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A Note on the Fixed Parameter Tractability of the
Gene-Duplication Problem

Mukul S. Bansal and Ron Shamir

Abstract— The NP-hard gene-duplication problem takes as
input a collection of gene trees and seeks a species tree that
requires the fewest number of gene duplications to reconcile
the input gene trees. An oft-cited, decade-old result by Stege
states that the gene-duplication problem is fixed parameter
tractable when parameterized by the number of gene duplications
necessary for the reconciliation. Here we uncover an error in this
fixed parameter algorithm and show that this error cannot be
corrected without sacrificing the fixed parameter tractability of
the algorithm. Furthermore, we show a link between the gene-
duplication problem and the minimum rooted triplets inconsis-
tency problem which implies that the gene-duplication problem
is (i) W[2]-hard when parameterized by the number of gene
duplications necessary for the reconciliation and (ii) hard to
approximate to better than a logarithmic factor.

I. INTRODUCTION

Accurately reconstructing the phylogenetic tree depicting the
evolutionary history of a given set of species is a fundamental
problem in computational biology. Typically, to build a phylo-
genetic tree for a set of species, one constructs a phylogenetic
tree from genes taken from those species. Such trees are called
gene trees. The implicit assumption is that the evolution of the
chosen genes mimics the evolution of the species themselves.
However, due to complex evolutionary processes such as gene
duplication and loss, recombination, and horizontal gene transfer,
trees constructed on genes do not always accurately represent the
evolutionary history of the corresponding species.

The gene duplication model, introduced by Goodman et al. [1],
provides a framework for inferring species phylogenies (also
called species trees) from a collection of gene trees that are
confounded by complex histories of gene duplication events.
In particular, the gene-duplication problem seeks a species tree
that can explain the incongruence of (i.e. reconcile) the input
gene trees using the fewest number of gene duplication events.
The gene-duplication problem is NP-hard [2], and has been
extensively studied; see, for example, [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13]. An oft-cited, decade-old result on
the gene-duplication problem states that this problem is fixed
parameter tractable when parameterized by the number of gene
duplications necessary for the reconciliation [14]. This result has
been significant because it placed the gene-duplication problem in
the exclusive class of NP-hard problems that can be solved exactly
within reasonable time when the parameter of interest (in this case
the number of gene duplication events) is small. Unfortunately,
as we reveal in this manuscript, there is a fundamental error in
the suggested fixed parameter algorithm. Moreover, we uncover
a link between the gene-duplication problem and the minimum
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rooted triplets inconsistency problem which implies that the gene-
duplication problem is (i) W[2]-hard when parameterized by the
reconciliation cost and (ii) not approximable to better than a
logarithmic factor unless P=NP.

II. THE GENE-DUPLICATION PROBLEM

Given a rooted tree T , we denote its node set, edge set, and
leaf set by V (T ), E(T ), and Le(T ) respectively. The root node
of T is denoted by rt(T ). Given a node v ∈ V (T ), we denote its
parent by paT (v), its set of children by ChT (v), and the subtree
of T rooted at v by Tv . Given a non-empty subset L ⊆ Le(T ) in
tree T , we denote by lcaT (L), the least common ancestor (lca) of
all the leaves in L in tree T . Throughout this work, the term tree
refers to a rooted binary tree in which all non-leaf nodes have
exactly two children.

A species tree is a tree that depicts the evolutionary relation-
ships of a set of species. Given a gene family for a set of species,
a gene tree is a tree that depicts the evolutionary relationships
among the sequences encoding only that gene family in the given
set of species. Thus, the nodes in a gene tree represent genes. We
assume that each leaf of the gene trees is labeled with the species
from which that gene was sampled. We say that a gene tree G

and a species tree S are comparable if S contains all the leaves
(species) in G.

To compute the reconciliation cost of gene tree G and a
given comparable species tree S, we first construct a mapping
MG,S : V (G) → V (S) that maps each node g ∈ V (G) to
the node lcaS(Le(Gg)) in S. A node g ∈ V (G) \ Le(G) is a
(gene) duplication if MG,S(g) ∈ MG,S(Ch(g)) and we define
Dup(G, S) = {g ∈ V (G) \ Le(G) : g is a duplication}. The
reconciliation cost of G and S, denoted by ∆(G, S), is defined
to be |Dup(G, S)|. Similarly, given a collection G of gene trees,
the reconciliation cost of G and S is denoted by ∆(G, S) and is
equal to

∑
G∈G ∆(G, S).

Given a collection G of gene trees, the gene-duplication prob-
lem is to find a comparable species tree S such that ∆(G, S) is
minimized.

Next, we give a brief description of the fixed parameter
algorithm of Stege [14] to solve the gene-duplication problem.
Note that the parameter here is the reconciliation cost. Throughout
this work we use the following terminology: G is a given set of
gene trees, G is a gene tree from G, and S is a species tree such
that Le(S) =

⋃
G∈G Le(G).

III. A DESCRIPTION OF THE FIXED PARAMETER ALGORITHM

This algorithm is based on the standard bounded-depth search
tree technique. The input to the algorithm is the set of gene trees
G and a parameter C. The goal of the algorithm is to output a
tree S for which ∆(G, S) ≤ C, or to report that such a tree does
not exist.
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Briefly, the algorithm of [14] proceeds as follows: The algo-
rithm starts at the root node of the species tree S. It splits the
leaf set of S into all possible bi-partitions (for the left and right
subtrees of the root of S), that cause less than C duplications in
the input trees. Thus, the algorithm considers all feasible ways
of building the leaf sets for the left and right subtrees of the
root of the species tree. The algorithm then proceeds recursively
on the left and right subtrees, for each of these possible splits
(bi-partitions).

Since the algorithm proceeds recursively, we only describe
how the algorithm constructs all the possible bi-partitions at
the root of S. The algorithm builds the bi-partitions by adding
the leaves incrementally. Suppose we have an incomplete bi-
partition. Then, either it is possible to add all the leaves to this
bi-partition without increasing the number of gene duplications,
or (according to [14]) it is possible to find a pair of leaves such
that each of the four ways of adding these two leaves to the
current bi-partition increases the number of duplications by at
least one. Thus, in terms of the bounded-depth search tree, the
nodes represent partially completed bi-partitions. Each of the four
ways of adding these leaves to the current bi-partition become
nodes on the next level of the bounded-depth search tree. Since
the number of gene duplications increases by at least one in each
successive level, the depth of the search tree is bounded by C.
We refer the reader to [14] for further details on this algorithm.

IV. A FUNDAMENTAL ERROR IN THE ALGORITHM

As seen in the previous section, the algorithm depends critically
on its ability to either add all the missing leaves to the current
incomplete split efficiently without increasing the number of gene
duplications, called a completion in [14], or to find a pair of leaves
such that each of the four ways of adding these two leaves to the
current bi-partition increases the number of duplications by at
least one. Such a pair of leaves is called a candidate pair in [14],
and this idea is formalized therein as Theorem 1.1 We restate this
theorem:

Theorem 4.1 ([14]): Given leafset L and gene trees
G1, . . . , Gk, where Le(Gi) ⊆ L (i = 1, . . . , k). Let D be
an incomplete split of L with leafsets Dl and Dr , Dl,Dr 6= ∅.
Then either there is a completion of G1, G2, . . . , Gk or there is
a candidate pair (a, b), a, b ∈ L− L(D).

Here L(D) denotes the leaves in D. As we illustrate with a
simple example, this theorem is incorrect. But first, we need some
notation. A rooted triplet is a (binary) tree with exactly three
leaves. We denote by ab|c the unique rooted triplet on leaf set
a, b, c for which the lca of a and b is a proper descendant of
the lca of a and c. In our example, all the input gene trees are
rooted triplets. In particular, let {ab|c, bc|d, cd|e, de|a} be the set
of gene trees, and let the incomplete split D be such that Dl = a

and Dr = e. Observe that this incomplete split does not cause
any necessary gene duplications in any of the gene trees, simply
because all the individual triplets are consistent with the split.
Also observe that it is not possible to complete this split without
incurring a cost of at least one gene duplication. Yet, a simple
case analysis shows that there does not exist any candidate pair.

Consider a generalization of our simple example so that the set
of input gene trees is {a1a2|a3, a2a3|a4, . . . , ak−1ak|a1}, where

1We note that this theorem appears without proof in [14]. The full version
of [14] appears in Stege’s PhD Thesis [15], but the proof of this theorem is
also missing therein (see Theorem 7.8 in [15]).

k ≥ 5, and the incomplete split D is such that Dl = a1 and Dr =

ak. This example illustrates that it is, in general, not possible
to extend the notion of a candidate pair to any constant sized
candidate subset; that is, a subset of leaves for which each of the
different ways of adding all these leaves to the current bi-partition
increases the number of duplications by at least one. Thus, the
approach of either finding a completion or a candidate pair (or
any constant sized candidate subset) seems inherently flawed.

A second fundamental error. There appears to be another
mistake, independent of the one pointed out above, in the fixed
parameter algorithm. Consider Step 1 of this algorithm, as given
in [14]. This step calls for the computation of a candidate pair
when the initial incomplete split D is such that Dl = A, for
some leaf A, and Dr = ∅. Since Dr = ∅, there cannot be any
candidate pair simply because any given pair of leaves can be
added to Dl without causing any gene-duplications. A possible
fix for this mistake would be to start the search tree from all
the |Le(S)| − 1 possible incomplete splits for which Dl = A

and Dr ∈ Le(S) \ {A}. However, due to the recursive nature of
the algorithm, this fix renders the worst-case running time of the
algorithm exponential in |Le(S)|.

V. A LINK WITH MINIMUM ROOTED TRIPLETS

INCONSISTENCY, W[2]-HARDNESS, AND INAPPROXIMABILITY

Consider a rooted triplet X = ab|c and a tree T such that
a, b, c ∈ Le(T ). We say that X is consistent with T if the lca
of a and b is a proper descendant of the lca of a and c in T .
Otherwise, X is inconsistent with T .

Given a collection C of rooted triplets with leaf set L, the
minimum rooted triplets inconsistency (MTI) problem is to find a
tree T , where Le(T ) = L, that minimizes the number of rooted
triplets from C that are inconsistent with T . We denote the number
of triplets from C that are inconsistent with any given T , where
Le(T ) = L, by Γ(C, T ). The MTI problem is NP-hard [16],
and along with its dual, the maximum rooted triplets consistency
problem, is well studied [17], [18], [19]. The following lemma
uncovers a strong link between the MTI problem and the gene-
duplication Problem.

Lemma 5.1: Given a collection C of rooted triplets with leaf
set L and a tree T such that Le(T ) = L, we must have Γ(C, T ) =

∆(C, T ).
Proof: Consider any triplet X ∈ C. X is consistent with T

if and only if |Dup(X, T )| = 0. Moreover, since |Dup(X, T )| ∈
{0, 1}, any inconsistent triplet contributes exactly one to ∆(C, T ).
Thus, we must have Γ(C, T ) = ∆(C, T ).

It was recently shown [19] that the MTI problem (even when
restricted to binary trees) is (i) W[2]-hard when parameterized
by the number of inconsistent triplets, and (ii) inapproximable to
within a factor of c · ln n for some constant c > 0 (unless P = NP),
where n is the size of the leaf set L. Thus, in light of Lemma 5.1,
we have the following theorem.

Theorem 5.1: The gene-duplication problem is W[2]-hard
when parameterized by the reconciliation cost. The gene-
duplication problem cannot be approximated to within a factor
of c · ln n for some constant c > 0, where n is the size of the
resulting species tree, unless P=NP.

Proof: W[2]-hardness: We give a parameterized reduction
from the MTI problem to the gene-duplication problem. Let (C, k)

be an instance of the parameterized version of the MTI problem,
which asks if there exists a tree T such that Γ(C, T ) ≤ k.
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Construct an instance of the gene-duplication problem by setting
the set of input gene trees G to be C, and the parameter to be
k. Thus, we ask if there exists a tree S comparable with G such
that ∆(G, S) ≤ k. Note that both T and S are trees on the same
leaf set. Now, by Lemma 5.1, if Γ(C, T ) ≤ k then ∆(G, T ) ≤ k,
and if ∆(G, S) ≤ k then Γ(C, S) ≤ k. Thus, the instance (C, k)

of the MTI problem has a yes answer if and only if the instance
(G, k) of the gene-duplication problem has a yes answer. Since
our reduction is computable in polynomial time and preserves the
parameter, the proof is complete.

Inapproximability: By a completely analogous argument it fol-
lows that if the gene-duplication problem can be approximated to
better than a logarithmic factor then we can obtain a better-than-
logarithmic factor solution to the MTI problem within polynomial
time as well.

This relationship between the MTI and gene-duplication prob-
lems also provides a simple alternative proof of the NP-hardness
of the gene-duplication problem. We point out that by an
analogous argument, the results of Theorem 5.1 apply also to
the duplication-loss problem, which is a variant of the gene-
duplication problem; see, e.g., [2], [8], [20] for a definition of
this problem. This analogous argument for the duplication-loss
problem relies on the simple observation that, in the context of
Lemma 5.1, if any triplet from C is consistent with T then it has
a duplication-loss cost of 0, while if it is inconsistent with T then
it has a duplication-loss cost of exactly 4 (i.e., 1 duplication + 3
losses).
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