


















background distribution. Leiserson et al. (22,36) sought
local maximum cuts in the weighted graph of the GIs by
a greedy incremental approach, producing a collection of
linked pairs of modules. Kelley and Ideker (20) developed
a clustering algorithm that is based on graph compression,
where the original GI graph is compressed to a module
map. Hence, both (22,36) and (20) look for approximate
bicliques that connect gene modules. In contrast, we enu-
merate the maximal bicliques of GIs, analyze them by
taking into consideration the two interaction types to
ensure that the initial solution contains dense strongly
connected modules and improve the solution using our
global improver. Because our approach is generic, it
does not exploit the specific probabilistic nature of the
GI data as other methods do (22,36). Nevertheless, we
show that our method outperforms these and other

extant methods in several criteria on GI data. In
addition, because our algorithm is not limited by the
type of the input data, we are able to combine many het-
erogeneous data sets (e.g. using all GIs of BioGRID) in
our analysis.

When dissecting human expression profiles of disease
patients and healthy controls, DC analysis was proposed
as a way to discover gene modules whose inter-module
correlation levels are altered in disease (12,14,24,70).
We previously developed DICER (24), which uses a
local approach to detect module pairs. Here, we go
beyond it by finding maximal bicliques in the DC graph
and by concurrently constructing a global map of
modules. As we showed here, in most cases the map
links are highly significant. However, we also observed
cases where the absolute correlation change of modules

Figure 5. A pair of immune activation-related modules differentially correlated in NSCLC. (A) Two-linked modules, which are a part of the
constructed module map. Nodes are genes and edges represent correlation > 0.4 between the genes in the expression patterns of control class.
Edges here correspond to high co-expression between two genes and do not reflect the weights in the CC or DC networks. We observe strong co-
expression both within and between the modules. Nodes with black frames are related to immune activation response (six T-cell activation genes in
module 11 and four B-cell activation genes in module 12). Red nodes in module 11 are targets of mir-34 family. (B) GeneMANIA analysis of the
T-cell and B-cell signaling pathway genes shows that the genes of both modules are expected to interact in healthy controls. (C) The same two
modules and their co-expression network in the NSCLC class. As in A, the genes within each module are highly co-expressed. In contrast to A,
co-expression between the modules is completely diminished.
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might be mild even though the DC of the module pair is
significant. A possible remedy is to give more emphasis to
high absolute DC of map links so as to see the DC signal
better. Another possible improvement is to enumerate
bicliques using established heuristics [e.g. (68)].

A key factor in the performance of the ModMap
algorithm is the objective function optimized. Here, we
chose to maximize the sum of weights within modules
plus the sum of weights of module links and assigned
these weights based on a probabilistic model. On
unweighted networks, such as the PPI and GI yeast
networks, we set the weight of an edge to 1 and the
weight of a non-edge to �1, thereby promoting strongly
connected modules and links. This setting produced good
results and revealed functional interactions among protein
complexes. By setting different weights to non-edges in the
graphs, future analyses can promote modules that are
sparser, thus enabling better detection of interactions
among complete pathways.
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