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ABSTRACT

Improved methods for integrated analysis of
heterogeneous large-scale omic data are direly
needed. Here, we take a network-based approach
to this challenge. Given two networks, representing
different types of gene interactions, we construct a
map of linked modules, where modules are genes
strongly connected in the first network and links
represent strong inter-module connections in the
second. We develop novel algorithms that consider-
ably outperform prior art on simulated and real data
from three distinct domains. First, by analyzing
protein–protein interactions and negative genetic
interactions in yeast, we discover epistatic relations
among protein complexes. Second, we analyze
protein–protein interactions and DNA damage-
specific positive genetic interactions in yeast and
reveal functional rewiring among protein
complexes, suggesting novel mechanisms of DNA
damage response. Finally, using transcriptomes of
non–small-cell lung cancer patients, we analyze
networks of global co-expression and disease-
dependent differential co-expression and identify a
sharp drop in correlation between two modules of
immune activation processes, with possible
microRNA control. Our study demonstrates that
module maps are a powerful tool for deeper
analysis of heterogeneous high-throughput omic
data.

INTRODUCTION

Biological networks provide a comprehensive overview of
biological systems. They enable better understanding of
the system and can shed light on the function of genes
and other molecular compounds. Among other applica-
tions, they have been used for discovery and prediction
of gene interactions, gene functions and disease–gene asso-
ciations (1–9).

In these networks, the nodes represent molecular
entities and the edges represent interdependencies. For
example, in protein–protein interaction (PPI) networks,
nodes represent proteins and edges represent physical
interactions. In genetic interaction (GI) networks, nodes
represent genes and edges represent the organism fitness
for double-knockout perturbations, yielding two major
types of edges: alleviating GIs and aggravating GIs. In
alleviating GIs, also called positive GIs, the organism
fitness after the double-knockout perturbation is better
than expected based on the single-knockout results. In
aggravating or negative GIs, the fitness is worse than
expected. In gene co-expression networks, nodes represent
genes and edges score the correlation in expression
between the two genes (10,11). In gene differential correl-
ation (DC) networks, edges score the change in gene
pairwise correlation between one set of samples to
another (e.g. cases and controls) (12–14). With the
growing use and number of types of biological networks,
computational methods that exploit these rich data are of
great importance.
Computational methods that make use of several

networks are often better than methods that analyze
only a single network (4,7,8,15–19). For example,
combined analysis of PPI networks and gene co-
expression networks was used to detect gene sets that
are co-expressed and are connected in the PPI network.
Such analysis outperformed standard clustering algo-
rithms and was successfully used for gene function predic-
tion (5,8,16,19). Alleviating and aggravating GI data were
used to find epistasis among and within gene sets. Under
the premise that negative GIs tend to occur between com-
pensatory pathways and positive GIs occur within
pathways (or complexes), analysis of GIs was used to
suggest a map of epistatic relations among functional
gene modules (15,17,20–23). A marked improvement was
reported after adding a connectivity constraint in a PPI
network of the modules (15,17). The ability to construct
a summary map of several networks allows identifying
associations among discovered modules, thus improving
the interpretability of the results compared with standard
clustering of a single network.
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Building on prior studies of specific pairs of networks,
we introduce and study the fundamental problem of con-
structing a summary map of two biological networks H
and G, where the nodes of both are the same genes or
proteins, and the edges in each represent a distinct type
of relations (see Figure 1D). The map nodes are gene sets
that are strongly connected in H, and pairs of sets are
connected by links. A link represents strong connection
between two gene sets in G. The goal is to find gene mod-
ules in H simultaneously with finding module-to-module
interactions according to G, by optimizing a specific
objective function. We call this computational problem
the ‘module map problem’.

Most algorithms for the module map problem to date
were used to find a summary map of epistatic interactions
among pathways (15,17,20–23). Kelley and Ideker (15)
proposed a method that is based on local searches in the
graphs to find pairs of connected modules. Ulitsky et al.
(17) used a clustering of H as a starting point and then
improved the solution by merging modules. An algorithm
akin to (15) has been recently proposed for analyzing gene
co-expression and DC networks. The joint analysis of
these networks revealed gene groups that are much more
(or much less) correlated in one class of individuals (24).
Although previous algorithms for the module map
problem proved valuable, a thorough analysis of the
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Figure 1. Module map: example and simulation results. (A and B) Performance of module map algorithms on 500-node graphs. (A) Unweighted
graphs. (B) Weighted graphs. Each simulated pair of graphs contained an embedded module map of six modules in a tree structure. In addition, two
random cliques and two bicliques were embedded in the graphs as decoys. Module, clique and biclique size was chosen uniformly at random between
10 and 20. In the unweighted model (A) each edge was replaced by a non-edge with probability P and vice versa. In the weighted model (B) edge
weights are sampled from the normal distribution N(1,s), and non-edge weights are sampled from the normal distribution N(�1, s). Results are
averages of 10 simulations for each data point. The four top performing algorithms for each simulation are presented using radar plots. MBC-
DICER with global improvement is denoted as ModMap. The Jaccard coefficient between the modules produced by each algorithm and the true
modules is shown as the distance from the center. Consecutive spokes from the top anticlockwise show increasing values of P in A and of s in B. (C)
Comparison of module map algorithms on unweighted graphs with 1000 nodes, containing a map of 10 modules and five decoys and P=0.15. (D) A
toy example of the module map problem; left: the two networks. Nodes are genes, H edges are black and G edges are blue; right: the module map.
Nodes are modules and edges are links. Colors and numbers are the same on the left and right. The map contains three modules: module 2 is linked
to modules 1 and 3, whereas module 1 and 3 are not linked. Black nodes are not part of the module map. The graph H (black edges) contains a
clique that is not linked in G to another module and thus is not a part of the map. The example also demonstrates the difference between the local
and global approaches. The local approach identifies modules 1 and 2 as linked, whereas the global approach also identifies module 3 as linked to
module 2. See text.
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problem and of the merits and weaknesses of these algo-
rithms in different scenarios is required.

The problem of finding an optimal module map is NP
hard under most formulations, as it contains the clustering
of H as a subproblem. Hence, heuristics are used. These
algorithms usually contain two phases. We call the first
phase ‘initiators’: algorithms for finding an initial solution
that may contain many small modules. The second phase
uses ‘improvers’: algorithms for improving an initial
solution according to a predefined objective function.
A variety of algorithms can be formed from different
combinations of initiators and improvers.

Here, we study novel and extant initiators and
improvers. We show that a new initiator based on
maximal bicliques in G together with a statistically
formulated global improver strategy performs consistently
better or equal to extant methods on synthetic and real
networks of several types. We call the resulting algorithm
ModMap. We apply ModMap to experimental data in
three biological scenarios: (i) using yeast PPIs and
negative GIs, we find epistatic relations among protein
complexes, (ii) using yeast PPIs and DNA damage-specific
positive GIs, we detect emerging connections among
protein complexes involved in DNA damage response
and (iii) using DC analysis of gene expression profiles
of non–small-cell lung cancer (NSCLC) tissues, we
identify disease-specific loss of correlation between
immune activation processes and detect disease-specific
microRNAs.

MATERIALS AND METHODS

Definition of the module map problem

The input to the problem is a pair of networks
H=(V,EH,WH) and G=(V,EG,WG) defined on the
same set of vertices. These networks can be weighted or
unweighted. The goal is to find a module map that
summarizes both networks. A module map is a graph
F=(M,L), where M is a collection of disjoint node sets,
called modules, M={M1, . . . , Mp}, Mi�V, Mi\Mj= ;,
and L is a set of module pairs {(U1,V1), . . . , (Up,Vp)},
where each Ui and Vi are in M. These pairs are called
the map links. In addition, each module must be linked
to at least one other module. Roughly speaking, our goal
is to find a module map such that each module
corresponds to a heavy subgraph of H, and each link
represents a heavy bipartite subgraph in G between a
pair of modules. A formal notion of heavy subgraphs
will be introduced later. Figure 1D shows a toy example
of two unweighted networks and their module map.

Previous algorithms for constructing module maps vary
in the way they define the objective function and the links.
The DICER algorithm (24) seeks one pair of linked
modules at a time. A pair of modules is defined as
linked if the sum of weights WG between them is high
enough. We call the approach of DICER ‘local’, as it
finds one module pair at a time. The algorithm of
Ulitsky et al. (17) aims to maximize the ‘global score’,
namely, the total sum of scores within modules in

H plus the sum of scores of links in G. In addition to
increasing the global score, links between modules are
accepted only if they pass a statistical significance test.
We call the second approach ‘global’. Both methods
identify the links and the modules simultaneously.
Figure 1D demonstrates the differences between the

local and global approaches. Assume that in both
graphs edge weights are 1, non-edge weights are �1 and
that the local approach uses a threshold of 0 on the sum of
WG weights between two modules for reporting a link. In
both approaches, modules are clusters of nodes with high
density in H. According to both approaches, module 1 is
linked to module 2: the local score is 4 (8 edges and 4 non-
edges), the global analysis P-value for linkage is <0.05,
and the total score for the module pair is 13
(module score 6+3+link score 4). The sum of WG

weight between modules 2 and 3 is �4 (10 edges and 14
non-edges), and the local method rejects that link.
However, the global approach will also link module
2 and 3: the linkage P-value is significant (P=0.039),
and adding this link will improve the global map score
to 24 [13 for the (1,2) pair +15 for module 3–4 for the
(2,3) link]. This example illustrates the advantage of the
global approach on sparse graphs, in which large modules
are not expected to be densely interconnected.

Algorithms

We conducted a systematic study and developed further a
family of two-phase algorithms for module map detection
that find an initial solution (possibly consisting of many
small modules) and then improve it. We call algorithms
for the first phase initiators and algorithms for the second
phase improvers. For simplicity, we describe the algo-
rithms assuming that edges with positive weight are con-
sidered heavy. For unweighted graphs, we assume edge
weights to be 1 and non-edge weights to be �1. For
weighted graphs, all node pairs (edges) have weights, so
there are no non-edges.

Initiators

We tested five different initiators: (i) DICER (24), which
finds one pair of linked modules at a time, (ii) hierarchical
clustering of the graph H (25), which finds a set of
modules, (iii) a greedy node addition algorithm for
finding modules in H, (iv) DICERk a variant of DICER
wherein the minimum module size is set to k and (v) an
algorithm based on enumeration of maximal bicliques
in G using an exhaustive solver (26,27), followed by
the cleaning process of DICER. We call the latter
algorithm MBC-DICER, see Supplementary Text and
Supplementary Figure S1 for a full description of all ini-
tiators. Each initiator creates an initial module set, but
modules in the map constructed by clustering algorithms
are not necessarily linked.

Improvers

The ‘local improver’ (24) extends module map links by
either adding a single node to a module or by merging
two module map links. One drawback of this approach
is that it cannot create new modules that are not
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represented in the initial solution. Another disadvantage is
that it cannot merge a module whose two parts are linked
to different modules that are unlinked. See Supplementary
Figure S2 for examples. Later in the text we introduce the
global improver, which can often overcome both
problems.
Our ‘global improver’ is based on the procedure in (17).

Let M={M1, . . . ,Mn} be a collection of disjoint node
sets (e.g. a set can be a single gene or not linked to any
other set). Given sets (U,V), U, V 2 M and x2U, the
significance of the linkage of x with V is calculated using
Wilcoxon rank-sum test by comparing the edge weights
WG between x and V to the edge weights between x and
all nodes not in V. Such P-values are calculated for all
nodes in U and V, and they are combined using
Stoufer’s method (28). If the final P-value p(U,V) is at
most a then U and V are connected by a ‘link’ in the
map. Let L={(U1,V1), . . . , (Up,Vp)} be the resulting set
of links.
The ‘global score’ of the solution is the sum WH of edge

weights within each Mi plus the sum of WG edge weights
between the linked node sets:

S M,Lð Þ ¼
X

ijMi2M

X

s,t2Mi

WHðs,tÞ+
X

k,lj Mk,Mlð Þ2L

X

i2Mk,j2Ml

WGði,jÞ

s:t:8 Mk,Mljk6¼l,Mk,2M,Ml2Mð Þ Mk,Mlð Þ 2 L, p Mk,Mlð Þ � �

The improvement stage merges a pair of node sets
(two modules or a module and a single gene) if the
global score increases and the new link passes the signifi-
cance test. Considering a merge that creates a new module
Y requires recalculating p(Y,Z) for all other modules Z in
M, in order to calculate the global score. This process is
done greedily: iteratively, the merge that yields the best
improvement is performed until no possible merge can
improve the global score.
We modified the aforementioned method to allow

for fast analysis of large graphs as follows. First,
when calculating p(U,V), we consider the links in G’
(the unweighted version of G). We use a hypergeometric
test to evaluate if a node has significant number of edges in
G’ to the opposite set (e.g. from a node v 2 V to the set U),
and then all node P-values are merged using Fisher’s
method (29). The sets U and V are linked if the resulting
value �a. This test is much faster and provides maps
of equal quality to using the Wilcoxon test on
G (see Supplementary Text). Weighted tests, such as the
Wilcoxon test, are not always appropriate for detecting
linkage among gene modules. For example, in the DC
graphs, a strong link must contain many positive edges,
whereas the Wilcoxon test only looks at the ranks of the
edge scores.
Second, we set another parameter b>>a, and if at some

point the P-value for the possible link between two sets is
at least b, we say that the sets are ‘anti-linked’. In the
original algorithm, when considering merging two sets
U and V into W, possible links between W and every
other set Y must be calculated. However, if U and Y are
anti-linked or V and Y are anti-linked then we mark W
and Y as anti-linked, avoiding the need to consider the

possible link (W,Y). In practice, we used a=0.005 for the
yeast data as suggested in (17) and tested several options
in the gene expression data (see Supplementary Text). In
all cases we used b=0.2. Finally, we perform multiple
merge steps simultaneously in a single iteration in a way
that guarantees that the global score improves
(see Supplementary Text). This provides a speed up of
two-fold or more in practice without loss of solution
quality.

Simulations

We constructed initially empty 500-node graphs H and
G and then added edges creating a perfect module map
in which modules are cliques in H and links are bicliques
in G. The module map topology (M,L) was a random tree
with jMj=6. We then added two H-cliques and two
G-bicliques to the graphs to represent additional ‘decoy’
structures that are not part of the map. Clique, biclique
and module sizes were randomly selected in the range
10–20 with uniform distribution and disjoint node sets.
Call the resulting edge sets EH* and EG*. Finally, we
modified these graphs by introducing random noise:
each edge in G and H was deleted with probability P,
and each non-edge was replaced by an edge with probabil-
ity P. All reversal steps were done independently. For
creating weighted graphs, the same procedure was used,
but all possible edges are present in the final H and G:
w(u,v) is sampled from N(1,s) if (u,v) is in EH* or EG*,
and from N(�1,s) otherwise. We also generated in this
manner 1000 node graphs with 10 or 20 modules and five
decoys (cliques and bicliques).

Analysis of negative genetic interactions and
protein-protein interactions in yeast

The PPIs and the negative GIs were downloaded from
BIOGRID (30). These networks were used to find
epistatic relations among protein complexes. The PPI
network was used as H, and the GI network was used as
G (see Supplementary Table S1).

Analysis of DNA damage-specific genetic interactions data

We used the data of (21), in which all pairwise GIs among
418 genes were tested, and of (31), which tested GIs
between 55 query genes and 2022 genes. A ‘DNA
damage-specific positive GI’ was defined as one that had
S< 0 in the untreated cells, S> 0.5 in the treated cells and
the P-value for differential GI was <0.01. This analysis
yielded 840 interactions from (21) and 1677 interactions
from (31). We additionally defined a positive GI as ‘stable’
if it had S> 1.5 both in the untreated cells and in the DNA
damage cells. This analysis provided 491 interactions in
(21) and 3139 interactions in (31). Owing to the different
experimental setups most of these GIs are not directly
comparable.

Calculating differential correlation scores

Given a training set containing gene expression profiles of
subjects, we used the statistical method of (24) to compute
for each gene pair its consistent correlation (CC) and DC
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scores. First, DC scores are computed using the real labels
of the samples. Then, the scores are transformed to
log-likelihood ratio (LLR) scores by comparing the
original DC scores to scores calculated on the same data
with randomly shuffled labels. Thus, positive LLR scores
mark gene pairs with significant change in DC. The prior
probability of real DC changes was set so that only cor-
relation changes of at least 0.4 will have a positive LLR
score. This approach guarantees a similar yet slightly more
stringent acceptance threshold compared with (24). See
Supplementary Text for additional information.

GO and microRNA enrichment analysis

We used TANGO (32) for Gene Ontology molecular
function and biological process enrichment analysis of
modules and FAME (33) for microRNA enrichment
analysis. Both tools are available as part of the
EXPANDER software (34). When a set of modules was
analyzed, we corrected for multiple testing using false
discovery rate (FDR) with q=0.05. The background set
for the enrichment analysis was defined as the set of genes
in the networks and not all genes in the organism. This
filtering step reduces bias in case of overrepresentation of
GO terms in the networks.

Network visualization

Network visualization was done using Cytoscape (35).

Availability

A command line tool for running ModMap is freely
available for academic use at http://acgt.cs.tau.ac.il/
modmap/.

RESULTS

Simulations

We first tested the different algorithms on synthetic graphs
H and G. Starting from a perfect module map, we first
added cliques in H and bicliques in G to represent
additional structures that are not part of the map and
then introduced random noise to the edges. To generate
both sparse and denser graphs, we tested a wide range
of the noise parameters s and p in the weighted and
the unweighted simulations, respectively (see ‘Materials
and Methods’ section). The results presented here
are for graphs with 500 nodes and six modules per map.
We also tested larger graphs with similar results
(see Supplementary Figures S3 and S4).

We tested 10 combinations of initiator and improver on
10 random data sets for each value of P and s. We
measured the quality of produced solutions using
Jaccard coefficient between the reported modules and
the known modules. The results of the unweighted and
weighted models are shown in Figure 1A and B, respect-
ively. Only the four algorithms that performed best on
average in each simulation are shown. Supplementary
Table S2 contains the results for all combinations. The
local improvement algorithms did not reach perfect
scores even on noiseless data. In contrast, MBC-DICER

and DICER5 followed by global improver reached perfect
Jaccard scores when there was no statistical noise. The
high performance of MBC-DICER remained robust
even when noise levels were as high as P=0.15 in the
unweighted model and s=1.2 in the weighted model.
A comparison of all algorithms on unweighted graphs
with 1000 nodes and 10 modules for noise level P=0.15
is shown in Figure 1C. Performance remains high
although the graphs are much larger. Using the improvers
was beneficial compared with using only the initiator so-
lutions, especially for the DICER variants. MBC-DICER
with the global improver reached highest performance
(0.87). Interestingly, the local improver was better than
the global improver for all other algorithms (e.g. 0.71
versus 0.59 for DICER5). This is probably because the
MBC-DICER initiator detects robust fully connected
modules, which are a better starting point to the global
improver at high noise levels. Tests with different values of
k for the DICERk algorithm led us to choosing k=5
(Supplementary Figure S4). In addition, we compared
the performance of the global improver with the hypergeo-
metric test and with the Wilcoxon rank-sum test, which
was used in previous studies. Our results show that using
the hypergeometric test reaches similar quality of results
but is much faster (see Supplementary Text). Overall, the
results indicate that MBC-DICER followed by the global
improver achieved the best performance on both
unweighted and weighted data. We call the resulting algo-
rithm ModMap and will use it as the algorithm of choice
from now on.

Yeast protein-protein interaction and negative genetic
interaction data

We used PPIs and negative GIs from BIOGRID (30) to
find epistatic relations among protein complexes. Only
genes that had both types of interactions were used.
Overall, the networks contained 3979 genes, 45 456 PPIs,
and 76 237 negative GIs (the interactions are listed in
Supplementary Table S1). This number of genes and
edges is larger than in previous studies. For example,
(22) covered 1460 genes, and (17) covered 743 genes.
Therefore, our networks have the potential to provide a
broader overview of the yeast interactome and allow for a
comprehensive performance testing of the different
algorithms.
As done in previous studies, we evaluated solutions by

their statistics and the functional characterization of the
modules (17,22). The calculated solution statistics
included the number of modules, the number of genes
covered and the maximal module size. We used TANGO
(34) to measure module functional enrichment, and
reported the number of discovered GO terms, the
percent of enriched modules and the percent of module
map links for which both modules are enriched (with the
same or with different functions), which we call ‘enriched
links’. Enriched links represent dense GIs among known
biological terms.
The solution statistics of all algorithms are shown in

Supplementary Table S3. One can observe clear superior-
ity of global over local improvers. In contrast to global
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improvers, which reported at least 100 modules and
covered 800–1000 genes, the local improvers found 2–28
modules covering only 15–192 genes. Except for DICER,
the results of all solutions were similar and of high quality.
ModMap was the best in terms of the percent of enriched
modules (87%) and percent of enriched links (80%).
Taken together, the map of ModMap was best in
combining functional comprehensiveness and quality.
We also compared ModMap with other weighted
approaches for GI data analysis (22,36) on the data of
Collins et al. (37). See Supplementary Text for details.
Our results show that ModMap produces high quality
maps and improves on extant weighted approaches.
Figure 2 shows a portion of the map constructed by

ModMap where links were restricted to P < 10E-50 (for
details see Supplementary Tables S4–S6). Each node rep-
resents a module, and edges represent map links. All
modules in the presented map are enriched at 0.05 FDR
with at least one GO term. The node labels show the most
significantly enriched term. Three major hubs are marked
in green: Rpd3L complex (14 genes, P=4.35E-38), Swr1
complex (13 genes, P=1.08E-35) and the mediator
complex (17 genes, P=4.89E-43). The Rpd3L and Swr1
complexes are chromatin related and were previously

annotated as hubs of GIs in a gene-based study (38).
Bandyopadhyay et al. (21) discovered some of the same
links; however, module annotation there was manual,
whereas our analysis was completely automatic and
produced a much larger map. Moreover, our map
extends on the previous observations by showing that
the three hubs are linked and by providing additional
links for the Rpd3L complex. In Figure 3, we focus on
the three most significant links in the map (P< 1E-70).
Figure 3A shows the connections between the Rpd3L
and Set3 complexes and between the Rpd3L and Swr1
complexes. Rpd3L and Set3 are both histone deacetilases,
and negative GI between them was reported in (20). The
Rpd3L complex was split into two disjoint modules,
whereas in our map it is detected as a single module, con-
taining all 14 Rpd3L genes. Figure 3B shows a connection
between two well-established subunits of the proteasome
complex (39). This example shows how joint analysis of
PPIs and GIs correctly detects core functional subunits
even when they are connected by many PPIs.

Analysis of DNA damage response networks in yeast

The module map described earlier in the text was obtained
by analyzing the entire set of known negative GIs. Recent

Figure 2. The yeast module map. Each node is a module in the yeast PPI network. The name of a node is the most significantly enriched GO term
for that module. Each edge represents a highly significant link between two modules in the negative GI network (P< 1E-50). Modules that were not
enriched for any GO term at 0.05 FDR are not shown. Three main chromatin-related hubs are marked in green. Some links connect disjoint modules
enriched with similar GO terms (e.g. proteasome–proteasome link, top right), and other links show epistasis between different biological processes
(e.g. nuclear pore and ribosome biogenesis, top right).

6 Nucleic Acids Research, 2014

 at T
el A

viv U
niversity on February 5, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

-
-
-
to
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku102/-/DC1
up
p
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku102/-/DC1
p
p
,
p
,
up
p
,
Notably, t
ile
above
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


studies have gone beyond static analysis to detect changes
in the GI network in response to DNA damage (21,31). In
these studies, GIs were measured in untreated cells and
following perturbation by the DNA-damaging agent
methyl methanesulfonate (MMS) (40). We combined
two such data sets (21,31) to detect ‘DNA damage-specific
positive GIs’, i.e. differential positive GIs that emerge in
the treated cells and are not observed in the untreated cells
(see ‘Materials and Methods’ section). Negative GIs are
typically observed between genes working in parallel, such
as genes that are involved in two compensatory complexes
or pathways that backup each other, and thus the loss of
one is buffered by the other. Positive GIs are more likely
to be observed between genes from the same complex or
pathway, where most of the phenotypic effect is already
observed in each single-knockout. Hence, DNA damage-
specific positive GIs are expected to represent changes of
the network in response to MMS, revealing DNA
damage-specific interactions within pathways or between
different pathways or complexes working in series. In
total, 1078 genes were included in both studies, with
2227 DNA damage-specific positive GIs among them
(see Supplementary Table S7). There were 6771 PPIs
within that gene set.

We applied ModMap with the PPI network as H
and the DNA damage-specific positive GI network as

G. Because these networks were much smaller than in
the previous analysis, we set the minimal module size to
three. The small module sizes also affected the attainable
P-values for links. Here, a pair of modules was defined as
linked if its P-value was < 0.05 after Bonferonni correc-
tion, considering all statistical tests done by the algorithm
during the improvement steps.
The generated module map contained 78 genes in 12

modules, with 17 links among them. Module sizes ranged
between 3 and 15. A complete description of the map is
provided in Supplementary Tables S8–S10. A map of the
modules that were significantly enriched with GO terms is
shown in Figure 4A. The hub in this map is a module
enriched with DNA repair genes, linked to six modules
that cover a large variety of functions. In Figure 4B, we
focus on the DNA repair-related module and on three of
the modules linked to it. The DNA repair module contains
four genes: RAD5, RAD18, HPR5 and UBC13. Interestin-
gly, although UBC13 is known to physically interact with
the three other genes, positive GIs that are consistently
stable across experiments (see ‘Materials and Methods’
section) connect the other three genes, providing further
evidence that the four genes are involved in a common
process. The RAD5, RAD18 and UBC13 genes are
known to be involved in post-replication repair (41–43)
and HPR5 is involved in checkpoint recovery (44,45).

A

B

Set3 
Complex
(p=1.16E-20)

Rpd3L complex
(p=4.35E-38)

Swr1
Complex
(p=1.08E-38)

Proteasome: 
core complex
(p=5.1E-32)

Proteasome: 
accessory 
complex
(p=1.3E-37)

GI
PPI

Figure 3. Examples of linked modules in the yeast module map. The genes of each module are arranged in a circle. Blue edges represent negative GIs
and pink edges represent PPIs. For each module, the most enriched GO term is shown along with its enrichment P-value. (A) Linkage among
different protein complexes. The significance of the links between Rpd3L and the Set3 complexes and between Swr1 and Rpd3L complexes is <10E-
70. The link between Swr1 and Set3 is also highly significant (P=4.29E-59). (B) Detection of subcomplexes. The joint analysis of the PPI and GI
networks partitions the proteasome complex into its two subcomplexes: the accessory and the core complex.
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The DNA repair hub module is linked to a module
associated with response to DNA damage. It contains
five genes: CTF4, ESC4, MMS1, MMS22 and Rt101.
The last four genes are part of the cullin-RING ubiquitin
ligase complex (GO:0031461). The last three genes were
shown to form a complex that stabilizes the replisome
during replication stress (46,47). The CTF4 gene is
related to DNA repair and DNA replication initiation
according to its GO annotations. The link suggests that
this complex might work together with the DNA repair
module for coping with damaged replication forks.
Interestingly, the two MMS genes were originally
detected in MMS sensitivity tests but are not expected to
be required for double-stranded repair (47). The RAD52
module (RAD51, RAD52 and RAD59) is related to
double-stranded DNA damage repair (48) and is linked
both to the DNA damage repair module and to the DNA
damage response module, suggesting these modules work
together in the same pathway as a result of DNA damage
to cope both with damaged replication forks and with
double-stranded DNA breaks. The fourth linked module
contains three genes of the SuperKiller (SKI) complex
(SKI2, SKI5 and SKI7). These genes are involved in 3–
5 RNA degradation in the cytoplasmatic exosome (49,50).
Our analysis suggests that this complex might also be
involved in response to DNA damage. Previous studies
have shown that RNA degradation cytoplasmatic genes
might play a role in DNA damage response separately
from their cytoplasmatic activity (51,52). The suggested
roles of RNA degradation genes in DNA damage
response include DNA stability and telomere stability
related functionality (51), mediating the assembly of
multiprotein complexes in double-stranded breaks (52)
and specific mRNA degradation on DNA damage (53).

Hence, our findings match prior studies and strengthen the
role of the SKI complex in the response to DNA damage.

Analysis of human co-expression and differential
correlation networks

We applied ModMap on case-control gene expression
data of NSCLC to reveal DC among highly correlated
gene modules. The contribution of this part is two fold.
First, we show that DC among gene modules is reprodu-
cible in cross-validation tests. Second, we analyze the map
of DC patterns between gene modules discovered by
ModMap.

Given a data set of gene expression profiles from cases
and controls, we used the method of (24) to compute two
scores for each gene pair: the CC score, which is positive if
the gene pair is consistently correlated across phenotypes,
and the DC score, which is positive if the correlation dif-
ference between the cases and controls is higher than
expected by chance. These scores were then used as edge
weights in networks H and G, respectively, on which a
module map was learned. The methodology was evaluated
using cross-validation: given a module map constructed
on a set of profiles (the ‘training set’) and a disjoint set
of samples (the ‘test set’), the quality of the predicted map
was evaluated on the test set by comparing the DC of links
and of non-links using Wilcoxon rank-sum test, where the
null hypothesis is that there is no difference in DC between
links and non-links. This measure is parameter-free and
reflects all DC changes.

We tested several variants of the algorithm using 2-fold
cross-validation. The maps produced by the local
improver received low P-values but suffered from low
coverage. For example, for the MBC-DICER initiator,
the local improver achieved a P-value of 4.43E-4, but

A B
DNA 
repair

Response to 
DNA damage 
(cullin-RING 
complex)

RAD52 
module

SKI complex

DNA damage-specific GI

PPI

Stable posi�ve GI

Figure 4. A module map of DNA damage-specific positive GIs. (A) A module map of the significantly enriched modules. Nodes represent modules
and edges represent significant links (Bonferonni corrected P < 0.05). The name of a node is the most significantly enriched GO term. (B) A closer
look at the DNA repair module and three-linked modules. Nodes represent genes and edges represent interactions: blue—DNA damage-specific
positive GIs, pink—PPIs, black—stable positive GIs, which are observed both in the untreated and in the treated cells. This map shows the emerging
connections between functional modules on DNA damage response covering DNA repair and checkpoint responses in the DNA repair module,
response to damaged replication forks (the DNA damage response module), DNA double-stranded response genes (RAD52 module) and RNA
degradation-related genes (SKI complex module). The RAD52 and SKI modules do not appear in A, as they reflect functions that do not have
established GO terms.
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the map covered only 197 genes. In contrast, when
applying ModMap (i.e. MBC-DICER with the global
improver), the map covered 1289 genes, with P-value of
1.54E-10. Supplementary Text contains further results of
testing different parameters of the global improver and
tests on Alzheimer’s disease (54), which got similar
cross-validation results. The full results are shown in
Supplementary Table S11 for lung cancer and in
Supplementary Table S12 for Alzehimer’s disease. Taken
together, ModMap produces large maps that are robust
when tested on independent data sets.

Next, we analyzed the module map obtained by running
ModMap on all samples of the NSCLC data. The map
covered 1921 genes in 76 modules, connected by 405 links
(see Supplementary Tables S13 and S14 for details). To
focus on strong changes in correlation between modules,
we compared the DC of each link in the map to the DC
calculated between random gene sets of the same sizes in
200 repeats and calculated the fold-change between the
real link and the best random link as proposed in (24).
The link fold-change scores are given in Supplementary
Table S14. In all, 150 links had fold-change �1.5, with
the top five links exceeding 2.3. This indicates that the
DC of the linked modules is far stronger than expected
by chance. We also analyzed the modules of the top links
using pathway enrichment analysis and microRNA en-
richment analysis (see Supplementary Table S15 for
details). One of the links connected two modules related
to immune response activation. The linked modules are
shown in Figure 5. In Figure 5A, we observe many high
co-expression edges between the modules (gene pairs with
r > 0.4) in the control class. Module 11 is enriched with
B-cell receptor signaling pathway genes (6 genes,
P=3.1E-8). Module 12 is enriched with T-cell receptor
signaling pathway genes (4 genes, P=1.37E-4). Figure 5B
shows GeneMANIA analysis of these 10 genes (7,55),
which confirms that they are connected by several types
of interactions. Figure 5C shows the co-expression of the
same modules in the NSCLC class. Within each of the
modules a strong level of co-expression is preserved, but
the co-expression between the modules is abolished, sug-
gesting that co-regulation of the different immune re-
sponses is lost in NSCLC. Finally, module 11 is highly
enriched with targets of microRNA 34-a, b, c family
(red nodes in Figure 5A), whose members are annotated
as causal to NSCLC according to the mir-2-disease
database (56). Taken together, these results show the
ability of our analysis to detect NSCLC-related functional
modules without using any prior knowledge.

DISCUSSION

In this article, we presented a methodology for joint
analysis of two gene networks, each representing a differ-
ent type of omic relation between genes. The method
identifies gene sets as modules and the complex structure
of relations among them and summarizes the analysis in a
module map. Modules correspond to interacting gene sets
in the first network, and links in the module map corres-
pond to interacting modules in the second. The map is

constructed based on both networks simultaneously and
thus can capture and reveal structures that are not identi-
fiable when analyzing each data type separately. Our novel
algorithms recovered the planted map structure in
simulated data, even when the noise level in the data
was high. We tested our methods in three biological ap-
plications: (i) yeast PPIs and negative GIs, (ii) yeast PPIs
and DNA damage-specific positive GIs and (iii) DC
analysis of human disease expression profiles. In all
cases, certain parts of our maps are supported by prior
biological knowledge, whereas other parts reveal novel
structure and suggest new biological findings. The
module map paradigm can be applied in principle on
any two types of networks with underlying common
nodes.
Our analysis of the yeast PPI and negative GI data

constructed a large map describing epistatic relations
among complexes. Our findings are in agreement with
previous studies and show a complex map of interactions
among chromatin modification-related complexes but
also provide interactions with other functions, such as
protein modification-related complexes. The analysis of
the yeast PPIs and DNA damage-specific positive GIs
produced a smaller map, which contains a DNA repair
module as a central hub. The interactions of this module
suggest that several mechanisms emerge simultaneously in
response to MMS, including double strand repair,
damaged replication fork repair and exosome complex
activity. In the map constructed based on human
NSCLC blood expression profiles, modules represent
gene sets that are highly co-expressed both in cases and
in healthy controls, whereas the map links correspond to
specific rewiring of the co-expression network in NSCLC
patients. In particular, we identified two modules enriched
with immune activation genes manifesting a sharp drop in
correlation in the NSCLC patients, suggesting diminished
coordination between the T-cell and the B-cell enriched
modules.
The concept of a module map can be viewed as a higher

level combination of clustering and biclustering. Each of
those problems has been extensively studied and was
applied successfully to numerous single-type genomic
and proteomic studies (1,57–68). By performing joint
analysis on two different data types, we allow some relax-
ation of the objective function in each of the networks, for
the sake of obtaining an overall clearer structure.
Therefore, the new analysis can yield results when cluster-
ing or biclustering of one data type fails. One of the
difficulties in clustering and biclustering is that module
(or module-pair) sizes must be large enough to obtain
highly significant sets. As our analysis demonstrates, the
added power of the module map approach can identify
relatively small precise groups that are beyond the detec-
tion ability of those prior methods.
Only a handful of studies have addressed the module

map problem to date, and most of them focused on joint
analysis of yeast PPI and GI networks. Ulitksy et al. (17)
and Bandyopadhyay et al. (69) developed clustering
methods that seek a map in which the likelihoods of the
edge weights of PPIs and GIs within clusters or of GIs
between linked clusters are higher than a given
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background distribution. Leiserson et al. (22,36) sought
local maximum cuts in the weighted graph of the GIs by
a greedy incremental approach, producing a collection of
linked pairs of modules. Kelley and Ideker (20) developed
a clustering algorithm that is based on graph compression,
where the original GI graph is compressed to a module
map. Hence, both (22,36) and (20) look for approximate
bicliques that connect gene modules. In contrast, we enu-
merate the maximal bicliques of GIs, analyze them by
taking into consideration the two interaction types to
ensure that the initial solution contains dense strongly
connected modules and improve the solution using our
global improver. Because our approach is generic, it
does not exploit the specific probabilistic nature of the
GI data as other methods do (22,36). Nevertheless, we
show that our method outperforms these and other

extant methods in several criteria on GI data. In
addition, because our algorithm is not limited by the
type of the input data, we are able to combine many het-
erogeneous data sets (e.g. using all GIs of BioGRID) in
our analysis.

When dissecting human expression profiles of disease
patients and healthy controls, DC analysis was proposed
as a way to discover gene modules whose inter-module
correlation levels are altered in disease (12,14,24,70).
We previously developed DICER (24), which uses a
local approach to detect module pairs. Here, we go
beyond it by finding maximal bicliques in the DC graph
and by concurrently constructing a global map of
modules. As we showed here, in most cases the map
links are highly significant. However, we also observed
cases where the absolute correlation change of modules

Figure 5. A pair of immune activation-related modules differentially correlated in NSCLC. (A) Two-linked modules, which are a part of the
constructed module map. Nodes are genes and edges represent correlation >0.4 between the genes in the expression patterns of control class.
Edges here correspond to high co-expression between two genes and do not reflect the weights in the CC or DC networks. We observe strong co-
expression both within and between the modules. Nodes with black frames are related to immune activation response (six T-cell activation genes in
module 11 and four B-cell activation genes in module 12). Red nodes in module 11 are targets of mir-34 family. (B) GeneMANIA analysis of the
T-cell and B-cell signaling pathway genes shows that the genes of both modules are expected to interact in healthy controls. (C) The same two
modules and their co-expression network in the NSCLC class. As in A, the genes within each module are highly co-expressed. In contrast to A,
co-expression between the modules is completely diminished.
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might be mild even though the DC of the module pair is
significant. A possible remedy is to give more emphasis to
high absolute DC of map links so as to see the DC signal
better. Another possible improvement is to enumerate
bicliques using established heuristics [e.g. (68)].

A key factor in the performance of the ModMap
algorithm is the objective function optimized. Here, we
chose to maximize the sum of weights within modules
plus the sum of weights of module links and assigned
these weights based on a probabilistic model. On
unweighted networks, such as the PPI and GI yeast
networks, we set the weight of an edge to 1 and the
weight of a non-edge to �1, thereby promoting strongly
connected modules and links. This setting produced good
results and revealed functional interactions among protein
complexes. By setting different weights to non-edges in the
graphs, future analyses can promote modules that are
sparser, thus enabling better detection of interactions
among complete pathways.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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