examples of analysis of real data, and the reconstructed karyotypes suggested 

by our algorithm, are also presented. 
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1 Introduction 
In this chapter we will review the basic background required to understand the motivation 

behind this thesis. We will also review the relevant work that has been done on the 

computational and biological problems we deal with. 

1.1 Cancer rearrangements  
In this section we introduce the basic concepts behind tumor genomic rearrangements and 

review some of the work done in the field relevant to this thesis. 

The current understanding of cancer suggests that it is a disease driven by somatic mutations 

that accumulate in the genome, within a certain tissue, during the lifetime of an individual. 

These mutations vary in size and effect. They can be small, e.g., single nucleotide mutations, 

or large structural variations caused by rearrangements such as deletions, inversions, tandem 

duplications and chromosomal translocations, or duplication and losses of entire 

chromosomes [1]. Over time these rearrangements accumulate and result in cells that have a 

more different DNA sequence compared to healthy cells.  

The link between chromosomal abnormalities and cancer was first suggested by Boveri in 

1914 [2], But it wasn't until the discovery of the Philadelphia Chromosome in 1960 by Nowell 

and Hungerford [3] that this hypothesis was confirmed. The Philadelphia chromosome is an 

abnormal chromosome that exists in 95% of the cancer patients with chronic myelogenous 

leukemia (CML). It was discovered in 1973 to be the result of a reciprocal translocation 

between chromosomes 9 and 22 [4] that results in the fusion gene BCR-ABL, composed of the 

BCR gene from chromosome 22 and the ABL gene from chromosome 9 [4]. 

More recently it was discovered that a small inversion in chromosome 2 results in a new fusion 

gene called EML4-ALK [5]. This gene was found in a subset of lung cancer patients, and shown 

to give rise to tumors when injected to mice. A known ALK inhibitor was also shown to 

significantly reduce growth of the aberrant cells and thus a promising candidate for 

therapeutic target [5]. 

Cancer genomes are often described in the form of karyotypes. A karyotype is a high level 

description of the genome as a set of chromosomes and their number of copies of each 

(Figure 1.1). Normal karyotypes have two copies of each chromosome 1 to 22 and the sex 

chromosomes - in cancer karyotypes some chromosomes may contain fragments of several 

normal chromosomes. Generally, some types of cancer can be characterized by a unique 

genomic rearrangement. This information is used clinically for diagnostic and therapeutic 

purposes. 

 

Figure 1.1: An example of a normal human male karyotype. Source: the National Human Genome Research 
Institute. 
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1.1.1 Basic types of rearrangements 
Most rearrangements that happen during the progression of the disease can be categorized 

into the canonical forms of deletion, tandem duplication, inversion, translocation, and 

deletion and duplication of entire chromosomes. 

A deletion is characterized by a missing segment of a chromosome, a tandem duplication 

happens when part of the chromosome is duplicated and thus two copies of a segment appear 

where normally there would only be one. An inversion occurs when a segment of a 

chromosome is reversed relative to its original orientation (Figure 1.2).  

 

 

Figure 1.2: Basic types of rearrangements. (1) Deletion: segment B of the normal chromosome is deleted. (2) 
Tandem duplication:  segment C duplicates and repeats. (3) Inversion: segment B is inversed. Stars indicate 
breakpoints. 

A translocation happens when two different chromosomes appear to "switch" end segments. 

Translocations can be referred to as balanced or unbalanced and as reciprocal and non-

reciprocal. A translocation is said to be balanced when the two chromosomes exchange about 

the same amount of genetic material, or unbalanced if the exchange is uneven. A non-

reciprocal translocation occur when the transfer of chromosomal material is one way. When 

a tail segment of each chromosome appears in the other chromosome, the translocation is 

called reciprocal (Figure 1.3). 

 

Figure 1.3: Inter-chromosomal translocations. Reciprocal balanced (a) and unbalanced (b) translocations. A non-
reciprocal translocation happens in (c). Stars indicate breakpoints. 

 

1.1.2 Breakpoints 
The molecular mechanisms that cause somatic genome rearrangements are still the focus of 

investigation. The main paradigm is that a genome rearrangement occurs when one or more 
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chromosomes break and a following joining event reassembles the fragments in a different 

order.  

When the double stranded DNA sequence is broken in more than one location, the joining 

event may fuse the wrong ends together, effectively rearranging the genome. A breakpoint is 

defined as a genomic location where the normal DNA sequence is interrupted and two non-

adjacent sequences segments are consecutive due to a joining event. Hence two DNA 

segments that are distant in the normal genome will be adjacent on the tumor genome at the 

location of the breakpoint. A breakpoint can be considered as the most basic unit of 

rearrangement. The stars in Figure 1.2 and Figure 1.3 indicate breakpoints. 

Examples of processes that generate single breakpoints include breakage- fusion-bridge 

cycles, nonhomologous end joining and homologous recombination-mediated repair [6]. If 

two breakpoints occur on the genome they create four different ends and three possible 

rejoining scenarios: If the two ends that the segment lied between are joined together leaving 

it out it will cause a deletion event. If the segment is reversed and fused it will create an 

inversion event (Figure 1.2). If the two breaks happen on two different chromosomes then a 

wrong joining event results in a translocation (Figure 1.3). 

1.1.3 More rearrangements types 
In addition to the basic rearrangement events, other types of genomic rearrangements have 

also been suggested to explain the development of tumors. 

One such rearrangement is the Breakage-Fusion Bridge (BFB). The BFB mechanism is one of 

the driving mechanisms of evolution. It was first proposed by Barbara McClintock in 1938 to 

explain observations on chromosomes in maize [7], [8], and has since been identified in other 

organisms [9]–[13].  

Breakage-Fusion Bridge happens when a chromosome loses one of its telomeres, along with 

an end segment. When the chromosome replicates, its sister chromatids fuse together and 

forms a bridge. The two centromeres of the fused chromosome migrate to opposing ends 

during anaphase and when the doubled chromosome breaks one of the daughter cells 

receives a doubled and truncated chromosome with missing telomere that can give rise to 

another BFB cycle (Figure 1.4). 

 

Figure 1.4: A BFB rearrangement. The chromosome breaks between C and D and loses D and its telomere. After 
replication the two ends at C fuse together and after anaphase the chromosome breaks between A and B, creating 
a new rearranged chromosome. 
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BFB's are known to amplify genes and chromosomal segments. A recent review identified 77 

genes whose amplification is related to tumor growth [14], which suggests that BFB can also 

play a role in the evolution of cancer cells. Other studies implicate BFB's in the development 

and generation of different types of cancers [15]–[19]. 

Some cancer cells show evidence of rearrangements that are more complex than the basic 

operations. Recently discovered, Complex Genomic Rearrangements (CGR), are 

rearrangements that involve a number of breakpoints [20]–[23]. Bignell et al (2007) observed 

the presence of "bizarre clusters of small genomic fragments" in samples taken from breast 

and lung cancer [6]. 

Berger et al. (2011) Characterized some of the genomic alteration in prostate cancer and 

discovered a type of CGR they called Closed Chains of Brakeage and Rejoining (CCBR) [23]. 

They suggested that CCBR occur when distant chromosomal locations are spatially close to 

one another in the nucleus, and showed that CCBR are responsible for the fusion gene 

TMPRSS2-ERG which is associated with carcinogenesis process of prostate cancer [24]–[28]. 

1.1.4 Tumor evolution model 
The model of cancer as an evolutionary process was already suggested more than 40 years 

ago [29]. It is hypothesized that a series of rearrangements, caused by isolated events of 

breakage and joining of the DNA strands occur constantly, but those that have a selective 

advantage become more prominent. For example, rearrangements that help the cell avoid 

apoptosis or an immune response can become dominant and progress into what we identify 

as a tumor. These selective advantages are often associated with specific genes, named 

oncogenes, or novel fusion genes. Over-representation of such genes, caused by 

rearrangements that amplify their protein levels, have been associated with cancer [22], [30], 

[31].  

This model of simple aberrations that gradually accumulate over time was however 

challenged in 2011 when Stephens et al. proposed a new paradigm called chromothripsis [32]. 

This paradigm suggests that in some cases a single catastrophic event occurs in which a 

genomic section on the chromosome is shattered into a large number of small fragments and 

then re-assembled, effectively creating a cluster of breakpoints that seemingly do not fit the 

model of simpler rearrangement operations, and has a much bigger underlying complexity. 

Their observations suggest that a gradual accumulations is sometimes a very unlikely 

interpretation of the data and that a single event is a more probable explanation. They found 

that chromothripsis occurs in 2%-3% of all tumors and is present in 25% of bone cancers [32]. 

Later studies argued higher prevalence of such events [33], [34]. 

Baca et al. proposed in 2014 a less catastrophic model of punctuated evolution [35]. They 

examined the genomes of 57 prostate tumors and systematically profiled somatic alterations 

in them. They characterize chains of breakpoints that are dependent events and use a 

statistical model to show that a sequential mechanism of events is unlikely to give rise to the 

observed chains [35]. They called this phenomenon chromoplexy. 

1.1.5 Using rearrangements to infer genomic distance 
Modeling the somatic evolution of cancer holds great value in potentially clustering different 

tumor types, and even patient specific samples, into novel groups, using methods developed 

for species evolution. Rearrangement of genomic sequence is known to be one of the major 

driving mechanisms of evolution, and is used to determine phylogenetic distance between 
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species. In 1995 Hannenhalli and Pevzner proposed a method to calculate the genomic 

distance between two species based on the minimal number of reversals required to 

transform the genome of one species to another [36], [37]. 

Another distance metric to infer evolutionary distance was used by Braga et al. in 2011. They 

propose a method that calculates the distance between two genomes based on Double-Cut 

and Join (DCJ) operations and indels (Insertions and deletions). The benefit of this metric is 

that it can compute the genomic distance between genomes that do not necessarily share the 

same content. They utilize their methods to show evidence for deletion clusters in six species 

of Rickettsia [38]. 

Feijão et al. defined yet another metric, called Single-cut and join (SCJ) that allows linear and 

polynomial time solutions to some genomic distance problems that are NP-hard under other 

distance metrics. They show that using the simplified SCJ distance, they can recover between 

60 and 90 percent of the topology of a phylogenic tree with 200 different genomes and with 

as many as 3000 genes [39], [40]. 

Ozery-Flato and Shamir introduced the elementary distance between two karyotypes, defined 

as the least number of elementary operations – breakage, fusion, duplication and deletion – 

transforming one into the other. They presented the karyotype sorting problem as the 

problem of seeking the shortest elementary distance between two karyotypes and suggested 

a polynomial time 3-approximation algorithm for it. Applying the algorithm on more than 

58,000 karyotypes taken from the Mitelman database [41], 99.9% of the resulting solutions 

matched the lower (optimal) bound [42]. 

1.1.6 Tumor heterogeneity 
The current understanding of cancer as an evolutionary model adds another dimension of 

complexity as tumors are essentially heterogeneous in nature and cells of a tumor can have 

different karyotypes, resulting from different evolutionary paths [43]–[47]. However, most 

DNA sequencing technologies today still require DNA from numerous cells, thus resulting in 

measurement from a mixture of genomes. This presents a problem as the cancer cells in a 

tumor may not all be identical but rather a collection of cells with different karyotypes. In 

addition, tumor cells are part of the so-called tumor microenvironment, a heterogeneous 

tissue containing not only cancer cells, but also stromal and immune cells, with a normal 

karyotype [48].  

In 2012 Mahmoody et al. formulated the problem of reconstructing 𝑘 genomes derived from 

a single reference genome given partial information about their sequence, obtained by 

sequencing their mixtures. They termed the problem the k-MCP problem and showed that it 

is NP-complete for 𝑘 ≥3 in the general case [49]. Subsequent work by Oesper et al. [50] 

introduced THetA (tumor Hetrogenity Analysis) – an algorithm to infer the most likely 

collection of different genomes and their proportion in a tumor population. Later 

Hajirasouliha et al. [51] formulated the problem as the NP-complete BTP (Binary Tree 

Partition) problem and introduced an efficient approximation algorithm to solve it. 

1.2 Next Generation Sequencing (NGS) 
Until 2008, the ability to identify genomic rearrangements used to be quite limited, and 

restricted by low resolution of costly and time consuming sequencing.  With the advent of 

Next Generation Sequencing (NGS) techniques and the rapid decrease in both cost and time, 
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it is now possible to interrogate entire exomes, genomes or transcriptomes of cancer samples, 

including clinical samples [52]–[54].  

Optimally we would like to be able to construct the whole set of rearranged chromosomes, 

and get a perfect sequence of the underlying karyotype. But even though DNA sequencing 

technologies have improved dramatically over the past decade, and NGS now enables the 

sequencing of large cohorts of cancer genomes, the present established DNA sequencing 

technologies are still local in nature and are limited in the length of DNA sequences they 

produce. A typical experiment can produce millions of sequences ("reads") of length of 200 

bases. De novo assembly of genomes from such data remains a difficult task [55]. 

1.2.1 Paired end reads data 
One of the methods used for identifying rearrangements and inferring breakpoints in the 

genome is named Paired End Sequencing, and the reads it produces are called paired end 

reads. This is a sequencing based method that has been used in the past decade to detect 

structural variants in different genomes [56]–[59]. 

Paired end reads are generated by the fragmentation of genomic DNA into short (~300 base 

pairs) segments, followed by sequencing of both ends of the segments. The two ends of each 

read are then aligned back to a reference "normal" genome (In the case of cancer – a healthy 

cell line from the same patient). The approximate length of appropriate segments is known in 

advance and so we expect the two ends to be aligned to the reference genome at roughly that 

distance. The relative orientation of the paired reads is also known. An alignment that meets 

those expectations of distance and orientation is called a concordant read. A set of adjacent 

concordant reads, mapped to the same region in the normal genome, reflects a segment on 

the sample genome that was not altered by rearrangements. A discordant read, however, is a 

read whose ends are mapped to different locations on the reference genome or with an 

unexpected relative orientation (Figure 1.5). 

 

Figure 1.5: Concordant and discordant paired end reads. A. Two concordant reads where both ends of the reads are 
aligned with the expected distance between them and with the same relative orientation. B. A discordnat read 
where both ends are aligned to locations that are farther apart than expected. Source: [60]. 

Discordant reads suggest a breakpoint, a fusion between two nonconsecutive positions in the 

reference genome due to rearrangement. A read taken from that spot will have its two ends 

aligned to locations on the reference genome where those positions originally lie. So a list of 

these discordant reads can be translated into a list of novel adjacencies on the sample genome 

that can be seen as bridges between two breakpoint locations that are normally far apart but 

due to rearrangements are now adjacent. 

The type of discordance also suggests the type of rearrangement that occurred (Figure 1.6). A 

deletion will cause reads to be aligned in the correct orientation but with a greater distance 
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than expected between them. An inversion will cause reads from around the breakpoints 

bordering the inversion event to have reads aligned facing the same direction instead of each 

other (only reads covering the end of the inverted segment will have ends reversed in relation 

to the reference genome). Their distance from one another might also be bigger than 

expected when the inverted segment is large. Similarly, tandem duplications will cause the 

reads to be aligned "backwards", meaning facing away from each other, and possibly at larger 

distance than expected from one another. Translocations will have the ends aligned to 

different chromosomes (Figure 1.6). 

 

Figure 1.6: The paired ends read alignment signature of basic rearrangements. A translocation causes the ends to 
align to different chromosomes. An inversion and tandem duplication result in the ends aligned with a relative 
orientation opposite of that expected, and a duplication causes the ends to align to locations that are far apart on 
the same chromosome. Source: [60]. 

A first step in analysis of paired end reads is their mapping to the reference genome. Each 

read contains the two locations on the genome where its two ends aligned to and their relative 

orientation. Analysis of these data is done with computational approaches that try and infer 

the structural variations from the discordant reads and produce a set of rearrangement events 

[61]–[66]. While the most useful data are the set of discordant reads, other methods such as 

PREGO [67] take into account the concordant reads as well. BreaKmer [60] is a method that 

uses the misaligned reads together with the aligned concordant and discordant reads to 

predict rearrangements using kmers. Other algorithmic approaches have been developed to 

try and infer rearrangements that are less simple and have different kinds of "signatures". 

[21], [35], [60].  

Some Methods seek to achieve higher accuracy by aggregating results from several different 

tools. MetaSV [68], introduced in 2015 by Mohiyuddin, Mu et al., offers an improvement of 

accuracy and precision in detecting different kinds of structural variants. By effectively 

merging the results from multiple tools, they were able to reach F1-scores (harmonic mean of 

sensitivity and precision) of 96.2% for deletions and 84.7% for insertions. Fang et al. developed 

SomaticSeq [69], a pipeline for detecting single nucleotide variants (SNVs) and small insertions 

and deletions (indels), using machine learning algorithms to incorporate the results from five 

somatic mutation callers. They applied their method on data from the ICGC-TCGA DREAM 

Somatic Mutation Calling Challenge [70] and report an F1 score of 90.5%. 

Identifying these variations can further the understanding of one of the main driver 

mechanisms of cancer as well as offer better diagnostic tools and treatments. However, 



14 
 

inferring the underlying structure of cancer karyotypes from a list of known rearrangement 

events proves to be a challenge and is a subject of ongoing research in cancer genomics.  

1.3 Copy number variations 
Genomic rearrangements create not only novel adjacencies but may also change the copy 

number of different segments of the DNA sequence, i.e. the number of times a segment is 

present in the karyotype. A healthy normal (human) cell line will have 22 diploid chromosomes 

(plus a pair of sex chromosomes XX or XY) and so the copy number of the entire karyotype is 

2. A rearranged genome might have variations in the copy number of different genomic 

segments. A gain or a loss of an entire chromosome will decrease or increase the copy number 

of that chromosome, respectively. A fraction of a chromosome can also be deleted or 

duplicated. The resulting segment or chromosome is said to have undergone a copy number 

variation (CNV). 

Large CNVs can be detected using more traditional methods like Fluorescence in-situ 

Hybridization (FISH) [71]. Higher resolution detection of CNVs can be achieved by Array 

Comparative Genomic Hybridization (aCGH) [72]. aCGH is a development of the older 

Comparative Genomic Hybridization (CGH) method, which was the first efficient approach to 

scanning the entire genome for variations in DNA copy number [73]–[77]. In a typical CGH 

measurement, total genomic DNA is isolated from test and reference cell populations, 

differentially labeled and hybridized to metaphase chromosomes. In the case of aCGH, the 

hybridization is to a DNA microarray containing genomic probes. The relative hybridization 

intensity of the test and reference signals at a given location is then (ideally) proportional to 

the relative copy number of those sequences in the test and reference genomes. If the 

reference genome is normal, then increases and decreases in the intensity ratio directly 

indicate DNA copy-number variation in the genome of the test cells. The quantification of CGH 

intensity varying is achieved through the use of competitive fluorescence in situ hybridization. 

The test and reference samples are assigned difference colors (usually red and green) and the 

log ratio between the signals' strength is calculated (Figure 1.7). 

 

Figure 1.7: An illustration of the copy number data extracted through the use of aCGH. The x-axis lists probes in 
their order along the normal genome and the y-axis lists the test/reference hybridization log ratio. The log ratio in 
each genomic segment indicates the copy number. Source: [54]. 

The introduction of array CGH offers an improvement to the low resolution of conventional 

CGH. In array CGH, Test and control DNA are hybridized to cloned DNA fragments of size 100-

200 kb that have been spotted on a glass slide (the array), and whose exact chromosomal 

location is known [78]. This allows for detection of aberrations in more detail, and makes it 

possible to map changes in copy number directly onto the genomic sequence. Other array 

based methods have been developed to further improve the resolution provided by aCGh, 

such as High-Resolution CGH (HR-CGH) [79]. 
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With the advent of next-generation sequencing (NGS) techniques, several methods have been 

developed to infer CNV's using DNA sequencing [67], [80], [81] . Most of the algorithms were 

developed to specifically detect structural variations. The basic approach is to count the 

number of reads that align to each part of the DNA sequence (read depth). The assumption is 

that reads are distributed randomly (typically via Poisson distribution) and a divergence from 

the expected number of reads in a specific region suggests a duplication or deletion. 

NGS based methods promise a revolution in CNV analysis and seem to eventually replace the 

lower resolution array methods. However they provide many computational challenges and 

as of today the different methods available vary widely in the results they produce on the 

same DNA sequence [54]. 

1.4 Graph models for rearrangements 
Graph theory has been highly instrumental in the area of genomic rearrangements. For 

example, de Bruijn graphs were used for genome assembly problems [82], and breakpoint 

graphs were used in reconstructing rearranged genomes across species [36], [83]. More 

recently, similar methods were adapted for cancer genomes [42], [84]. 

1.4.1 The breakpoint graph 
The breakpoint graph, introduced by Pevzner and Bafna in 1993 [85], remains today one of 

the key data structures in the study of genomic rearrangements. A breakpoint graph is used 

to represent the relation between two permutations of the same set of elements. By assuming 

w.l.o.g that one is the identity permutation 𝐼, we can view the graph as describing the other 

permutation.  

Formally, we define the breakpoint graph 𝐺(𝜋) for the permutation 𝜋 on the numbers 1, … , 𝑛 

as follows: Let 𝑖~𝑗 if |𝑖 − 𝑗| = 1. Extend 𝜋 = 𝜋1, … , 𝜋𝑛 by adding 𝜋0 = 0 and 𝜋𝑛+1 = 𝑛 + 1. 

A pair of consecutive elements 𝜋𝑖, 𝜋𝑖+1, 0 ≤ 𝑖 ≤ 𝑛 is called an adjacency if 𝜋𝑖~𝜋𝑖+1, and a 

breakpoint if 𝜋𝑖 ≁ 𝜋𝑖+1. Define 𝐺(𝜋) =  𝐺(𝑉, 𝐸) to be an edge-colored graph with 𝑛 + 2 

vertices as follows: 𝑉 = {0,1,2, … , 𝑛 + 1}. There are two types of edges: black and red: 𝐸 =

𝐸𝑏𝑙𝑎𝑐𝑘 ∪ 𝐸𝑟𝑒𝑑 . 𝑖 and 𝑗 are connected by a black edge if (𝑖, 𝑗) is a breakpoint, and by a red edge 

if 𝑖~𝑗 and 𝑖, 𝑗 are not consecutive in 𝜋. An example of a breakpoint graph is given in Figure 1.8. 

 

 

Figure 1.8: A breakpoint graph corresponding to the permutation 1,5,2,4,3. 

 

We can consider a rearranged chromosome as a permutation of segments of the DNA 

sequence. By representing each such segment as a vertex we can construct a basic breakpoint 

graph with edges connecting segments that are adjacent in the rearranged or the reference 

genome. 

In reality, each segment has an orientation. An orientation of a segment can be represented 

by a signed number, and a signed permutation 𝜋 of order 𝑛 can be transformed into an 

unsigned permutation 𝜋′ of order 2𝑛. For each positive element +𝑖 in 𝜋 we replace 𝑖 with 2𝑖 −



16 
 

1, 2𝑖, and for every negative element −𝑖 with 2𝑖, 2𝑖 − 1. The signed breakpoint graph is then 

constructed in the same way. See Figure 1.9 for an example. 

 

Figure 1.9: A breakpoint graph representing the signed permutation 1,-5,-2,4,3. The permutation is first 
transformed into the unsigned permutation 1,2,10,9,4,3,7,8,5,6. 

 

The breakpoint graph was instrumental in applying computational methods for solving 

biological problems. It offers a way to calculate the genomic distances between different 

species using the number of reversals needed to turn one genome into another. In their paper 

from 1995, Hannenhalli and Pevzner gave a polynomial algorithm to compute the distance in 

reversals and translocations between two signed permutations, and showed that a mouse 

genome can be transformed into a human genome using 131 rearrangements of reversals, 

translocations, fusions and fissions [36]. The main limitation with this model is that it takes 

into account only reversals in the genome. The model finds the shortest reversal distance 

between two genomes, which is a simplest evolutionary path that turned the genome of one 

species into another. Cancer genomes however go through many types of rearrangements, 

such as deletions and duplications, or even catastrophic shattering and rejoining, for which a 

minimum reversal distance is not very telling [22], [32].  

1.4.2 Allelic and somatic graphs 
Greenman et al. expanded on the breakpoint graph in 2012 and introduced a construction 

that is essentially equivalent called the allelic graph and its counterpart the somatic graph 

[86]. Similar to the breakpoint graph, rearranged segments are represented in the allelic graph 

as nodes and two types of edges signify the two types of connections – breakpoint (i.e. a novel 

adjacency in the rearranged genome) and germline (segments that are adjacent in the 

reference sequence). 

To deal with segment orientations, the nodes in the allelic graph have sides so an edge 

connecting to node 𝑣 can connect to its right or left side depending on whether the connection 

is to the head or tail of the segment. In addition, the allelic graph holds two copies of each 

node representing the two alleles, and incorporates copy number for both nodes and edges. 

Formally, for a karyotype divided through rearrangements into 𝑛 segments the allelic graph 

𝐺(𝑉, 𝐸) has 2𝑛 nodes for each segments' minor and major alleles: 𝑉 =

{𝑣1𝑚
, 𝑣1𝑀

, … , 𝑣𝑛𝑚
, 𝑣𝑛𝑀

}. A breakpoint edge 𝑒 = (𝑖, 𝑗) connects nodes 𝑖, 𝑗 if they are adjacent 

in the rearranged karyotype. A somatic edge 𝑒 = (𝑖, 𝑖 + 1) connects nodes that are adjacent 

in the non-rearranged karyotype. All nodes and edges have a copy number 𝑓: (𝑉 ∪ 𝐸) → ℕ. 

In addition each node 𝑣 has two distinct sides, 𝑣+ and 𝑣−, corresponding to the two ends of 

the segment in the reference genome. Note that a somatic edge is always of the 

form (𝑖+, (𝑖 + 1)−), connecting segments that are adjacent in the reference. An example of 

an allelic graph is given in Figure 1.10B. 

The allelic graph is complemented by the somatic graph 𝐺(𝑉, 𝐸). For a karyotype divided into 

𝑛 segments 𝐺 has 𝑛 − 1 nodes representing the breakpoints between the segments. An edge 

𝑒(𝑖−∖+, 𝑗−∖+) connects the sides of the breakpoints 𝑖, 𝑗 if the segments laying on the 
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corresponding sides of each breakpoint were connected through a rearrangement 

(Figure 1.10 C). 

 

 

Figure 1.10: Allelic and somatic graphs. (A) A chromosome divided by three breakpoints into four segments. One 
copy of the chromosome (Green) underwent structural variations while the other (purple) did not. (B) The allelic 
graph representing the karyotype. Dashed lines are somatic edges representing adjaecencies in the unaltered 
chromosome, solid lines are breakpoint edges representing novel adjacencies in the rearranged chromosome 
(displayed in brackets). The numbers next to vertices and edges are copy numbers (C) The somatic graph 
representing the karyotype. The 3 breakpoints are double sided vertices in the graph with the solid lines 
representing edges connecting the breakpoints. Source: [86]. 

Using the allelic and somatic graphs, Greenman et al. suggested a model relying on finding 

certain connected components to infer a set of possible rearrangements and the order in 

which they occurred. They validated their algorithm using FISH, showing that specific 

chromosomal contigs are located where expected according to the inferred rearrangements. 

This however does not validate that the actual type and order of rearrangements inferred by 

the algorithm are necessarily correct. 

There are some limitations to this model. Firstly, it assumes that breakpoints are unique 

throughout the process of the tumor evolution, and do not repeat in several unrelated 

rearrangement events. This assumption is problematic as many tumors seem to have 

breakpoints that are clustered together in very close proximity, which may suggest they are 

related events [20], [21]. Secondly the model assumes a pre-defined set of nine possible 

rearrangement events that are caused by three or less breakpoints. Some tumors have been 

shown to likely be caused by more complex events, sometimes catastrophic in nature, and 

not a series of simple rearrangements [32], [35], [87]. Lastly, inaccurate data can drastically 

change the structure of the allelic graph and therefore the result of the algorithm. 

1.4.3 Interval adjacency graph 
Another construction that expands on the breakpoint graph is the interval adjacency graph, 

proposed by Oesper et al. in 2012 [67]. The interval adjacency graph is constructed directly 

from copy number and novel adjacencies data, and not a reconstructed karyotype. Similar to 

the allelic graph proposed by Greenman [86], the discordant reads are used to infer 

breakpoint locations on the DNA sequence and partition it to intervals accordingly. 
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Each interval 𝐼𝑖 in the partition of the genome is represented by two nodes 𝑠𝑖, 𝑡𝑖  corresponding 

to the interval ends and connected by an interval edge (𝑠𝑖, 𝑡𝑖). The tail end of each interval 𝐼𝑖 

is connected to the head of interval 𝐼𝑖+1 by a reference edge (𝑡𝑖 , 𝑠𝑖+1), representing adjacency 

on the original reference genome. The third type of edges are variant edges. Like the allelic 

graphs' breakpoint edges or the breakpoint graphs' black edges, they connect intervals 𝐼𝑖, 𝐼𝑗 if 

they are adjacent only in the rearranged chromosome and not in the reference, or they are 

adjacent in a different orientation than in the reference (Figure 1.11). 

 

 

Figure 1.11: An interval adjacency graph representing the observed copy number and adjacencies measured [67]. 

Using the interval adjacency graph it is possible to infer rearranged sequences that agree with 

the data. Oesper et al showed that an Eulerian path on the graph alternating between interval 

edges and reference / variant edges corresponds to a rearranged sequence of the 

chromosome. Based on this construction they developed an algorithm called PREGO to 

determine the most likely sequence of a rearranged karyotype. Using simulations they showed 

their algorithm can deduce the correct multiplicity of more than 80% of the variant edges, 

even with large noise ratios and when the sample is heterogeneous. Furthermore, they 

applied PREGO to five ovarian cancer genomes and were able to identify numerous 

rearrangements and structural variants, some of which were consistent with known 

mechanisms. 

The PREGO algorithm combines copy number and adjacency information from paired end 

sequencing to infer multiplicity of different segments in the cancer genome. However except 

in simple cases, the underlying sequence of the genome cannot be uniquely resolved, as many 

reconstructions will be consistent with the data. 

 

1.5 Integer Linear Programming (ILP) 
An integer program is a mathematical optimization problem in which the variables are 

restricted to be integers. An integer linear program is one in which the target function and the 

constraints are linear. 
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A standard ILP form is: 

Minimize: 

∑ 𝑐𝑗𝑥𝑗

1≤j≤n

 

Subject to: 

∑ 𝑎𝑖𝑗𝑥𝑗 ≶ 𝑏𝑖

1≤𝑗≤𝑛

 ∀ 1 ≤ i ≤ m 

𝑥𝑗 ≥ 0 and 

integer 
∀1 ≤ 𝑗 ≤ 𝑛 

 

Where 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛) are the variables, 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) are the coefficients of the 

objective function, 𝑎𝑖𝑗  are elements in a matrix of size 𝑚 × 𝑛 and 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚) a vector 

that together consist of the 𝑚 constraints. All numbers are assumed to be rational, and ≶ 

stands for either ≤ or ≥. 

1.5.1 Nonlinear models 
Some models that include nonlinear features, such as absolute values, can be transformed 

into conventional linear programming models. Several tricks can be applied in order to achieve 

this, and when possible it is often advisable to do so instead of solving a nonlinear model [88], 

[89]. 

1.5.1.1 Absolute values 

Let us consider the following model where the target function includes the absolute value of 

the variables: 

Minimize: 

∑ 𝑐𝑗|𝑥𝑗|

1≤j≤n

 

 

𝑐𝑗 ≥ 0 

 

Subject to: 

∑ 𝑎𝑖𝑗𝑥𝑗 ≶ 𝑏𝑖

1≤𝑗≤𝑛

 ∀ 1 ≤ i ≤ m 

  
𝑥𝑗 is free 

The absolute values can be avoided by replacing each 𝑥𝑗 with two new variables 𝑥𝑗
+, 𝑥𝑗

−, and 

adding constraints as follows: 

𝑥𝑗 = 𝑥𝑗
+ − 𝑥𝑗

− 

|𝑥𝑗| = 𝑥𝑗
+ + 𝑥𝑗

− 

𝑥𝑗
+, 𝑥𝑗

− ≥ 0 

And then the model can be reformulated: 

Minimize: 
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∑ 𝑐𝑗(𝑥𝑗
+ + 𝑥𝑗

−)

1≤j≤n

 

 

𝑐𝑗 ≥ 0 

 

Subject to: 

∑ 𝑎𝑖𝑗(𝑥𝑗
+ − 𝑥𝑗

−) ≶ 𝑏𝑖

1≤𝑗≤𝑛

 ∀ 1 ≤ i ≤ m 

𝑥𝑗
+, 𝑥𝑗

− ≥ 0 ∀ 1 ≤ 𝑗 ≤ 𝑛 

 

The solutions for both programs is the same if for every 𝑗 either 𝑥𝑗
+ or 𝑥𝑗

− is zero. This is 

guaranteed to happen for an optimal solution since if both are greater than zero then there 

exists a 𝛿 > 0 such that 𝑥𝑗
+ − 𝛿, 𝑥𝑗

− − 𝛿 is a better solution. 

1.5.1.2 Min max functions 

Another common object found in many models is the minmax object. Consider the following 

model: 

Minimize: 

max
𝑘

∑ 𝑐𝑘𝑗𝑥𝑗

1≤j≤n

 

Subject to: 

∑ 𝑎𝑖𝑗𝑥𝑗 ≶ 𝑏𝑖

1≤𝑗≤𝑛

 ∀ 1 ≤ i ≤ m 

𝑥𝑗 ≥ 0 ∀1 ≤ 𝑗 ≤ 𝑛 
 

The requirement to minimize the maximum of 𝑘 options can be transformed into a 

conventional form by including another variable 𝑧 = max
𝑘

∑ 𝑐𝑘𝑗𝑥𝑗1≤j≤n  and then solving the 

following model: 

Minimize: 

𝑧 

Subject to: 

∑ 𝑎𝑖𝑗𝑥𝑗 ≶ 𝑏𝑖

1≤𝑗≤𝑛

 ∀ 1 ≤ i ≤ m 

∑ 𝑐𝑘𝑗𝑥𝑗

1≤j≤n

≤ 𝑧 ∀1 ≤ 𝑘 ≤ 𝐾 

𝑥𝑗 ≥ 0 ∀1 ≤ 𝑗 ≤ 𝑛 
 

An optimal solution for this model will minimize 𝑧 and make sure it is still bigger than the 

target function for every 𝑘, which will result in 𝑧 being the minimized maximum.  

1.5.2 Solving an ILP problem 
Solving a linear program can be done in polynomial time, but ILP is NP-hard [90]. Several 

industrial solvers exist for optimization of linear programming and integer linear programming 

problems, such as CPLEX [91]. These solvers provide an interface to formulate LP and ILP 
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problems in different programming languages such as java and python, and implement 

different tricks to translate nonlinear models into standard linear ones. These solvers employ 

a variety of heuristics and exhaustive algorithms for ILP. While obtaining an optimal solution 

quickly is not guaranteed, in practice, many formulations used on current biological networks 

are solved in reasonable time [92]. 

2 Methods 
In this section we describe the methods we used to transform a copy number and paired-end 

read data into a weighted graph, and the ILP formulation that we developed to find the 

solution most concordant with it. 

Next generation sequencing methods produce paired-end reads. Recall (section 1.1.51.2.1) 

that discordant reads suggest structural variations on the genome. Genomic copy numbers 

can be obtained using NGS methods or different CGH array technologies (section 1.3). We 

propose a novel method that incorporates these two kind of data, which can be derived using 

different technologies, in order to reconstruct the karyotype that has the most agreement 

with both of them. 

The outline of our approach is as follows (compare Figure 2.1). We use the novel adjacencies 

and copy number data together to construct a bridge graph, similar to the adjacency graph 

proposed by Oesper et al. [67], and to the more classic breakpoint graph [85]. The bridge 

graph is then fed to an ILP solver that outputs a solution representing a valid karyotype of the 

rearranged genome that is most concordant with the observed data. A graphical engine is 

used to produce a graphical illustration of the solution. 

 

Figure 2.1 Overview of the approach. We incorporate copy number (CN) profile with a list of novel adjacencies 
derived from Paired-End Reads (PER) data to create a bridge graph. We then use an ILP solver to suggest a 
karyotype most concordant with the data. 

2.1 Building the adjacency and bridge graph 
In our problem setup there is a normal (or reference) genome, whose contents is known, and 

an unknown target genome that should be reconstructed. A breakpoint is a point along the 

reference genome involved in a structural change event in the target genome.  

Let 𝐶 be the set of chromosomes in the reference karyotype. The breakpoints partition each 

chromosome 𝑐 ∈ 𝐶 into a set of 𝑘𝑐 intervals 𝐼𝑐 = {𝐼1
𝑐 , 𝐼2

𝑐 … 𝐼𝑘𝑐
𝑐 }, such that each 𝐼𝑘𝑐

𝑐  is an interval 

between consecutive breakpoints, or between a breakpoint and a chromosome end. The 

intervals are numbered in increasing order along 𝑐, so that 𝑐 is equal to the concatenation of 

the intervals 𝐼1
𝑐 , 𝐼2

𝑐 … 𝐼𝑘𝑐
𝑐  . We call the start and end points of interval 𝐼 the tail and head of  𝐼 

and denote them by 𝑡𝐼 and ℎ𝐼 respectively. Hence, 𝐼 = [𝑡𝐼 , ℎ𝐼], and −𝐼 = [ℎ𝐼 , 𝑡𝐼] is the 

interval 𝐼 reversed. An extremity is a tail or a head of an interval. The set of all intervals ℐ =
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∪𝑐∈𝐶 𝐼𝑗
𝑐  can be considered as the set of the basic building blocks of the reference and target 

genomes. The length of interval 𝐼𝑗 (in bases) is denoted by 𝑙𝑗 , and 𝐿 = ∑𝑙𝑖 is the total length 

of all intervals. 

The target genome can be represented by a set of chromosomes, where each chromosome is 

a sequence of intervals and reversed intervals (Figure 2.2). A bridge is a pair of extremities 

that are not adjacent on the reference genome but are adjacent in the target genome. Bridges 

can be detected based on the paired-end read data of the target genome (Figure 2.2). Each 

bridge 𝑏𝑖 has a certain support level, which is the number of paired-end reads that support it, 

denoted 𝜇𝑖. The total support score for all bridges is denoted 𝜇 = ∑ 𝜇𝑖𝑏𝑖
. 

 

 

Figure 2.2: Reference and target genomes. A: reference (germline) DNA chromosome segmented into intervals 
separated by breakpoints. B: The rearranged chromosome represented by the series of intervals 1,4,-4,-3,2,-1. 
Genome B contains the bridges {ℎ1, 𝑡4}, {ℎ4, ℎ4}, {𝑡3, 𝑡2}  and {ℎ2, ℎ1}. Note that {𝑡4, ℎ3} is not a bridge. 

Each interval 𝐼𝑖 ∈ 𝐼 has a copy number 𝑁𝑖 ≥ 0 indicating the number of times it appears in the 

target genome. The set of copy numbers of all intervals is called the copy number profile of 

the target. That profile can be derived from deep sequencing data or from array CGH data. In 

perfect data, 𝑁𝑖  is exactly the number of copies of the interval in the target genome. In read 

data, the copy numbers are real valued estimates based on mean coverage of each interval. 

We are now ready to define the graph structure. We first define the interval adjacency graph, 

introduced by Oesper et al. [67]. The input is (1) the reference genome represented as a 

sequence of intervals for each chromosome. These intervals form the set ℐ = {𝐼1, … , 𝐼𝑛}; 

interval 𝐼𝑗 has length 𝑙𝑗. (2) The copy number profile of the intervals: Interval 𝐼𝑗 has CN 𝑁𝑗. (3) 

The set of bridges {𝑎𝑖, 𝑏𝑖}𝑖=1
𝑚  and the support 𝜇𝑖  for each bridge. Each 𝑎𝑖  and 𝑏𝑖 is an extremity 

of an interval in ℐ. We define a weighted graph 𝐺(𝑉, 𝐸, 𝑤) whose vertices are the interval 

extremities. For each interval 𝐼𝑖 = [𝑡𝑖, ℎ𝑖], the graph contains an interval edge 𝑒𝐼(𝑡𝑖, ℎ𝑖) ∈ 𝐸𝐼 

connecting its two extremities, of weight 𝑁𝑖. For each two intervals 𝐼𝑖, 𝐼𝑖+1 that are adjacent 

on the reference genome, a reference edge 𝑒𝑅(ℎ𝑖, 𝑡𝑖+1) ∈ 𝐸𝑅 connects the head of the first 

interval to the tail of the one following it. Reference edges are unweighted. Each bridge is 

represented by a bridge (or variant) edge 𝑒𝑉(𝑎𝑖, 𝑏𝑗) ∈ 𝐸𝑉 connecting the two extremities 𝑎𝑖  

and 𝑏𝑗, with weight 𝜇𝑖. In total, the edge set of the graph is 𝐸 = 𝐸𝐼 ∪ 𝐸𝑅 ∪ 𝐸𝑉. We denote by 

𝑆 ⊆ 𝑉 the set of vertices that represent telomere nodes, i.e. the nodes representing the start 

and end points of each reference chromosome, hence 𝑆 =∪𝑐∈𝐶 {𝑡1
𝑐 , ℎ𝑘𝑐

𝑐 } includes the heads 

of all starting intervals and the tails of all ending intervals in each chromosome's partition. See 

Figure 2.3 for an example. 
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Figure 2.3: Interval adjacency representation. A: The observed bridges and measured CN of intervals. B: The interval 
adjacency graph representing the observed data. Bold black edges are interval edges with the relative CN, dotted 
edges are reference edges and red edges are variant edges. Telomere nodes are noted by a square. 

 

2.1.1 Parallel edges 
Note that the set of interval Edges 𝐸𝐼 and reference edges 𝐸𝑅 are disjoint, since by definition 

the former connect the extremities of the same segment while the latter connect extremities 

of adjacent segments. Variant edges however can connect two nodes that already have 

another edge connecting them. 

When a tandem duplication occurs on segment 𝐼𝑖, there will be a bridge connecting the head 

of the segment ℎ𝑖, to its tail, 𝑡𝑖, and so the variant edge 𝑒𝑉(𝑡𝑖, 𝑠𝑖) will be parallel to the interval 

edge 𝑒𝐼(𝑠𝑖, 𝑡𝑖) (Figure 2.4). 

 

Figure 2.4: Parallel edges. A: A chromosome that underent a tandem duplication of interval 2. B: The interval 
adjecency graph with paralel interval and variant edges. 

The sets of variant edges 𝐸𝑉  and reference edges 𝐸𝑅 are disjoint as variant edges represent 

bridges that can only exist between interval extremities that are not adjacent on the reference 

genome, while reference edges connect extremities of adjacent intervals. However, parallel 

variant and reference edges can be occur due to our manipulation on data (See section 2.1.4).  

2.1.2 Same node edges 
Another peculiarity in the adjacency graph that we allow are variant edges from a node to 

itself (Figure 2.5). These type of bridges occur usually as a result of a breakage-fusion bridge 
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rearrangement, and were used before in similar constructions such as the Somatic Graph 

proposed by Greenman et al. [86]. 

 

Figure 2.5: Self loops. A: A chromsome that underwent a BFB event. B: The interval adjacency graph. The variant 
edge representing the bridge {ℎ2, ℎ2} connects the same node 𝑡2 to itself. 

2.1.3 From adjacency graph to bridge graph 
We now provide a similar extension to the adjacency graph introduced by Oesper et al. [67]. 

The bridge graph has additional weights of bridge edges and not only interval edges. Recall 

that the weight 𝑤(𝑒) of an interval edge 𝑒(𝑢, 𝑣) is the copy number of the segment [𝑢, 𝑣]. 

The weight 𝑤(𝑒) of the bridge 𝑒(𝑢, 𝑣) is its support score. 

Additionally we transform each undirected edge 𝑒(𝑢, 𝑣) in the interval adjacency graph into 

two directed edges 𝑒→: 𝑢 → 𝑣, 𝑒←: 𝑣 → 𝑢. The original undirected edge is referred to as a 

connection to distinguish it from the directed edges and 𝐸 = 𝐸→ ∪ 𝐸← the set of edges in the 

graph. 

We call the modified graph a Bridge Graph (Figure 2.6). In summary, the bridge graph is a 

generalization of the adjacency graph [67], with additional weights assigned to bridge edges, 

and antiparallel directed edges instead of undirected edges. 

 

Figure 2.6: Bridge graph. A: The measured copy number and bridge data with the observed support score for each 
bridge. B: The corresponding bridge graph with weights for variant and reference edges. All connections are 
composed of two antiparallel directed edges. 
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2.1.4 Breakpoint filter 
In analyzing real data we discovered that some breakpoints are clustered together in a very 

small region at close proximity to one another. Since the copy number data has a lower 

resolution than the paired-end data, this results an unnecessary over-fragmentation of the 

chromosome into a large number of small fragments that have almost the same measured 

copy number. To address this, we apply a filter on the list of breakpoints and group together 

breakpoints that are located very close to one another. The cut-off was set to be 5000 bases 

– all breakpoint coordinates that are within 5000 bases from each other are treated as the 

same breakpoint coordinate. This filtering does not throw out the actual bridge data, but 

ignores rearrangements that are very small and local in nature such as loss of small DNA shards 

that do not alter the result of the algorithm. 

Ignoring the deletion of a small fragment of DNA between intervals 𝐼𝑖, 𝐼𝑖+1 and grouping the 

relevant breakpoints together creates two nodes ℎ𝑖, 𝑡𝑖+1, with both variant and reference 

edges connecting them. As a result the bridge becomes redundant and any resulting path 

outputted by the algorithm ignores it (Figure 2.7). 

 

Figure 2.7: The effect of filtering small intervals. A: The interval adjacency graph including the deletion of a small 
segment between close breakpoints. B: The graph after applying a breakpoint filter. The blue and green nodes were 
joined together respectively. After the filtering the original bridge is still included but is rendered redundant and 
thus ignored by the algorithm. 

 

2.2 Reconstructing the rearranged karyotype 
Given the bridge graph 𝐺(𝑉, 𝐸, 𝑤), we wish to find paths in 𝐺 that correspond to rearranged 

chromosomes. Suppose first that the input data is complete and errorless. Recall that 𝑆 ⊆ 𝑉 

is the set of vertices that represent telomere nodes, i.e. the nodes representing the start and 

end points of each chromosome. A valid path 𝑝 is a path through 𝐺 beginning and ending at 

𝑠1, 𝑠2 ∈ 𝑆 that alternately traverses interval and non-interval edges (i.e. reference/bridge 

edges), and where the number of times each interval connection 𝑒𝑖 is traversed (in either 

direction), denoted 𝑓𝑝(𝑒𝑖) , is less than or equal to the copy number of interval 𝑖, 𝑁𝑖.  

The requirement for an alternating path is because a traversal of an interval edge is equivalent 

to selection of a segment from the reference genome, while a traversal of a reference/bridge 

edge is equivalent to a transition between segments. Therefore, such an alternating path 

represents a sequence of segments from the reference genome. Note that 𝑓𝑝(𝑒𝑖) = 𝑓𝑝(𝑒𝑖→) +

𝑓𝑝(𝑒𝑖←) for every connection 𝑒. A set of such paths 𝑃 = {𝑝1, 𝑝2 … 𝑝𝑛} where for each interval 

connection 𝑒𝑖, ∑ 𝑓𝑝(𝑒𝑖)𝑝∈𝑃 = 𝑁𝑖 corresponds to a set of rearranged chromosomes, or a valid 

karyotype. 

The restriction that the path alternates between interval and non-interval (reference\bridge) 

edges means that at each non-telomeric node 𝑣 ∉ 𝑆, every traversal on an interval edge going 

into 𝑣 must be followed by a traversal on a reference\bridge edge going out of 𝑣, and vice-
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versa. Telomeric nodes are excluded from this constraint as by definition they are the start or 

end of a path.  

As detailed in section 2.1.3, each connection between nodes 𝑢, 𝑣 is composed of two 

antiparallel directed edges. For each node 𝑣 ∈ 𝑉 we denote 𝐸𝐼←
(𝑣), 𝐸𝐼→(𝑣), 𝐸𝑅←(𝑣), 

𝐸𝑅→(𝑣), 𝐸𝐵←(𝑣), 𝐸𝐵→(𝑣) as the set of interval, reference and bridge edges that go in and out 

of 𝑣 respectively. As above, we denote by 𝑓𝑝(𝑒) the number of times a connection 𝑒 is 

traversed in path 𝑝 and 𝑓𝑃(𝑒) = ∑ 𝑓𝑝(𝑒)𝑝∈𝑃  is the total number of times a connection 𝑒 is 

traversed in 𝑃. Additionally, for a set of connections 𝐸, 𝑓𝑃(𝐸) = ∑ 𝑓𝑃(𝑒)𝑒∈𝐸  is the total 

number of times all connections in 𝐸 are traversed in 𝑃. The constraints for a valid set of 

paths 𝑃, representing a rearranged karyotype, can be therefore formulated as:  

(1) 𝑓𝑃 (𝐸𝐼→
(𝑣)) =  𝑓𝑃 (𝐸𝑅←

(𝑣)) + 𝑓𝑃 (𝐸𝑉←
(𝑣)) 

∀𝑣∉𝑆 

(2) 𝑓𝑃 (𝐸𝐼←
(𝑣)) =  𝑓𝑃 (𝐸𝑅→

(𝑣)) + 𝑓𝑃 (𝐸𝑉→
(𝑣)) 

∀𝑣∉𝑆 

(3) 𝑓𝑃(𝑒) ∈ ℕ0 

∀𝑒∈𝐸 

Equation 2.1: Constraints defining a valid set of paths 𝑃. 

2.2.1 Distance of path from observed data 
Recall that the interval and bridge edges of the bridge graph have weights, representing the 

measured copy number of the intervals and the support score for the bridges respectively. 

These values are in practice noisy. Given a bridge graph 𝐺(𝑉, 𝐸, 𝑤) and a valid set of paths 𝑃 

representing a rearranged karyotype, we can define the discordance score of 𝑃 - 𝑑𝐺(𝑃), to 

measure how much 𝑃 is in agreement with the data in 𝐺. 

The discordance score is comprised of two parts and is described in Equation 2.2. The first part 

reflects how much 𝑃 is in agreement with the CN profile. It is the sum over all interval 

edges 𝑒𝑖 ∈ 𝐸𝐼, of the absolute value of the difference between 𝑓𝑃(𝑒𝑖) and the input 

weight 𝑤(𝑒𝑖), normalized by 𝑙𝑖. We normalize the weights of the intervals by their lengths 

since longer genomic intervals are expected to have more accurate CN values, and hence 

should be penalized more for disagreement. 

The second part reflects how much 𝑃 is in agreement with the bridge data. The more bridges 

a path is utilizing, the more it is concordant with the bridge data. To reflect this, a penalty is 

given for each bridge edge 𝑒 ∈ 𝐸𝑉 that is not used in the path. The bigger the support score 

for a bridge is, the bigger the penalty, and so the penalties are normalized by 𝑤(𝑒). Recall that 

𝜇 = ∑ 𝑤(𝑒)𝑒∈𝐸𝑉
 is the sum of the support score for all bridges. Note that 𝑤(𝑒) and 𝑙𝑒 values 

are on different scales, and the division by 𝜇 and 𝐿 puts them on a similar scale. 

 

𝑑𝐺(𝑃) = ∑
𝑙𝑒

𝐿
|𝑓𝑃(𝑒) − 𝑤(𝑒)|

𝑒∈𝐸𝐼

+ 𝛼 ∑
𝑤(𝑒)

𝜇
𝑒∈𝐸𝑉
𝑒∉𝑃

 

Equation 2.2: General formulation of the discordancy score 
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The parameter 𝛼, determines how much weight the algorithm gives to paired-end reads data, 

i.e. how much it tries to utilize bridge edges in the solution. Using the algorithm on real tumor 

data, we set 𝛼 = 0.5. The effect of 𝛼 on the performance of the algorithm is studied in 3.4.1. 

The penalty for unused bridges is only given for bridge edges that are not in the path. We can 

formulate the score as a function of 𝑓𝑃 using the 𝑚𝑖𝑛 function as follows: 

1. dG(𝑃) = ∑
le

L
|fP(e) − w(e)|e∈EI

+ α ∑
w(e)

μe∈EV
(1 − min(1, fP(e))) 

Equation 2.3: The discordancy score as a function of 𝑓𝑃  

 

2.2.2 The ILP formulation 
Using the distance function above we can now formulate the problem at hand, of finding the 

rearranged karyotype that is most consistent with the observed data. 

We define a rearranged karyotype to be most consistent if it corresponds to a valid set of 

paths with smallest discordance score. This can be formulated as an integer linear program 

where given a bridge graph 𝐺(𝑉, 𝐸, 𝑤) we want to minimize the discordance score of 𝑃 with 

the constraint that 𝑃 is a valid set of paths representing a rearranged karyotype. 

Formally, for each connection 𝑒𝑖 ∈ 𝐸 we define two variables 𝑥𝑖→, 𝑥𝑖←. The variables 

represent the number of times each edge is traversed in a path, and so 𝑓𝑃(𝑒𝑖) = 𝑥𝑖→ + 𝑥𝑖← . 

Each variable is noted 𝑥𝐼 , 𝑥𝐵 or 𝑥𝑅 for interval, bridge or reference edges respectively. Using 

these variables we can describe the problem as follows. Let 𝐺(𝑉, 𝐸, 𝑤) be a bridge graph and 

𝑥 = (𝑥1, 𝑥2, … ) corresponding to edges in 𝐸 as described above.  

Minimize: 

𝑑𝐺(𝑓𝑃) = ∑
𝑙𝑒

𝐿
|𝑥𝑒→

𝐼 + 𝑥𝑒←
𝐼 − 𝑤(𝑒)|

𝑒∈𝐸𝐼

+ 𝛼 ∑
𝑤(𝑒)

𝜇
𝑒∈𝐸𝑉

(1 − 𝑚𝑖𝑛(1, 𝑥𝑒→
𝐵 + 𝑥←

𝐵)) 

Subject to: 

(1) ∀𝑖𝑥𝑖 ∈ ℕ0 

 

(2) ∀𝑣∉𝑆  ∑ 𝑥𝑖→
𝐼

𝑒𝑖∈𝐸𝐼→
(𝑣) = ∑ 𝑥𝑖←

𝑅
𝑒𝑖∈𝐸𝑅←

(𝑣) + ∑ 𝑥𝑖←
𝐵

𝑒𝑖∈𝐸𝑉←(𝑣)  

 

(3) ∀𝑣∉𝑆 ∑ 𝑥𝑖←
𝐼

𝑒𝑖∈𝐸𝐼←
(𝑣) = ∑ 𝑥𝑖→

𝑅
𝑒𝑖∈𝐸𝑅→

(𝑣) + ∑ 𝑥𝑖→
𝐵

𝑒𝑖∈𝐸𝑉→(𝑣)  

Where constraints (2) and (3) are the valid path constraints detailed in section 2.2 applied to 

the edge variables. Note that telomeric nodes in 𝑆 are not constrained. 
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3 Simulation results 
This section describes the simulations we have performed in order to test the performance of 

the algorithm. 

3.1 Simulation setup 
In order to assess the performance of our algorithm, we simulated tumor karyotypes by 

starting with a normal karyotype, performing on it a sequence of structural and numerical 

changes, and then adding noise to the results. Each correct karyotype was compared to the 

karyotype that was produced by the algorithm using the input data, and summary statistics 

were computed. 

We start with a normal diploid karyotype 𝐻 with a prescribed number of chromosomes (a 

parameter). For simplicity, each chromosome is represented by a sequence of atomic 

segments, which are its basic units. We perform a series of operations on the karyotype by 

applying deletions, inversions, tandem duplications and translocations. The types and the 

positions of the rearrangements are drawn uniformly at random. The span of operations that 

affect a single chromosomes (deletions, duplications and inversions) is limited to 30 atomic 

segments. This limit is set in order to avoid rapid erasure of large chromosomal segments by 

deletions. The total number of operations applied varies and determines the complexity of 

the resulting tumor karyotype 𝑇. 

By comparing 𝐻 and 𝑇, breakpoints are detected and each normal chromosome is partitioned 

into segments. Each segment has a copy number (the number of occurrences of that segment 

in 𝑇). Each two consecutive segments in 𝑇 that are not consecutive (and/or not in the same 

relative orientation) in 𝐻 constitute a bridge. The clean (noiseless data) can thus be 

summarized as an integer-valued CN profile and the set of all bridges formed. 

To simulate noisy scenarios, the CN profile and the bridge information is modified as follows. 

Normally distributed noise 𝑥 is added to the copy number of each segment independently, 

where 𝑥~𝑁(0, 𝜖). The support for each bridge (corresponding to the number of discordant 

reads supporting it) is drawn independently from an exponential distribution 𝐸𝑥𝑝(𝜆). To 

simulate the possibility of bridges being completely missed, each bridge has probability 𝑝 to 

completely be omitted from the final set of bridges.  

In summary, the simulation program receives the following parameters, with the default value 

in parentheses: 

 𝐶 -   The number of chromosomes (default: 5). 

 𝑁 -  The number of structural and numerical operations applied (default: 5). 

 𝜖 -   The standard deviation of the noise in the CN profile data (default: 0.28) 

 𝑝 – The probability to completely miss a bridge (default: 0.05). 

In the base scenario, all parameters were at their default values. These parameters 

correspond to a tumor sample of medium complexity and a realistic level of noise (see 

section 4.1). Other scenarios were explored by changing one of the parameters above from 

its value in the base scenario while keeping the rest at their default levels. 
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3.2 Correctness measures 
We used five different measures for the level of correctness of a solution. Let 𝑇 be the 

simulated (true) karyotype, let 𝑇∗ be the simulated noisy karyotype, and let 𝑆 be the karyotype 

produced by the algorithm: 

1. Is 𝑆 equivalent to 𝑇? We say that 𝑆 is equivalent to 𝑇 if they have the same copy 

number profile and both use the same bridges. Most equivalent karyotypes only differ 

in chromosomal orientation, and thus represent the same solution. However, in rare 

cases two different karyotypes can be equivalent and differ in other ways (See 

Figure 3.1). Our algorithm was not designed to distinguish between such solutions. 

This score is our main success yardstick. We call such a solution correct. 

2. Do 𝑆 and 𝑇 have the same CN profile? In real data, the copy number of an interval is 

determined by summing over numerous reads (or probes), sometimes spanning many 

megabases, while bridges rely on few paired-end reads crossing a particular point, 

and thus are more error prone. Therefore, the CN profile is expected to be more 

robust. This criterion tests if 𝑆 and 𝑇 match in this profile. We call this criterion Equal 

Copy Number (ECN). 

3. Does 𝑆 have an equal or better score than 𝑇? When noise level is high, 𝑇 and 𝑇∗ may 

differ substantially, and a solution closer to 𝑇∗ than to 𝑇 does not indicate a failure of 

the algorithm but rather that the noise level is too high. Here the score was calculated 

according to the ILP objective. We call this criterion Equal or Better Score (EBS). 

4. Is 𝑆 equivalent to 𝑇 excluding missing bridges?  𝑇∗ may not include all the bridges 

found in 𝑇, and in that case 𝑆 can never be equivalent to 𝑇. However, we consider 𝑆 

to be correct for all observed bridges if it has the correct CN profile for all segments 

that are unaffected by a missed bridge, and is using all the bridges from 𝑇 that are 

included in 𝑇∗. This requires to take into consideration not only the bridges missing 

from 𝑇∗, but also all other edges whose assigned weight might be affected due to the 

removal of the bridge. Specifically, a missing bridge (𝑢, 𝑣) forces the algorithm to use 

a different path between 𝑢 and 𝑣 and so the values assigned to edges in that path will 

differ from their values in 𝑇. Exactly which edges are considered to be affected and 

thus ignored depends on the specific type of operation that gave rise to that bridge. 

An illustration of edges affected by the removal of bridges can be seen in Figure 3.2. 

We call this metric Equivalent for Observed Bridges (EOB). 

5. What fraction of the intervals have the correct copy number? This score is the 

percentage of intervals, weighted by length, that have the same copy number in 𝑆 

and 𝑇. Unlike criteria 1-4, which are binary, this criterion measures the extent of 

correctness of a solution, and thus is more sensitive and accounts also for partially-

correct solutions. We call it the CN score.   
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Figure 3.1: An example of graphs that represent equivalent yet not identical solutions. Graph (I) can have a path of 
(II) 𝐴 → 𝐶 → 𝑩 → −𝑪 → 𝐵 → 𝐶 → 𝐷 or (III) 𝐴 → 𝐶 → −𝑩 → 𝑪 → 𝐵 → 𝐶 → 𝐷. Both paths start and end in 
telomeric nodes (marked blue) and use the exact same set of bridges. In (I) the numbers above the solid edges are 
copy numbers. In both alternative paths, the last part of the path is connected by reference edges. 

 

 

Figure 3.2: Edges affected by removing a bridge. In each of the four cases, the purple edge (𝑢, 𝑣) is the missing 
bridge and the blue edges are affected by the removal. (A) In the case of deletion, the removal of the bridge will 
affect all edges in the path 𝑢 → 𝑣. (B) For duplication, the weight assigned to the duplicated segment [𝑢, 𝑣] will be 
affected. (C) Inversion creates two bridges. When one is omitted this will affect the score of the other bridge (𝑢′, 𝑣′) 
and the inverted segment [𝑢′, 𝑣]. (D) A translocation creates two bridges. When the bridge (𝑢, 𝑣) is omitted this 
will affect the other bridge (𝑣′, 𝑢′) and the two corresponding reference edges. 

     

3.3 Performance in the base scenario 
10,000 karyotypes were generated for the base scenario, and the algorithm was applied with 

bridge support weight 𝛼 = 0.1. The performance is summarized in Figure 3.3. 

To assess the distribution of each success rate criterion, the karyotypes were divided into 100 

batches of 100 karyotypes each. Mean scores were captured for each batch and the variation 

of the mean was computed. (Figure 3.3). 

The algorithm correctly identified between 55% and 73% of the karyotypes in each batch, with 

an average of 62%. For an additional 13% of the cases, the solution had an equal CN profile as 

the correct solution, a total of 75%. An average of 82% of all karyotypes resulted a solution 

with a score equal or better than the correct one. When disregarding missing bridges, the 

algorithm correctly identified an average 84% of karyotypes. 

The mean CN score of all the 10,000 simulations was 0.97 with a small standard deviation of 

0.009. 
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Figure 3.3: Distribution of the success rate over 100 independant simulations of the base scenario. Error bars are ± 
the standard deviation. 

3.4 The effect of separate parameters 
The effect of separate parameters was tested by simulations in which one parameter was 

altered, while keeping the other parameters at their value in the base scenario. 100 simulated 

karyotypes were generated for each value and the percentage of solutions falling into the 

categories of correct, ECN, EBS and EOB was evaluated. 

3.4.1 The effect of bridge support weight in the objective 
We first tested the effect of 𝛼 on the performance for 0 ≤ 𝛼 ≤ 2. Recall that 𝛼 is the relative 

weight assigned the bridges data in the ILP formulation (See 2.2.1). There is a noticeable 

improvement when 𝛼 > 0, and little effect for the range of 0 < 𝛼 ≤ 0.1. For larger values of 

𝛼 there is a small but noticeable negative effect. (Table 3.1). 

Alpha Correct ECN EBS EOB 

0.00 13% 82% 85% 17% 

0.01 67% 82% 85% 82% 

0.02 67% 83% 86% 90% 

0.03 67% 83% 86% 90% 

0.04 67% 82% 85% 89% 

0.05 67% 81% 84% 90% 

0.10 67% 80% 83% 89% 

0.25 67% 77% 81% 86% 

0.50 67% 73% 77% 82% 

1.00 67% 69% 73% 78% 

2.00 67% 68% 72% 77% 
Table 3.1: Performance of the algorithm for different values of the parameter alpha. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Correct ECN EBS EOB CN score

C
N

 s
co

re

Su
cc

e
ss

 r
at

e

Mean success rate for the base scenario



32 
 

 

3.4.2 The effect of noise in copy number measurements 
We tested the algorithm for different levels of CN noise  𝜖 under the base scenario. The results 

are shown in Figure 3.4. As expected, a higher level of noise makes it harder for the algorithm 

to find the correct solution. For 𝜖 < 0.4 the performance of the algorithm is quite good, and 

for 𝜖 ≥ 0.4 the results begin to deteriorate. Naturally, at high noise levels the majority (82%) 

of the solutions have better score than the true one.  

 

Figure 3.4: Performance of the algorithm as a function of noise level. For the CN score, the bars represent ±0.5 std. 
Data points for the default value of 𝜖 = 0.28 are marked with a triangle. 

3.4.3 The effect of the number of operations 
We tested the algorithm on karyotypes that underwent 1 ≤ 𝑁 ≤ 30 structural and numerical 

operations, under the base scenario. The results are shown in Figure 3.5. As expected, more 

operations make the problem harder and the success rate decreases, from 88% with one 

operation to less than 10% with 30 operations. The gap between the four scores of the binary 

measurements grows throughout the changes, with the exception of ECN and EBS which 

remain close together. 
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Figure 3.5: The effect of the number of operations. Success rates and copy number scores. Error bars represent ±0.5 
std. 

 

3.4.4 The effect of the number of chromosomes 
We tested the algorithm on karyotypes simulated with varying number of chromosomes 𝐶 ∈

{1,4,7,10}. The results (Figure 3.6) were better for the case of only one chromosome, with 

some difference between the other cases. Note that the number of operations remains at the 

default value of 𝑁 = 5, so with more chromosomes the changes due to operations are 

sparser. 

 

Figure 3.6: The effect of the number of chromosomes on the success rate of the algorithm. 
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3.4.5 The effect of chromosome ploidy 
We measured the performance of the algorithm for karyotypes with diploid chromosomes 

and for karyotypes with a single copy of each chromosome. As expected (Figure 3.7), the 

results were better for karyotypes with single copy of each chromosome – but only slightly. 

 

Figure 3.7: Single copy vs diploid chromsomes. 

3.4.6 The effect of missing bridges 
We tested the algorithm with different probabilities of completely missing a bridge 0 ≤ 𝑝 ≤

0.15. As expected, the results are better when the probability of missing a bridge is smaller 

(Figure 3.8). Furthermore, the EOB score remains high even for bigger values of 𝑝, as expected.  
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Figure 3.8: Success rate as a function of the probability to miss a bridge. 

3.4.7 The effect of the different operations 
To test the effect of operation frequency, we also simulated karyotypes by selecting 

operations with frequencies as reported in [20] and rounded to multiples of 10%. Table 3.2 

shows the distributions. 250 karyotypes were generated under each distribution. As seen in 

Figure 3.9, there is little difference in the success rates between the uniform distribution and 

the uneven one. 

Type Uniform Actual Malhotra data Simulations 

Deletion 25% 43% 40% 

Duplication 25% 38% 40% 

Inversion 25% 12% 10% 

Translocation 25% 7% 10% 
Table 3.2: operations frequencies used in the default scenario and in the alternative scenario. 
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Figure 3.9: Results for different operation frequencies. 

 

3.4.8 The effect of tumor heterogeneity 
We tested the algorithm on simulated data of tumors that are heterogeneous. We first 

simulated a sample that contains, aside from our tumor karyotype, the normal karyotype in 

rates of up to 45% (Figure 3.10). This simulates the situation where the sample is a mixture of 

normal and tumor cells. Results were slightly better for more homogenous samples, but 

overall the algorithm was able to achieve a success rate of around 60% even for samples that 

contain only 55% tumor cells. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Correct ECN EBS EOB

Su
cc

es
s 

ra
te

Effect of the distribution of operations

Uniform Uneven



37 
 

 

Figure 3.10: Performance for tumors with different levels of contamination from healthy cells karyotypes. 

 

We also tested the algorithm in a scenario where the sample is a mixture of two different 

mutated karyotypes. The lower frequency karyotype was 0%, 5%, 10%, 15% and 20%. The 

dominating target karyotype underwent 5 rearrangements (as in the base scenario), while the 

lesser karyotype underwent an average of 3, about half of them unique and the rest are 

shared between the two. While this is not a strict evolutionary model, it mimics the situation 

where different karyotypes in the same tumor share some similarities. As expected, this 

proved to be a more difficult scenario and the ratio of correct predictions dropped quickly. 

The other score metrics exhibited a much slower decline however (Figure 3.11). Note that the 

evaluation is done in terms of reconstructing the dominating karyotype only. 
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Figure 3.11: Performance of the algorithm on samples contaminated with a second, different karyotype. 

 

4 Results on real tumor data 
Our next step was to test the algorithm on data extracted from real samples. Malhotra et al. 

[20] examined 64 different tumor samples. In this study the reads in each sample were 

analyzed forming both a CN profile and a set of bridges with their support. Often the set of 

normal chromosomes that are involved in rearrangements and CN changes in a tumor can be 

partitioned into several sets of chromosomes that are independent of one another (i.e., have 

no segments that form a bridge between them). In terms of our graph representation, each 

such set is a connected component, which can be analyzed separately by the algorithm. The 

64 tumor samples in [20] constituted together 570 such components, and each was analyzed 

separately. 

4.1 Estimation of noise in the real data. 
We wanted to assess the noise level in the actual data affecting the reported copy number 

values. Since CN in noiseless data should be integer, we estimate the noise 𝑑𝑖  for the reported 

copy number 𝑐𝑖 as 𝑐𝑖 − [𝑐𝑖], where [𝑥] is the nearest integer value to 𝑥. Note that 𝑑𝑖  can be 

either negative or positive and cause the reported CN to be higher or lower than the true 

value respectively. Obviously 𝑑𝑖 < 0.5, and therefore 𝑑𝑖  is a lower bound for the real noise 

level. For lack of better yardstick, we use this value in lieu of the actual noise.  

The CN data include 22,321 copy number segments. As expected, the mean noise level across 

the data was 0, showing that the noise is unbiased towards negative nor positive values. The 

standard deviation was 0.28, a value that we used as our default scenario (see 3.1). A scatter 

plot of the standard deviation of the noise level vs. the number of bridges in each component 

can be seen in Figure 4.1. 
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Figure 4.1: Estimated noise level in real cancer samples. The plot shows for each of the 670 components in the 
tumor samples in [20], the number of bridges and an estimate of the noise level calculated as standard deviation 
of the distances of the CN in the sample from the closest integer value. 

In addition to copy numbers, the data include bridges and for each bridge an integer value, 

called support, representing the number of paired end reads (PERs) supporting that bridge. 

The expected average support can be derived from the read depth and the insert size. We 

assume that in order for a bridge to be supported by a PER, the breakpoint causing it has to 

fall within the gap of the PER’s insert. In other words, each read of the PER has to be mapped 

in full to one of the two sides of the breakpoint. Let 𝑖𝑛𝑠 be the total insert length and 𝑒𝑛𝑑 be 

the length of each end, so that the read gap is 𝑔𝑎𝑝 = 𝑖𝑛𝑠 − 2 ∗ 𝑒𝑛𝑑. The depth of coverage 

is the average number of times a base is sequenced, i.e. covered by one of the ends (as the 

gap is not sequenced). Equivalently, it is the average time it is covered by an end. Hence, the 

expected support score for a given breakpoint is 𝐸𝑠𝑢𝑝𝑝 =
𝑑

(2∗𝑒𝑛𝑑)

𝑖𝑛𝑠

∗
𝑔𝑎𝑝+1

𝑖𝑛𝑠
= 𝑑 ∗

𝑔𝑎𝑝+1

2∗𝑒𝑛𝑑
. In the 

data examined the mean size of each read is 𝑖𝑛𝑠 = 242, with mean end length of 𝑒𝑛𝑑 = 95. 

The average coverage is 𝑑 = 40, and so the expected support for a given bridge is 

𝐸𝑠𝑢𝑝𝑝 = 40 ∗
242 − 2 ∗ 95 + 1

2 ∗ 95
= 10.7 

The observed mean support score across all the data was 10.8. Figure 4.2 shows the 

distribution of the support scores across the data. A total of 6170 bridges were reported. 

Ignoring a few bridges with unusually high support, 6131 bridges (99%) with support score 

lower than 100 had mean score of 8.63 and standard deviation of 8.44. The support scores 
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across the real data closely resemble an exponential distribution with 𝜆 = 0.1866 (Figure 4.3), 

the distribution used in our simulation model. 

 

 

Figure 4.2: Histogram of bridge support scores across the data. Bridges with support score≤2 are not included in 
the data. The inlaid plot shows the distribution of the support scores for values >100. 

 

 

Figure 4.3: The distribution of the support score across the data plotted against an exponential distribution 
with 𝜆 = 0.1866. In both distributions values below 3 are ignored. 

4.2 Results on selected samples of real tumor data 
Table 4.1 shows information about three components that we analyzed in detail. Each has 

undergone 7-8 rearrangements, involving 1-4 chromosomes. For each component, the ILP 

algorithm outputs a directed weighted graph with a weight function that minimizes the 

distance and that can be broken into a set of paths 𝑃 = {𝑝1, … 𝑝𝑛}, starting and ending at a 

telomere nodes, and alternating interval and non-interval edges. Another script translates the 

solution of the ILP solver to a dot language representation [93] that can then be visualized 

using a graph visualization tool such as GraphViz [94]. 
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Sample 
Chromosomes comprising 

the component 
Number of bridges Number of CNV’s 

LUAD_6 1 8 40 

GBM_10 4, X 7 40 

LUSC_5 6, 12, 15, 16 8 28 

Table 4.1: Components  from the Malhotra data [20] the algorithm was tested on. 

4.2.1 Sample GBM 10 
Figure 4.4A shows the graph corresponding to the component of chromosomes 4 and X in 

tumor sample GBM 10 (Glioblastoma multiforme). The chromosomes were divided into 

segments according to the breakpoints inferred from the paired ends reads data and were 

named a-l. Segment sizes are not shown to scale in the figure. The number above each 

segment (interval edge) is the observed copy number of the corresponding genomic region, 

while the number next to a red edge (bridge) is the number of observed supporting reads for 

that bridge.  

The resulting karyotype suggested by our algorithm for this example is shown in Figure 4.4B. 

This graph can be broken into four different paths, representing both copies of the rearranged 

chromosomes 4 and X (Figure 4.4C). 

 

Figure 4.4: Results on sample GBM 10. In these figures we mark interval, reference and bridge edges by black, 
dotted and red arcs respectively. In all subfigures the same intervals (here: a through l for Chr. 4 and a,b for Chr. 
X) are aligned. The numbers in the second line are observed coverage values. (A) Bridge graph for chromosomes X 
and 4. The bridge between segments k and l is a result of our breakpoint filterring (see section 2.1.4). (B) Solution 
suggested by our algorithm. For this sample the average distance of the resulting karyotype from the data, 
weighted by segment length, is 0.28. Note that segments a,c,d, and h have edges in both directions suggesting 
the solution includes traversal of these segments in both directions. (C) The different paths comprising the 
solution, representing the rearranged karyotype of chromosomes 4 and X.  
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4.2.2 Sample LUAD 6 
Figure 4.5 shows the bridge graph constructed from the data of chromosome 1 in the tumor 

sample LUAD_6 (Lung Adenocarcinoma). This figure and the next one were automatically 

drawn by the graphical software GraphViz [94] using the output of the algorithm. 

 

Figure 4.5: Results of sample LUAD 6. (A) Bridge graph for chromosome 1. (B) Solution suggested by our algorithm. 
For this sample the average distance of the resulting karyotype from the data, weighted by segment length, is 0.24. 
(C) The different paths comprising the solution, representing the rearranged karyotype of chromosome 1.  
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4.2.3 Sample LUSC 5 
Figure 4.6 shows the graph corresponding to the component comprising of chromosomes 6, 

12, 15 and 16 of tumor sample LUSC 5 (Lung squamous cell carcinoma). 

 

Figure 4.6: Results of sample LUSC 5. (A) Bridge graph for chromosomes 6, 12, 15, 16. (B) Solution suggested by 
our algorithm. For this sample the average distance of the resulting karyotype from the data, weighted by 
segment length, is 0.24.(C) The different paths comprising the solution, representing the rearranged karyotype of 
chromosomes 6, 12, 15, 16.  
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5 Discussion 
In this work, the problem of inferring a tumor karyotypes from short paired end read data was 

investigated. A novel algorithm based on graph theory and ILP was introduced to solve the 

problem, and simulations were performed in order to evaluate the utility of such an approach. 

Some examples of analysis of real data were also presented. 

5.1 Overall success rate 
To accurately estimate the correctness and robustness of the algorithm, validation against a 

data set of verified karyotypes is needed. However, a comprehensive set of sequenced tumor 

samples with copy number profiles and paired-end reads data, matched with entire 

reconstructed karyotypes, is not currently available. Data sets that currently exist either do 

not include a fully reconstructed karyotype, or include karyotypes of a very low resolution, 

such as the Mitelman database [41]. We therefore used a simulation model to test and 

measure the success of our algorithm in a spectrum of scenarios, as well as to point out 

potential pitfalls. 

The analysis of simulated data suggests that most meaningful factors affecting the accuracy 

of solutions produced by our method are the noise and completeness levels of the data. We 

tested the algorithm in a scenario, designed according to observations in real data. Under 

these conditions, the algorithm correctly inferred 69% of the karyotypes. However, the 

success rate increased to 79% when considering solutions that are correct relative to the noisy 

input, and when accounting for unreported bridges, 87% of the tested cases were correct 

(Figure 3.3). 

Furthermore, in scenarios where there is almost no noise, or when no bridges are unreported, 

the results are much better: accuracy was 90% and 100%, respectively (Figure 3.4, Figure 3.8). 

This strongly suggests that our method is limited mostly by the completeness and accuracy of 

the measured data. It suggests that more accurate sequencing technologies are needed in 

order to increase the chance to solve the karyotype reconstruction problem correctly. 

We have also shown our method to be robust when implemented on data taken from tumor 

cells contaminated by healthy tissue (Figure 3.10). A sample that includes reads taken from a 

mixture of different tumor cells poses a bigger challenge, and the resulting karyotype is 

incorrect more often than it is correct (Figure 3.11). 

5.2 Limitations of the simulation model 
Using simulations allows us to gain better understanding of the capabilities and limitations of 

our algorithm, but it requires us to make assumptions about the mechanisms driving genomic 

rearrangements in tumor cells and about the statistical properties of the read data. Both types 

of assumptions limit the generality of conclusions we can draw. 

Firstly, our model defines a limited set of possible rearrangements (deletion, duplication, 

inversion and chromosomal translocation) and assumes that they occur with equal 

probabilities. Furthermore, the simulation of rearrangement events (except translocations) 

limits the genomic range they can span (see 3.1) and assumes that events are equally likely to 

occur in any position on the genome. While these assumptions are very far from the real 

process of mutating cancer cells, they do provide a mechanism that can generate any 

rearranged karyotype. Our method proved robust when changing the frequency of each type 

of rearrangement from equal to that observed in the data obtained from Malhotra et al. 
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(Figure 3.9), but other possible rearrangement mechanisms and their possible effect on the 

performance of the algorithm were not explored.   

A second problem arises when attempting to create very complicated karyotypes using a large 

number of rearrangements. While all possible karyotypes can be generated using our model, 

very complex ones are unlikely. Note that once a deletion operation has been performed, the 

deleted segment cannot reappear and will therefore be absent from the final karyotype. 

When performing a large number of rearrangements on a chromosome, deletions will occur 

and sometime remove segments that were rearranged by a previous operation, essentially 

limiting the complexity of the resulting final karyotype. We tested our method on karyotypes 

that have undergone a maximum of 30 operations (Figure 3.5), but a modified simulation 

model needs to be used in order to generate more complex karyotypes. Currently our results 

reflect more faithfully the ability of the algorithm on relatively simple karyotypes, which 

constitutes the majority in real data. 

A third type of limitation is due to the noise model assumptions. While we tried to borrow 

values of noise as estimated from the real data (section 4.1), there are other parameters that 

affect the noise and thus the quality of the analysis, including incorrectly mapped reads due 

to sequencing errors, non-uniquely mappable reads, insert length variance, breakpoints that 

fall within a read (and not in the gap), non-uniform read coverage, etc. These are all left to 

future work. 

5.3 Future directions 
One of the limitations of our algorithm is its inability to “predict” bridges that were not 

observed in the data. The algorithm will look for a path on the graph corresponding to a 

karyotype that best fits the observed CN profile, yet it will overlook potential paths that can 

be constructed by bridging two unconnected interval edges – essentially predicting a bridge. 

This implies that data produced using sensitive methods, even with higher rates of false 

positives, might be preferable over data with false negatives. 

One important aspect of the technology in detecting bridges is the size of the insert gap, i.e. 

the part of the PER insert that is not read. A bridge will usually be detected only when the two 

reads of a PER are on the two different sides of it (see section 4.1). Therefore, the larger the 

gap in the insert - the higher the bridge coverage. This implies that sequencing techniques 

with longer inserts can dramatically change the performance of the algorithm. Several such 

techniques are forthcoming, and some methods for detecting structural variations were 

already developed for them [68] [69]. Note however that very short rearrangements that span 

less base pairs than the length of the read may be missed altogether. 

Our algorithm currently focuses on finding a best path using the observed bridges only. 

Finding a best path including all possible unreported bridges requires considering an 

exponential number of possible paths. One approach can be for the algorithm to consider a 

limited number of possible unreported bridges. This is left for future work.  

A possible extension to our method can be the addition of weights to the reference edges. 

Recall that reference edges represent a connection between two segments that is expected 

according to the reference genome. Unlike interval edges or variant edges, reference edges 

are weightless in our model. One metric that can be used to establish a confidence score for 

a reference edge is the number of PERs whose ends fall on the two segments bordering the 

reference connection. 
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 תקציר
 

סדרה של שינויים מבניים. שינויים ועובר הגנום של תא סרטני משתנה במהלך התפתחות המחלה 

התוצאה היא קריוטיפ  אלו כוללים בין השאר מחיקות, תוספות, התקות )טרנסלוקציות( והיפוכים.

מאפשרים לחלץ  DNAטכנולוגיות ריצוף מהדור החדש ומערכי  סרטני מורכב במיוחד וספציפי לחולה.

ות"( ברצף הגנטי מתוך גנום סרטני פרופיל של מספר עותקים ורשימה של נקודות שבירה )"קפיצ

מספק את ואינו המידע הזה הוא מאוד מפורט אך מקומי מטבעו,  .ביחס לרצף הייחוס הנורמלי

 הואהתמונה הרחבה על מבנה הגנום הסרטני. אחד האתגרים הבסיסיים במחקר של גנום סרטני 

 להשתמש במידע כזה כדי לשחזר את הקריוטיפ הסרטני המלא.

, בשלמיםאנחנו מציגים כאן גישה אלגוריתמית, שמתבססת על על תורת הגרפים ועל תכנות לינארי 

ומפיקה את  ,אשר מקבלת כקלט פרופיל מספרי עותקים של מקטעים בגנום ומידע על נקודות שבירה

למידע. השתמשנו בסימולציות כדי להעריך את מידת  בעל התאימות המירביתהקריוטיפ סרטני 

 .TCGAאותה על מידע אמיתי שנלקח מתוך מאגר ההפעלנו היישומיות של הגישה שלנו, וכמו כן 

חסינות של האלגוריתם שלנו על ידי שימוש במודל סימולציות הצלחנו לתת הערכה למידת הנכונות וה

יש הבסיסי, אשר תוכנן לפי תצפיות שנלקחו במגוון רחב של תרחישים. תחת התנאים של התרח

מהקריוטיפים. אולם, כשמודדים את ההצלחה  69%במלואם , האלגוריתם שחזר ותאמיתי דגימותמ

מהמקרים שנבחנו הראו תוצאה  87%במידע מורעש ולא מלא, המתחשבים לפי מדדים פחות נוקשים 

א מאוד נקי ומלא, רמת הדיוק ונכונה. יתרה מכך, בתרחישים בהם המידע המסופק לאלגוריתם ה

. ניתוחים של מספר דגימות אמיתיות, כמו גם הפתרון המוצע על ידי 100%-90%-להגיעה 

  האלגוריתם שלנו, מוצגים גם כן.
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