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Utilizing somatic mutation data from numerous studies for
cancer research: proof of concept and applications
D Amar1, S Izraeli2,3 and R Shamir1

Large cancer projects measure somatic mutations in thousands of samples, gradually assembling a catalog of recurring mutations
in cancer. Many methods analyze these data jointly with auxiliary information with the aim of identifying subtype-specific results.
Here, we show that somatic gene mutations alone can reliably and specifically predict cancer subtypes. Interpretation of the
classifiers provides useful insights for several biomedical applications. We analyze the COSMIC database, which collects somatic
mutations from The Cancer Genome Atlas (TCGA) as well as from many smaller scale studies. We use multi-label classification
techniques and the Disease Ontology hierarchy in order to identify cancer subtype-specific biomarkers. Cancer subtype classifiers
based on TCGA and the smaller studies have comparable performance, and the smaller studies add a substantial value in terms of
validation, coverage of additional subtypes, and improved classification. The gene sets of the classifiers are used for threefold
contribution. First, we refine the associations of genes to cancer subtypes and identify novel compelling candidate driver genes.
Second, using our classifiers we successfully predict the primary site of metastatic samples. Third, we provide novel hypotheses
regarding detection of subtype-specific synthetic lethality interactions. From the cancer research community perspective, our
results suggest that curation efforts, such as COSMIC, have great added and complementary value even in the era of large
international cancer projects.
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INTRODUCTION
Obtaining a comprehensive catalog of mutated genes in cancer is
one of the holy grails of biomedical research. A catalog that links
genes to cancer development and progression across many
subtypes may enable accurate cancer diagnostics, and will form a
basis for improving health care.1,2 Large projects such as The
Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) have addressed the challenge by
characterizing genomic data from thousands of patients across
many cancer subtypes.3–7 The complexity of these data necessi-
tated development of algorithms for delineating recurring
mutations. For example, methods for detecting recurrence of
single-nucleotide variations in genes were developed based on
comparing the number of observed mutations in a gene to its
background mutation rate. This is calculated across patients in
order to distinguish between passenger and non-passenger
events.8,9

The results so far have been promising, yet recent studies
showed that detection of pertinent mutated genes is still a hard
task, mainly because most genes are mutated at intermediate
frequencies (2–20%) or even lower.1,2,10 Additionally, different
patients with the same cancer subtype tend to manifest low
similarity in their mutation profiles.11 To cope with these
problems, recently proposed methods made use of additional
auxiliary information. For example, MutSigCV utilized gene
expression data to better characterize the background mutation
rate of short genes.1 HotNet used protein–protein interactions to
detect connected subnetworks that harbor many mutated
genes.10,12 Hofree et al.11 stratified patients by quantifying the

impact of their mutations on how information propagates in a
protein–protein interaction network. ResponseNet and xseq
modeled the impact of mutations on the gene expression
profiles.13,14 Liu et al.15 developed an ensemble method for
detecting driver genes by integrating predictions from several
approaches. Most of the analyses above reported cancer subtype-
specific results. However, a thorough systematic assessment of the
ability of somatic gene mutation profiles alone to predict the
patient’s subtype is still missing. Furthermore, given the very large
orchestrated data collection project, the utility and added value of
smaller scale studies has been unclear.
To address those questions, we analyzed somatic mutation data

of 9304 whole-exome samples from COSMIC, a database that
contains somatic mutation profiles from the TCGA as well as many
smaller studies.16 Each sample was represented by its mutated
gene set, and a set of Disease Ontology (DO) terms that describe
its phenotype.17 We applied on these data multi-label classifica-
tion, where the goal is to construct an algorithm that predicts the
set of labels (DO terms) for each sample based on its given
features (the set of mutations observed in the sample). Such
algorithm can also provide a set of specific biomarker genes for
each disease.18 To the best of our knowledge this is the first
application of multi-label classification to cancer mutation data.
We tested a variety of multi-label classifiers using both leave-data
sets-out cross-validation, and a stringent three-tier statistical
validation process. In total, 20 out of 50 analyzed DO terms were
well classified according to our validation, including bladder,
pancreas, intestinal, leukemia, brain and benign neoplasms.
A comparison of the TCGA and smaller studies showed that while
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the differences between the numbers of reported mutations are
often immense, classifiers learned using the TCGA can predict
subtypes in non-TCGA data, and vice versa.
For each cancer subtype our classifiers produce a set of

relevant, subtype-specific signature genes. We demonstrate their
value in three applications. First, these signatures recapitulate the
main cancer genes in each subtype, and provide multiple novel
candidate driver genes. Second, our classifiers can predict the
primary site of a metastatic sample, suggesting potential clinical
use for patients with cancer of unknown primary. Finally, we
analyze our classifiers in the context of synthetic lethality (SL)
interactions. SL interactions represent epistatic relations in which a
double knockout of two genes results in a marked decrease in cell
viability, whereas a single knockout of either gene is not lethal.19

These interactions were suggested previously as a basis for
anticancer therapies.20–22 Here, we show a consistently significant
over-enrichment of SL interactions between overmutated and
under-mutated signature genes inferred from our classifiers. Thus,
our analysis can propose novel subtype-specific candidate
SL interactions between signature genes, with a promising
therapeutic potential.
In summary, our key contributions are as follows: (1) construc-

tion and validation of disease-specific classifiers for 20 cancer
types, (2) the first demonstration that mutations alone can
successfully identify cancer types, (3) utilization of the resulting
type-specific biomarker sets to discover novel driver genes,
identify the origin of cancer of unknown primary, and pinpoint
cancer type-specific SL interactions.

RESULTS
We first wished to test how well somatic mutation data from the
COSMIC database can be used to classify cancer types, and
whether there is added value in using information from small
studies given the large international efforts. Our approach is
summarized in Figure 1. We analyzed data sets from many studies
covered by the COSMIC database. We merged these data sets by
taking the high-quality binary gene–patient associations from
whole-exome studies provided by COSMIC (see Materials and
Methods). These data covered 9304 patients from 126 different
studies. 4636 of the patients originated from TCGA studies. Genes
(17 882) that had ⩾ 10 mutations across all patients were analyzed.
We manually mapped each patient to its DO labels by using the
restricted vocabulary of COSMIC for sample description. We used
DO terms that had ⩾ 50 patients in ⩾ 3 different studies. We also
removed general terms (for example, ‘cancer’). The DO terms are
structured as a hierarchy where child–parent relations are of
‘is-a’ type (that is, the child is more specific). To avoid redundant
terms, when a child and its parent had exactly the same patient
set we removed the child. Overall, 50 DO terms remained.

Improved subtype classification
We tested multi-label classification algorithms using 10-fold leave-
data sets-out cross-validation.23,24 That is, we excluded a tenth of
the studies at a time while making sure that DO terms were always
represented in the training set. We then learned classifiers using
the training data sets and tested their performance on the
excluded studies. As we observed previously,24 when analyzing a
diverse collection of data sets spanning many diseases, perfor-
mance evaluation requires several scores in order to avoid over-
optimistic results. Given a disease term D, all samples are first
partitioned to three groups: positives (P)—the samples with the
disease D, negatives (N)—the samples that do not have D but
originated from the same studies as the samples in P, and the
background controls (BGC)—all others. To evaluate a classifier for
D we calculated receiver-operating characteristic (ROC) scores for
the separation between P and N (PN-ROC), as well as between P

and BGC (PB-ROC). Area under the precision-recall curve measures
were defined similarly (that is, PN- and PB-AUPR). We also
calculated a meta-analysis q-value for the separation between P
and N within studies.24 This test could be applied only for studies
with a reasonable number of positives and negatives (we required
at least five for each). Very few studies in our data satisfied this
condition, and these usually covered only a small fraction of the
set P. For example, while two astrocytoma studies satisfied this
condition, they covered only 79 out of our 436 astrocytoma
samples. We therefore performed the meta-analysis only if these
studies covered ⩾ 5% of P. Twenty-two terms met these criteria.
We tested three types of classifiers: multi-label k nearest

neighbors (MLkNN),25 HOMER26 and Binary Relevance18 (BR).
Multi-label k nearest neighbors and HOMER consider dependen-
cies among terms, whereas BR simply learns a separate binary
classifier for each DO term. For BR we used feature selection to
reduce running time (see Materials and Methods for details) and
tested four classifiers: (1) support vector machines,27 (2) standard
random forest,28 (3) Ranger—a fast implementation of random
forest developed for genome-wide association studies29 and (4)
Ranger DS—Ranger preceded by down-sampling the BGC and N
populations. Except for Ranger DS all algorithms performed rather
poorly (average ROC⩽ 0.6). For each classifier, term D was defined
as well classified if the following conditions were satisfied:(1)
PB-ROC⩾ 0.7; (2) if D had at least 10 negative samples,
PN-ROC⩾ 0.7; and (3) if the meta-analysis could be applied we
required q⩽ 0.1. The results are shown in Figure 2a. The top

Figure 1. Overview of the analysis. Samples and mutations were
selected and annotated. Machine learning was used to identify
cancer subtypes that could be reliably classified. For each well-
classified subtype a gene signature was extracted from the classifier.
The gene signature contains both over- and under-mutated genes.
Finally, these sets are used for three applications: (1) gene-subtype
associations, (2) primary site prediction given a metastatic sample
and (3) novel predictions of subtype-specific synthetic lethality.
A parallel effort compared the classification quality obtained on data
from the small studies to that based on the TCGA information.
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performing algorithm was Ranger DS with 20 well-classified terms,
whereas the second best algorithm was Ranger with only 7 terms.
Figure 2b shows that Ranger DS is superior both in ROC-PN and
ROC-PB. We also tested Ranger with SMOTE, another method for
sampling balanced data sets from imbalanced data.21,30,31

Supplementary Figure 1 shows a comparison of this method to
Ranger DS. Although the two methods led to similar prediction
quality, the SMOTE-based variant was much slower. Based on
these results we used Ranger DS for all subsequent analyses.
Figure 3 shows the studied terms on the DO network. Well-

classified terms include leukemia subtypes, brain cancer, liver

cancer, intestinal cancer, urinary system cancer, benign neoplasm
and others. In addition, some terms had high ROC scores and a
marginal q-value (for example, mature B-cell neoplasm had
PN-ROC= 0.83, PB-ROC= 0.82 and q= 0.12). As a word of caution,
out of the well-classified DO terms only four could be validated
using the meta-analysis test. On the other hand, whenever the
meta-analysis validation could be used, very few studies had both
positive and negative samples. For example, for integumentary
system cancer (PN-ROC= 0.78, PB-ROC= 0.77), out of 11 studies
only one could be used and it contained only 15.7% of the
positive samples. Larger community efforts are needed to provide

Figure 2. Leave-datasets-out cross-validation. (a) For each classifier, the bars show (from bottom to top) the numbers of DO terms with
PN-ROC ⩾ 7, PB-ROC ⩾ 0.7, and the number of well-classified terms. For binary relevance classifiers (BR) the number of features used is shown
after the classifier name. (b) A comparison of Ranger and Ranger DS. Each point is a term.

Figure 3. The analyzed disease terms. Nodes are DO terms and edges reflect the DO hierarchy. Edges represent ‘is-a’ relations. Node size is
proportional to the PB-ROC score, whereas the node color is proportional to the PN-ROC score. Nodes with wide borders mark well-
classified terms.
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heterogenous data sets that collect more than one cancer
subtype.
Finally, we observed a significant correlation between the

PN-ROC scores and the number of studies per DO term (Spearman
r= 0.4, Po0.01), and no correlation with the number of positive
samples (Spearman r= 0.004, P= 0.9). Also, no additional well-
classified terms can be gained by using the number of mutations
in a patient as a single feature for classification. A possible
explanation is the large differences between TCGA and non-TCGA
studies; see the next section for a detailed discussion. In summary,
our results show that although subtype classification based on
mutation data is a hard task, high performance can be reached for
many disease terms, with a clear bias towards those for which
many studies were collected.

TCGA vs small studies
The 9304 samples analyzed above consist of two disjoint groups
of roughly of the same size: TCGA (4636 samples, 17 studies) and
non-TCGA samples, 4668 samples from 109 studies. The number

of mutations per gene was highly correlated between the two
groups (Figure 4a). However, when the number of mutations was
counted per sample separately for each DO term, the differences
between the groups were very high in most subtypes. For 22 out
of 39 shared DO terms the difference between the distributions
was significant (Po0.001, Bonferroni correction). In 10 cases the
mutation frequency in the TCGA samples was lower. Figure 4b
shows two examples in which the medians differed by more than
10-fold: integumentary system cancer and plasma cell neoplasm.
We also tested the ability of each group to predict the labels of

the other. That is, we learn classifiers on the TCGA samples, and
measure their performance on the non-TCGA samples, and vice
versa. The results are shown in Figure 4c. We did not separate the
non-positive cases into negatives and BGCs in these calculations
because the TCGA studies had no negatives. Interestingly, using
the non-TCGA samples for training produced better performance
(P= 0.003), with the majority of the tested terms achieving
ROC40.75. These results suggest that the cohorts share common
local patterns that identify cancer subtypes, and that the
non-TCGA samples provide substantial added value.

Figure 4. Comparison of 4636 TCGA samples to 4668 non-TCGA samples. (a) Number of mutations per gene. Each point gives the total
number of mutations of a gene over all samples in each cohort. (b) Example of differences in the number of mutations in the two sets. In
integumentary system cancer the TCGA samples have many more mutations. In plasma cell neoplasm the non-TCGA samples have more
mutations. (c) Classification performance results: y-axis—AUC value when training on Non-TCGA and measuring the performance on the TCGA
samples; x-axis—AUC values of the reverse test. Performance is measured by comparing positives vs the rest. Each point is a DO term. The
difference between the two sets of AUC values is significant (P= 0.003).
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A simple scheme for interpreting a classifier
In the rest of the paper we show how our classifiers can provide
insights on different cancer related problems. For a well-classified
disease term D, we take the top 50 genes according to their
importance score in the classifier, and call them the signature of D.
Supplementary Figure 2 shows that using the top 50 genes likely
covers the vast majority of the genes that were important for
classification. For each signature gene we define its enrichment
factor (EF) as the log ratio between the probabilities of observing a
mutation in that gene in samples of disease D and in the rest of
the samples. Supplementary Table 2 contains all the computed
signatures and scores. For each cancer subtype D, a signature
gene is called overmutated if EF40 and under-mutated other-
wise. Our overmutated gene sets recapitulate the main cancer
genes in most examined cases, see Figure 5a for a comparison to
Lawrence et al.1

Learning disease–gene associations
Figures 5b–d show network analysis examples for intestinal
cancer, pancreatic cancer and benign neoplasm. The last two
were not covered by Lawrence et al.1 and therefore could only
be analyzed using COSMIC. The main connected component is

shown in each case along with some additional high scoring
genes. Many of the reported genes have a low mutation rate
(for example,o5%, node size in the figure) and were not detected
in Lawrence et al.1 For benign neoplasm the analysis captures
some of the known cancer genes detected in the complete
PanCan analysis. However, they are under-mutated (that is, less
likely to be mutated in benign neoplasms compared with
cancerous ones). Note that while this signature is very general
and does not pertain to specific forms of benign neoplasm, it
represents a general common denominator validated across all
benign neoplasm studies in COSMIC.
Importantly, previous studies identified some highly mutated

genes, such as TTN, MUC4 and MUC16, but then argued that they
should be excluded based on biological relevance.8 In our analysis
these genes were eliminated, appeared with a negative EF, or had
lower importance scores (that is, were not in the top 50, or had
lower importance scores compared with the genes in the
network). Thus, our results both highlight important genes and
‘clean’ undesired effects. In addition, our results improve upon
previous analyses based on the TCGA only. For example, in kidney
cancer, TP53 has a negative EF score. That is, although it is marked
as highly significantly mutated by the previous TCGA studies,1,32
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Figure 5. Detected genes based on classifier interpretation. (a) A comparison of our signature genes to the gene sets detected by pan-cancer
analysis of the TCGA data. Colored cells represent significant overlap (Po0.001), with color intensity showing the Jaccard coefficient between
the two sets. (b–d) Subnetworks of signature genes. Edges are either protein–protein interactions or pathway interactions. Node size is
proportional to the percent of mutated samples in the subtype. Node label size is proportional to the random forest importance score. Node
color represents the gene enrichment factor (EF). Red: overmutated; Green: under-mutated. Blue: genes added by GeneMANIA. (b) Intestinal
cancer. (c) Pancreatic cancer. (d) Organ system benign neoplasm. In b triangular nodes indicate genes overmutated according to TCGA colon
cancer analysis. In c and d triangular nodes indicate genes that were identified as over-mutating in Pan-Cancer TCGA analysis.
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when adding the COSMIC samples its effect is reversed. Moreover,
Lawrence et al.1 reported a set of candidate genes with marginal
significance for each subtype, but very few of them had high good
importance scores in our analysis. For example, in intestinal cancer
only AXIN2 and FAM123B (AMER1) were detected.
In addition to eliminating genes with low importance scores,

our analysis suggests novel, less frequently mutated candidates.
Examples include FAM194B and IRF5 in intestinal cancer. LATS2 is
another interesting candidate whose inactivation was shown
to suppress P53 and inactivate cell migration.33 In addition, this
gene is a known tumor suppressor that governs homeostasis.34

In pancreatic cancer, we discovered well known genes such as
KRAS, SMAD4 and TP53.35–40 We also discovered GLI3, a mediator
of the hedgehog pathway activity, although it is mutated in
only 4.1% of the patients. The hedgehog signaling pathway is
responsible for maintaining pancreatic cancer stem cells, and
thus it is a main candidate for treatment.41,42 TGFBR2, a trans-
membrane protein that binds TGF-beta, was discovered although
it is mutated in only 3.7% of the patients. The TGF-beta signaling
pathway is another major contributor to pancreatic cancer
development.43 In addition, detection of GALR3, which is the
receptor of the neuropeptide Galanin, may suggest that this
pathway is important in pancreatic cancer and could lead to new
insights on the pathogenesis and potential therapy.

Primary site prediction from a metastatic sample
Can the classifiers be used to identify the origin of cancer from
metastatic samples? This would be highly valuable for cancers
of unknown primary. We analyzed the data of Zhao et al.,44

which recently published exomes from 85 samples of different

metastatic sites collected from 24 patients with a known primary
site. Out of the 24, 13 patients had a primary site that could
be mapped to at least one of our well-classified subtypes:
6 pancreatic cancer (21 metastatic samples), 1 intestinal cancer (2
samples), 2 kidney cancer (7 samples) and 4 female reproductive
organ cancer (12 samples). Although the last subtype is very
broadly defined, we included it in our analysis. Figure 6a shows
the prediction results of our classifiers for each of the four
subtypes on all 85 metastatic samples. For the three focused
subtypes, the prediction quality, as measured by the separation
between the metastatic samples from the correct primary site and
the other metastatic samples was significant (Po0.02, ROC⩾ 0.85
in all cases). Thus, our classifiers learned from COSMIC successfully
pointed out the correct primary sites for three different subtypes
in an independent set of samples.

Enrichment of SL interactions
SL in cancer has recently drawn a lot of attention,19 and we
reasoned that our analysis can expose a new facet of this
phenomenon. For each well-classified cancer subtype, we parti-
tioned the signature genes into two sets: O, the overmutated
genes, and U, the under-mutated ones. As discussed above many
under-mutated genes were detected in our analyses. We focused
on the relations of the under- and overmutated genes for the
same cancer subtypes. We reasoned that while accumulating
mutations in the overmutated genes is likely to cover driver
events that cause initialization and progression of cancer, similar
mutations are not observed in the under-mutated gene set
because that cells that randomly acquire these mutations do not
survive. Hence, simultaneous mutations in an under-mutated gene

kidney cancer pancreatic cancer

Figure 6. Primary cancer site prediction and synthetic lethality (SL) analysis. (a) The predictions of our classifiers on 85 metastatic samples from
a new independent data set. Each boxplot shows the predictions of a specific classifier. In each subfigure, the left boxplot shows the
probabilities assigned to metastatic samples whose known primary site fits that of the classifier, and the right shows the predictions on
samples of other primary sites. (b) Enrichment analysis of SL interactions among the signature genes of each classifier. The barplots show the
SL pair density within and between the over- and under-mutated signature gene sets (denoted as O and U, respectively). Only subtypes for
which the number of edges between the sets was significant (qo0.1) are shown. (c) SL subnetworks in kidney and pancreatic cancers. Red
nodes: overmutated genes, green nodes: under-mutated genes.
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and an overmutated gene would tend to be detrimental to the
survival of the cancer cells. In other words, we expect high
enrichment of SL interactions between genes in U and in O.
To test this reasoning, we analyzed the SynLethDB database of

SL interactions in human.19 We measured the density of SL within
set U, within set O and between the sets U and O, and also
computed the significance of the number of O–U SL pairs
observed (see Materials and Methods for details). Nine subtypes
had significant results (Figure 6b). Interestingly, density is
consistently lower within O genes, whereas in seven subtypes
the O–U density was higher than O–O and U–U densities. Similar
results were obtained when using the top 100 and 200 genes in
terms of importance as the signature of the disease, see
Supplementary Text. Figure 6c shows examples of the induced
SL network of the gene sets in kidney and pancreatic cancers.
In these networks, most SL interactions are between the under-
mutated genes. These are highly connected to the overmutated
genes, which are needed to keep the connectivity of the network
intact.

DISCUSSION
Advances in DNA sequencing technologies over the past decade
have led to great progress in the endeavor of learning a catalog of
mutated genes in cancer. Current databases provide data either
from large projects such as the TCGA, or by curation efforts that
span numerous smaller studies. Here, we highlighted the
cumulative added value of smaller studies, as summarized by
the COSMIC curation effort, in validating, refining, and extending
the results produced by the large projects. Comparison of TCGA
and non-TCGA studies showed that the differences between the
numbers of reported mutations per subtype are high in most
subtypes. On the other hand, classifiers learned using the TCGA
can predict non-TCGA subtypes and vice versa. Interestingly,
training the classifiers using the smaller studies was significantly
better, which highlights the quality of these data.
Statistically, learning the associations between genes and

cancer subtypes is difficult since most genes are mutated at low
or intermediate frequencies.2 Unlike most methods, which
incorporate additional data, we showed that classification can
be done for many subtypes using somatic gene mutation data
only. Notably, when projecting the genes used in the classifiers on
interaction networks, connected subnetworks that contain many
rarely mutated genes emerge. Interestingly, standard classification
algorithms produced very low performance (Figure 2). Never-
theless, the top performing algorithm, which is based on Ranger
with subsampling, gave high-quality predictions in 20 out of 50
tested DO terms. Validating a classifier required using leave-data
sets-out cross-validation and combining three different perfor-
mance criteria. As few studies include samples of several different
cancer subtypes, some of our criteria could not always be
calculated. Future studies that mix several subtypes will likely
achieve better results.
The number of data sets available for each disease is a key

factor in classification success. We observed a positive correlation
between classification quality and the number of data sets. Terms
with a small number of data sets tend to have fewer positive
and negative samples as well as lower biological heterogeneity
(as different studies often cover distinct populations). Other
factors may impair classification quality: some disease term
definitions may be too broad (for example, endocrine gland
cancer, which had41,000 samples, achieved PB-ROC= 0.62). Also,
when the sample set of a disease is too similar to that of a parent
or a child subtype in the DO hierarchy, the ROC score for
separating between them may be low (as can be seen, for
example, for the colorectal cancer branch in Figure 3). Finally, lack
of discriminating somatic mutations between similar terms can
result in weak separation between them.

We have shown how a very simple analysis based on the gene
importance scores obtained from the classifiers can recapitulate,
refine and extend the recent results from the large projects. Unlike
other approaches like TumorPortal,1 which highlights genes for a
particular cancer type based on their mutation rate only, our
approach prefers genes that are specific to the type, and avoids
genes that are non-specific even if they have high mutation rate.
For example, TP53 in liver cancer is mutated in 420% of the
samples, which is 1.2-fold lower than in other cancer types. This
gene was marked as down-represented in liver cancer in our
analysis (Supplementary Table 1).
Although our results are promising, they have several limita-

tions. The first and foremost is data availability: we could only
cover to terms with at least three disjoint studies in order to
perform a rigorous validation of our multi-label classification flow.
On the other hand, some of the resulting DO terms correspond to
very general cancer types, with no direct clinical usage. Never-
theless, as shown in Figure 5a, many of our well-classified DO
terms are similar to terms defined and analyzed by the TCGA,
which marks the state of the art of large-scale pan-cancer analysis.
Currently we used the top 50 genes based on their importance, as
was suggested previously,15 and do not assign significance scores
to single genes. Future methods that will integrate the gene
importance score within a significance testing model are expected
to be more powerful in detecting novel genes. The approach is
powerful for some cancer types, but does not provide consistent
result according to all three criteria in others, like breast and
ovarian cancer. This could be due to the heterogeneity of these
tumors, or due to the inability to distinguish a class from its
subclass.
Another limitation is that we only used binary somatic mutation

profiles and ignored additional information on the quantity
and quality of the mutations (for example, zygosity information).
Our analysis is also limited by the decisions made by the data
curators (for example, selection bias towards some subtypes), the
resolution of the DO hierarchy, and in considering only mutations
in exons.
We demonstrated the utility of our analysis for three applica-

tions, but these should be viewed as proofs of concept that
require further development. While we could predict the primary
site of a metastatic sample significantly and with high ROC scores,
the sample size used in this analysis was rather small; additional
studies using more samples are required to establish the usability
of our classifiers in practice. Our SL analysis detected enrichment
of SL interactions between the over- and under-mutated gene sets
for most well-classified DO terms. These results corroborate our
hypothesis that the observed cancer cells are those that tended to
avoid having mutations in the under-mutated gene set. However,
further research is required for inference of specific pair-wise
interactions. Finally, using our network summarizations (Figure 4b)
we were able to point out connected subnetworks related to
functional pathways (for example, hedgehog signaling in pan-
creatic cancer), which contained rarely mutated genes. Detection
of such subnetworks is of high interest as most driver genes
are expected to be rarely mutated.10 Such modules can also be
used to suggest new hypotheses, but these must be tested
experimentally.

MATERIALS AND METHODS
COSMIC data
We downloaded the complete gene somatic mutation data table from
COSMIC (February 2015 version), where rows describe a single mutation in
a specific patient. We kept only rows that were: (1) ‘Confirmed somatic
variant’ (that is, the mutation passed the analysis of the COSMIC curators)
and (2) originated from ‘Genome-wide screen’. This filter resulted in
1 393 387 surviving gene–patient pairs. In 87.5% of those the gene was
mutated only once in that patient, and for 92.5% of the mutations zygosity
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information was not available. These numbers suggest that our decision to
use binary gene–patient relations does not cause a major loss of
information.
We used COSMIC’s study ids to partition the samples by their studies.

When no COSMIC id was available we used Pubmed ID. This resulted in 221
studies. We then repeatedly united studies that overlapped in their
samples, until we were left with 126 patient-disjoint studies. We merged
the data from the different studies by forming a gene–patient binary
matrix recording which genes had one or more somatic mutations in each
patient. Finally, we excluded 1369 genes that were mutated in o10
patients, leaving us with 17 882 genes.

Classification algorithms
We used the Mulan package for multi-label classification algorithms.45 For
binary classification we used standard R implementation of linear support
vector machines,27 random forest with 500 trees28 and Ranger29 with 1000
trees. For all binary classifiers we used feature selection before learning the
classifiers in order to reduce running time. Here we selected the top 250
over-represented and top 250 under-represented genes using Fisher’s
exact test. For support vector machines we selected the top 100 over-
represented and top 100 under-represented genes, since for some
DO terms the learning process did not converge in a reasonable running
time (44 h).

Ranger DS
Given disease term D with a set of patients P we created a collection of
M= 50 random forests as follows. For each i= 1,…,M, we randomly selected
|P| samples out of the non-D samples and called the resulting set negative
sample set Ni. We then learned a Ranger classifier with 20 trees using P and
Ni. Prediction on a new sample is done by reporting the average prediction
over the 50 random forests.

Network visualization and analysis
Network visualization and analysis were done in Cytoscape46 using
GeneMania.47,48

Preprocessing the metastases data
We downloaded the Supplementary Data of Zhao et al.44 These data
contained all somatic point mutations for each sample (we used the 85
metastatic samples of patients with a known primary site). We then
mapped these positions to the GRCh37 genomic positions using the
biomaRt R package.49 For each gene in our original training data, we
checked in each of the samples whether at least one of its point mutations
fell in the gene’s genomic position. This process created a somatic
mutation binary profile for each metastatic sample, which was later used as
a test set for our classifiers.

Synthetic lethality analysis
We defined the set O of overmutated genes as those with EF40, and the
set U of under-mutated genes as those with EFo0. For the SL network we
used all SL gene pairs from SynLethDB.19

Significance estimation of the edges between two gene sets
For each well-classified subtype we analyzed the density of O–O, U–U and
O–U pairs In the SL network G= (V, E). We removed genes that are not in V
from O and U. For each node v in O we estimated the significance of the
number of edges between v and U using the hyper-geometric test as
proposed previously.50,51 Here, the number of successful draws is x, the
number of draws is the degree of v in G, the population size is |V|− 1, and
the size of the subpopulation on which success is measured is |U|. Finally,
we merged the P-values obtained for each node in O using Fisher’s meta-
analysis test. Our analysis can be viewed as a statistical test for the
connectivity between O and U, conditioned on the degrees of the
nodes in O.

Code availability
R implementation of the multi-label classifiers and the validation methods
can be freely obtained for academic use at http://acgt.cs.tau.ac.il/adeptus/
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