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Abstract

We live in a unique era in which biomedical research has transformed into an
information science. The amount and complexity of the collected data in public
databases are huge, and computational methods that can bridge the gap between
having information and understanding it are direly needed. In this thesis we describe
our studies in which we provided novel computational methods that can help in
moving towards this important goal. Our methodologies integrate information from a
broad variety of data sources and of diverse types. By utilizing techniques from graph
theory, probabilistic modeling, and statistical learning we were able to handle
complex large scale data. Our studies present contributions to three main areas of
computational biology: network biology, time series data analysis, and big data
integration. In each of these fields we showed that our methods for integrative
analysis outperform existing methods, provide novel biological insights, and can

facilitate suggestion of novel hypotheses that could be used for future research.
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1. Introduction

1.1 The Big Biomedical Data era

Over the past decades technology advances in imaging, molecular cell biology,
and genomics have transformed biomedical research into an informatics science. Today,
in almost every area of molecular biology and medicine, more and more large scale data
are being generated and collected. Figure 11 below gives an overview of different
molecular data types, coupled with their biological context. For each layer of the complex
biological machinery different technologies were developed in order to characterize its
molecular features. Prominent examples include sequencing DNA or RNA (e.g., across
tissues and subjects), measuring metabolite abundance, and even monitoring the activity

level of brain regions (not shown).

Many technologies today produce output en masse. That is, they can measure
thousands — and sometimes millions - of values in a single experiment. Public databases,
such as the ones provided by the National Center for Biotechnology and Information
(NCBI), provide freely available datasets from thousands of studies for each type of such
high throughput technology. While these data are available for immediate download on
demand, they often contain high noise levels, their analysis results are usually hard to
interpret, and they may even suffer from low reproducibility. Dealing with such data
requires accurate and scalable algorithms for extracting interesting patterns.

One of the main goals of computational biologists is to provide automatic tools
that would help researchers integrate data from many heterogeneous studies in order to
extract reliable information. In the context of Figure 11, the input for integrative analysis
is data from many studies that could cover a single layer (for intra-layer analysis) or more
(for inter-layer analysis). In both cases, the goal is to improve reproducibility,

interpretability, and suggest novel hypotheses.
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Figure I1. Multi-omics data from the genome to the phenome. The main flow shows a simplified
view of the components of cellular systems, organized into different levels. Heterogeneous
genomic data exist between and within levels. The top bar lists the specific data types that could
be measured within each layer. Red crosses indicate inactivation of transcription or translation.

CSF, cerebrospinal fluid; Me, methylation; TFBS, transcription factor-binding site. Source: (4).

In the sections below we lay out the background and terminology required for this
thesis. We first introduce the main data types that were studied in order to give a general
background (Sections 1.2-1.3). We next discuss advanced experiments that aim to
characterize the dynamic features of biological processes (Section 1.4). Finally, we
discuss computational aspects of integrative analysis (Section 1.5). As this subject is too
broad to fully review it here, we give an overview of pertinent recent advances. We focus

on areas covered in this thesis, and highlight the added value of the integrative analysis.



1.2 High throughput profiling

In biomedical research, it is often required to obtain global molecular "snapshots”
of the cell at different conditions. These snapshots can later be used, for example, in
comparative analysis to reveal the molecular changes between different situations and
cell types. See Figure 12 for an example in cancer research. Ideally, the best snapshot
would provide quantification of all biological molecules in the cell, including DNA,
RNA, proteins, and metabolites. However, techniques for high quality recording of
protein and metabolite quantities on a large scale are still under development. On the
other hand, it is possible today to measure the content and concentration of all nucleic
acid-based molecules (i.e., DNA and RNA sequences). For example, RNA transcript
levels in the cell could be measured using DNA microarrays or sequencing technologies.
These measurements are then used as approximation for the current activity of all genes,
and indirectly of their protein products.
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Figure 12. Different molecular profiles from diverse tumor types were collected by the TCGA

pan-cancer projects. Each project can include up to six types of profiles (mutation, copy number,



methylation, gene expression, microRNA and reverse phase protein arrays) from tumors

occurring in different sites of the body. Source: (5).

Using similar technologies, it is possible to measure the methylation level of all
genes in the DNA. The level of DNA methylation is important for many biological
processes including gene regulation, cell differentiation, and development (6,7). Profiling
of single nucleotide variants (SNVs) can be used for comparing cohorts on the genetic
level. Such analyses have been successful in detecting novel mutations in complex
disease and cancer, thereby relating genes to diseases (8). In addition, several
technologies are available for monitoring the levels of all microRNAs in a given sample.
Such transcriptomics and epigenetic experiments were used to detect biomarkers for

cancer, but a comparison of different experiments showed low reproducibility (9).

Fortunately, many of these data types are available for exploration and analysis.
Databases such as the Gene Expression Omnibus (GEO) (10), ArrayExpress (11), or The
Cancer Genome Atlas (TCGA) (12) provide hundreds of thousands of samples that can
be utilized to discover changes between patient cohorts. In these databases, a sample is
summarized as a vector of scores. In this thesis we shall describe a study in which we
utilized data from hundreds of gene expression studies to extract reliable disease
biomarkers and relate them to other data sources (e.g., mutation data) in order to reveal
therapeutic potential. Such studies can pave the way towards a robust analysis that will

improve reproducibility and interpretation.



1.3 Biological Networks

Biological networks provide a comprehensive overview of biological systems.
They enable better understanding of biological processes and can shed light on the
function of genes and other molecular compounds. Biological networks have been
utilized for a wide variety of applications including discovery and prediction of gene
interactions, gene functions, and disease-genes associations (13-21). These networks can
directly teach us about interactions and dependencies between cell particles. Thus, when
analyzed with high throughput profiles, networks can add a complementary view of the
cell state.

In biological networks nodes represent molecular entities, and the edges represent
interdependencies. For example, in protein-protein interaction (PPI) networks nodes
represent proteins and edges represent physical interactions. In genetic interaction (Gl)
networks, nodes represent genes and edges represent the organism fitness for double
knockout perturbations, yielding two major types of edges: alleviating Gls, and
aggravating Gls (22). In alleviating Gls, also called positive Gls, the organism fitness
after the double-knockout perturbation is better than expected based on the single
knockout results. In aggravating or negative Gls, the fitness is worse than expected.
Positive Gls were shown to be enriched within genes that are expected to work together
in the same pathway, whereas negative Gls were shown to be enriched between pathway
pairs that can compensate for the loss of each other (23). Figure 13 shows an example of
a genetic interaction network with suppression interactions. These are extreme positive
Gls that rescue the embryonic development by a deletion of a second gene. Such
interactions generally occur between genes with opposing functions in a shared process
(24).



o Y1 4 éﬂGZS
2 7
= 810.3
1
£ .
Tranafor 3
RNA ligase ” 1.5
FS9ET2.11 e, 2 e\
4 P A/l \ N\ /4 2 4.5
6 o K 1 e :5% B2
" v | g7
-1
" 10, 178
e 2. > Y45F108.13
i ; 9
— 1 \ G520, 1.9
L 2.4
4 9 <5 1
o o =
) W = 1
:{:‘; o o 0
> 13 j = ——jcd-1
& = - = 1
7 15 PAR =
.': A2 \ P \ ll .
7 - P A ;
,c»% o ) it ‘ A\ o
e, s . i .8 N\
Ay ""r_’l,», A1 10 m’Q 1. 14C10.4
" lw 1.5
pofrd $00-23 1 W
E01426 " cosatn2 L4
Cell archtecture Cell signafiing
Actomyosin cytoskeleton component .PARpmm .Smal»molocuhh-mspoﬂ .Promsynmosn
i s @«
) b Membrane traffic Maotabolism
Other coll architecture protoin ) Phosphatase Organesie import " euﬂumn
Protein dogradation ) Small GTPase or regulator
@ ~PC component @ G protein or reguiator @ ANA regulation
@ Otner protein degradation regutator @ Other signaling peotein ®cn and DNA

Figure 13. Genetic interaction network found in embryonic Caenorhabditis elegans. Colored
areas represent three broad gene functional groups (Actomyosin regulation, blue; PAR polarity,
green; Spindle positioning and microtubule regulation, red). Oblong nodes represent temperature-
sensitive lethal genes (i.e., genes whose knockdown results in lethality). Circular nodes are their
suppressors: genes whose additional knockdown results in embryonic rescue. Lines represent the
genetic interactions found in the experiment (colors represent the basis of the mutant functional
group). Thick lines represent interactions found between the 14 lethality genes. Suppressors
linked to only one seed are positioned in the outskirts of the network. Source: (24).



In gene co-expression networks, nodes represent genes and edges score the
correlation in expression between the two genes across a set of profiles (25). In gene
differential correlation (DC) networks, edges score the change in gene pairwise
correlation between one set of samples to another (e.g., cases and controls) (26-29). In
metabolic dependency (MD) networks, nodes represent proteins and an edge is added
between a pair of proteins if their associated reactions share a non-common metabolite
(30). With the growing use and number of types of biological networks, computational
methods that exploit these rich data are of great importance.

The networks explained above are undirected. In contrast, regulatory pathways
are usually much smaller. In regulatory pathways directed edges represent source-target
regulation, and in signaling pathways they represent signal transduction. More generally,
a biological pathway is the set of molecular entities involved in a given biological
process and the interrelations among those entities. Pathways are usually assembled by
expert-based curation of the literature. Therefore, they usually give a simplified view
based on the researchers' current knowledge and interpretation. Pathway boundaries are
inherently fuzzy and are not always well defined, but they are valuable for understanding
biology and for organizing biological knowledge (e.g. as a metabolic or signaling
pathway). Pathway databases such as KEGG (31), Biocarta (www.biocarta.com),
WikiPathways (32) and Reactome (33) provide manually curated, high quality pathways.
A pathway in these databases is essentially a map that tracks the information flow of a
biological process. These maps can contain a large variety of molecules, e.g., genes,
proteins, metabolites, and their interactions. Using pathways for enrichment analysis had
emerged as one of the main tools for interpreting results of large scale experiments.
Given a set of genes or a ranking of genes (identified in the analysis of an experiment),
many statistical methods were developed to assign significance for enrichment of a

pathway in the gene set or at the top of the ranking (34-38).



1.4 Advanced dynamic experiments

Using the technologies mentioned above to learn from snapshots of cells has been
instrumental in the past decades. As technologies advance and costs decrease, researches
are able to design more complex experiments that would allow deciphering the dynamic
features of biological systems. This is essential for pinpointing directed and causative
relations among genomic components and phenotypes. Integrative analysis is especially
crucial in these studies as it can leverage these complex data.

The two main kinds of such experiments are perturbations experiments and time
series profiling. In a perturbation experiment, a controlled modification is introduced to
the system (e.g., change of nutrients, over-expression of a certain gene, etc.) and
measurements are taken before and after applying the modification. In a time series
experiment the system is being monitored over k time points, where typically k>3 (and in
some cases much larger than 3). Both types of experiments can be utilized to learn causal
links between components of the biological system. Below we give a short introduction

to the main dynamic data sources that were studied in this thesis.

1.4.1 Differential networks

Recent studies in network biology have gone beyond static analysis to detect
changes in the networks after the cells had been introduced to either a genetic
perturbation or a unique environmental setting (39). One example is the GI network
generated in response to DNA damage (40,41). In these studies, Gls were measured both
in untreated cells and in cells following perturbation by the DNA-damaging agent methyl
methanesulfonate (MMS) (42). These experiments revealed a differential network in
response to MMS. This network contains DNA damage-specific interactions within
pathways or between different pathways. Such networks could be used to reveal novel

pathways that are activated in response to a particular perturbation.



1.4.2 Time series gene expression data

Measuring gene expression over time has been successfully utilized for
characterization of developmental processes and response to drugs or other modifications
(43-45). While classic experiments measured the expression changes over time in a
controlled experiment, or a cell line, recent studies have started producing time series
data from multiple different subjects. For example, Parnell et al. (44) measured blood
gene expression in 35 patients after septic shock. The expression profiles were taken
daily (for up to five days) after the septic shock. The analysis of the data detected major
pathways and genes whose expression was significantly differential over time. Such
analysis can provide novel candidate regulators that are important during sepsis

development and progression.

1.4.3 Brain fMRI

Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging
method that is typically used to provide a blood-oxygen-level-dependent (BOLD) signal.
The signal strength depends on two factors: (1) the systemic coupled increased blood
flow (which enhances the signal), and (2) neuronal activity. The former is the main factor
that controls the signal and in most analyses it is filtered out during preprocessing.
Neuronal activity can enhance the BOLD signal through chemical signaling that causes
dilation of blood vessels that increase the blood flow (46). This enhanced flow locally
increases the ratio between red blood cells containing oxidized hemoglobin and those that
have deactivated form of hemoglobin. As deoxidized hemoglobin has stronger magnetic
influence on its surrounding, the result is a detectable change in the BOLD signal. In
addition, BOLD is influenced mainly by local neural activity and internal neural
processing and not by regional output.

Raw fMRI data requires multiple preprocessing steps including removal of
nuisance signals related to head motion (and possibly other physiological variables), slice



timing, spatial smoothing, and temporal bandpass filtering (47). In addition,
transformation of coordinates from measurements of different subjects into a common
space (e.g., the Montreal Neurological Institute space; MNI) is required to allow group
level analysis. As most datasets are generated in grid space of ~3 x 3 x 3 mm, yielding
>100,000 brain voxels, dimensionality reduction is often applied. A common approach is
to define a whole-brain parcellation based on fMRI signals derived from many subjects.
Such approach was shown to better represent brain connectivity than using anatomically-
defined atlases such as the anatomic atlas labeling (AAL) or Harvard-Oxford (48,49).
Craddock et. al. (48) generated a whole brain functional parcellation by applying
correlation-based clustering for fMRI data recorded from 41 healthy subjects at rest. The
resulting parcellations, comprised of 200, 500 and 1000 parcels, were validated on an
independent dataset. Parcel signals were calculated by averaging BOLD values across all
gray matter voxels in it.

The brain function is known to depend on the inter-connectivity between
structurally and functionally linked regions (50,51). A set of regions that are known to be
active under a specific function is referred to as a “functional brain network”. During the
past decade, mapping these networks has received a great emphasis. One of the main
tools for achieving this goal is resting state fMRI (rs-fMRI) studies, see Figure 14. In
these studies, subjects are placed in the scanner and are required to stay awake. No
particular task is given. The neural activity at rest has been shown to consume large
quantities of energy and resources (52). This activity was shown to represent known
functional brain networks (53). High correlation between voxels (or parcels) in rs-fMRI
data, which is also called functional connectivity (FC), may indicate co-activation.
Patterns of FC can be learned by either examining all pairwise correlations, or by

examining the correlations of all voxels/parcels with a predefined seed voxel/parcel.
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Figure 14. A typical flow of a resting-state fMRI study. (a) Subjects are placed in the MRI
scanner and asked to close their eyes without falling asleep. No particular task is given. The
BOLD fMRI signal at ~100,000 brain voxels is measured throughout the experiment. Multiple
preprocessing steps are taken to reduce undesired effects. The end result is a signal for each voxel
over time whose intensity is expected to correlate with neural activity. (b) Additional tasks
performed during the study (e.g., moving a finger) between rest periods can be used to distinguish
brain activity at rest from that during the task. Voxels (or parcels) with a significant correlation
with the task (called "seed voxels") are identified and plotted on the brain map. (c) Functional
connectivity is measured by calculating the correlation between the time series signal of a pair of
voxels. (d) Highly correlated regions are inserted into the resulting functional connectivity map.
An example of a standard visualization is shown. Brain regions that were covered by the selected
highly correlated voxels are colored. Additional seed voxel information can be added to the map.
Source: (54).
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1.5 Integrative analysis

In this thesis we study a large variety of applications that utilize data from
biological experiments. The integrative aspect of the studies can refer to two types. First,
we tackle problems that emerge when analyzing data from multiple studies that produced
the same biological data type. For example, we shall propose methodological ways to
learn reliable biomarkers from hundreds of gene expression studies from different
technologies, tissues, and diseases. We shall also analyze data of experiments that
measured differential networks, where all experiments addressed the same perturbation,
but each experiment covered a different gene set. Another example is detection of
consistent modules that reappear in multiple subjects for whom time series data was
measured (e.g., fMRI or gene expression).

The second type of integrative analysis aims for extracting information from data
of two or more different types. For example, we shall propose a way to integrate two
different biological networks by learning a module map that summarizes them both. In
another analysis we shall integrate gene expression data from hundreds of experiments
with multiple gene information sources including cancer somatic mutation data. The
result is a gene-based disease overview that can highlight the main disease genes, and can
even propose novel candidates for drug repositioning in cancer.

In the sections below we give an introduction to recent integrative research

performed on biomedical data similar to those covered in this thesis.

1.5.1 Supervised analysis of gene expression data

In supervised analysis, training samples are provided with labels indicating their
classification into different phenotypes, and the goal is to predict the label of a new
(unlabeled) sample. A sample is a vector that represents the measurements of an
experiment. For example, a gene expression profile of a patient is a real-valued vector

where each coordinate is the activity level of a gene. Many supervised analysis methods

12



that integrate diverse biological data were suggested in recent years. For example,
integrative analysis of gene expression profiles and protein-protein interaction data or
pathway information was demonstrated to improve patient classification accuracy (55—
58). For example, Yang et al. (58) used pathway information to calculate features that
summarize the expression level of pathways and used them to predict cancer. A network-
based example is the search for active modules: connected network subgraphs whose
genes exhibit differential signal in a supervised dataset, see Figure 15 (59,60). However,
recent comparisons between gene-based analyses and pathway/network-based methods in
breast cancer data showed no significant difference between the approaches in
classification performance (57,61,62). Similar ideas were recently used to detect highly

connected sub-networks that are enriched with frequently mutated cancer genes (63-65).

‘Omics’ profiles Hotspot 1

(e.g. transcriptomic,
mutational or
RNA interference) Interaction networks (e.g., physical, genetic or metabolic)

13



b @HsPacs
Hspooas: @
HSPagAA 1
Module M2
P AR
DAPK3 ) 4
® [ ]
P -
e s L o
e R
Wice: Wicsir
Bcr. . T
@ cree
ARAE
« coze@ RASGRP1 . TPA ® ﬁ'oz
E F1
IRF1  EIF2AKa ”g"“' T ] o © . e
ZAP70 r @ )
® 5051 PRKCA &0
©CDCE
coz? [ ] LAT FRKCE KAps O NTRK1
cor FTPNG BTG L -
[ ] 2. @ eﬂApz SPI—% ® ncose
HGF pe FPN g B [,
CBLG GAB1 CD24a| | PLOG2 . 5082 Sm,?F'ALGDS
® vavs @ sPHk1 _PRASSF1
LILRAZ ‘ &HB ¢ @ [
TeA [ _ » ® cores CDTOA
ICAMS LILRAG
4 i o %
TGE2 SIRPG
camz
[ ]

Figure 15. Active modules in biological networks. (a) Detection of active modules.
Molecular profiles ("Omics" data) are used to characterize nodes in the network. For example, in
gene expression data a score of a node could be a measurement of how differential the gene is
when comparing cases and controls. Given the node features, an active module is a well
connected subgraph whose genes reflect high scoring nodes. Source: (59). (b) An example of an
active module detected in lung cancer. Node color represents up- or down- regulation (red, green,
respectively). Node size is proportional to the level of differential expression of the gene. Edges

are weighted protein interactions. Source: (66).

In addition, novel integrative methods were developed for feature selection (also
known as biomarker or gene signature discovery). For example, the SoFoCles method
(67) uses prior knowledge of functional similarity of genes to extract differential genes of
similar functionality. Subramanian et al. (38) used pathway information together with
gene expression profiles for differential pathway discovery. Mo et al. (68) combined
multiple high throughput profiles of the same patients, including mutation, mRNA, and
miRNA profiles, to select cancer biomarker genes for unsupervised data analysis (i.e.,

when the samples have no labels).

14



A very important integration effort is dealing with the large amounts of gene
expression profiles available in public databases. This approach is a promising direction
for increasing robustness, a well known problem in gene expression data analysis (69).
Moreover, such studies can identify delicate signals that might not be detected when
analyzing a single or a few datasets (due to either low quality, high statistical noise
levels, or low statistical power). Huang et al. (70) used 9,169 gene expression profiles,
each associated with a set of disease terms of the Unified Medical Language System
(UMLS). UMLS, and similar databases such as the disease ontology, provide both
disease terms and a directed acyclic graph (DAG) that models dependencies among
diseases (71,72). The authors presented a multi-label classifier: an algorithm that predicts
a set of disease terms for each gene expression sample. See Figure 16 for more details.
Their classification algorithm was designed to correct errors in which a sample is
predicted to have a disease term but not one of its ancestors. Such predictions violate the
path rule of the disease hierarchy, and could not be detected without using data of
multiple diseases. The authors showed that such cases can often be corrected by using a
method called Bayesian Correction (73). Schmid et al. (74) analyzed 3,030 samples of
one platform and predicted their UMLS terms using similarity-based analysis. Lee et al.
(75) analyzed >14,000 profiles of one microarray technology. Similarly to Huang et al., a
correction for the tissue hierarchy was used, and was shown to significantly improve the
results. However, their analysis was limited to prediction of the profile's tissue.
Altschuler et al. (76) analyzed 176,971 microarray expression profiles of six different
species to detect cross-species, tissue biomarkers that are based on pathways and not

single genes.
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Figure 16. Overview of multi-label learning. (A) The input for the learning problem in our setting. For
each patient a molecular profile was measured. In this example each patient has a microarray gene
expression profile (in one of the datasets). In addition, each patient is assigned with a set of labels in
the UMLS hierarchy that describe his phenotype. Source: (70). (B) Overview of multi-label learning
algorithms. In our settings a multi-label classifier is a function that receives as input a molecular
profile of a patient x, and for each disease term D, predicts the probability that the x belongs to D.
Algorithms for learning multi-label classifiers can be broadly partitioned into two types: problem
transformation and algorithm adaptation. Problem transformation methods transform the original
problem into one or more standard classification problems. For example, the label power-set method
transforms the problem into a multi-class classification problem. The method defines a new categorical
variable (for each sample) whose values are all possible combinations of the original labels, which is
then used as the class attribute. This method models the label dependencies implicitly and is usually
effective when the number of labels is small (77). Algorithm adaptation methods extend a specific
learning algorithm to deal with multi-label classification. For example, predictive clustering tree learns
decision trees for the multi-label task (78,79); and Bayesian correction (not shown) uses the known
label hierarchy to correct errors introduced when learning an independent single binary classifier for
each label (80). Source: (81).
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All these studies reported good prediction quality but they have limitations. First,
except for (76) only one or two gene expression platforms were considered. Second, in
Huang et al. (70) and Schmid et al. (74) the mapping of samples to their disease terms
was done automatically using a tool called MetaMap (82) and inevitably mapping errors
were present (70). Third, the Huang et al. (70) predictor is only applicable on new
independent samples if a set of new control samples is given with them in order to allow
calculations of differential expression. Fourth, while the prediction performance of the
classifiers was far from random (e.g., 82% precision at 20% recall in Huang et al.) there
is room for a significant improvement. Fifth, the low biological interpretability of these
multi gene-based predictors poses a problem when a clinician wishes to monitor the
decision rules of a specific disease. Finally, the set of studied phenotypes in (76) and (75)

were limited as these studies focused on tissue classification.

1.5.2 Integration of interaction networks via module maps

Computational methods that make use of several networks often yield better
results than methods that analyze only a single network (17,19,21,59,83-86). For
example, combined analysis of PPl networks and gene co-expression networks was
utilized to detect gene sets that are co-expressed and are connected in the PPl network.
Such analysis outperformed standard clustering algorithms, and was successfully utilized
for gene function prediction (15,21,59,86). Alleviating and aggravating Gl data were
used to find epistasis among and within gene sets. Under the premise that negative Gls
tend to occur between compensatory pathways and positive Gls occur within pathways
(or complexes), analysis of Gls was used to suggest a map of epistatic relations among
functional gene modules (40,83,84,87-89). A marked improvement was reported after
adding a connectivity constraint in a PPI network of the modules (84).

Several algorithms were proposed for detecting modules by simultaneous analysis
of positive and negative Gl data, and PPl networks. Kelley and Ideker (83) proposed a

method that is based on local searches in the PPI and GI graphs to find pairs of connected
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modules. Ulitsky et al. (84) used a clustering of positive Gls as a starting point and then
improved the solution by merging modules that are connected in the PPI network. Other
methods make use of the probabilistic scores of each Gl edge, and incorporate both
positive and negative Gls (87,89). Leiserson et al. (88,89) developed a method called
Genecentric, which looks for locally maximum cuts in the GI graph. On the data of
Collins et al. (90), this method was reported to outperform other methods, including
algorithms that integrate Gl and PPI information (40,91). While the methods described
above marked a significant advance in the problem of simultaneous network analysis,

they were all limited to GI network applications only.

1.5.3 Three-way time series data analysis

Identifying modules of elements acting in concert is a fundamental paradigm in
interpreting, visualizing and dissecting complex biomedical data. For two-dimensional
data (e.g., genes versus conditions), clustering and biclustering (92,93) have become
standard in computational biology (59,94). Recent studies have suggested new methods
for more complex input structures beyond the standard row—column data. For example,
Meng et al. (95) extended the classic Iterative Signature Algorithm (ISA) for biclustering
(96) to analyze a single matrix of time series data together with prior knowledge on gene
function to detect temporal transcription modules that are biologically meaningful.
Waltman et al. (97) and Dede and Ogul (98) proposed threeway clustering of gene-
condition-organism data with or without external information such as sequence
information in order to integrate data across species.

Gene expression or fMRI data measured over time and across subjects provide
another common data source that calls for three-way analysis. These data are represented
by an object x subject x time 3D matrix (i.e. a tensor of order 3) (99,100), where the
measured object is either a gene, a parcel, or a voxel. For such matrices, Supper et al.
(101) presented EDISA, an extension of ISA that seeks biclusters <G',S'> where G' is a

set of genes (objects), and S' is a set of subjects, such that all genes in G' manifest a
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similar time response across all subjects in S'. The SMARTS algorithm (102) represents a
more flexible approach. This recently suggested algorithm integrates gene expression
time series data with regulator-target network data in order to cluster subjects by their
regulation patters. For each learned model a set of genes and their regulators are learned
for each time point in which a significant change in the expression pattern is observed.

Extant models are limited in their ability to incorporate subject-specific signals
into the discovered modules. For example, the set of genes active under one subject in a
module may only partially overlap with the gene set of other subjects. Another limitation
of some of the methods is the assumption of synchronicity of time points across subjects.
Although this assumption is valid for technical repeats or well-tailored experiments, it is
less plausible in other situations, e.g. samples taken from patients over time, due to
possible heterogeneity in the response of different patients.
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1.6 Summary of the articles included in this thesis

1. D. Amar and R. Shamir. Constructing module maps for integrated analysis of
heterogeneous biological networks. Nucleic  Acids Research
doi:10.1093/nar/gku102, 2014.

Improved methods for integrated analysis of heterogeneous large-scale omic data are
direly needed. Here, we take a network-based approach to this challenge. Given two
networks, representing different types of gene interactions, we construct a map of linked
modules, where modules are genes strongly connected in the first network and links
represent strong inter-module connections in the second. We develop novel algorithms
that considerably outperform prior art on simulated and real data from three distinct
domains. First, by analyzing protein—protein interactions and negative genetic
interactions in yeast, we discover epistatic relations among protein complexes. Second,
we analyze protein—protein interactions and DNA damage-specific positive genetic
interactions in yeast and reveal functional rewiring among protein complexes, suggesting
novel mechanisms of DNA damage response. Finally, using transcriptomes of non-small-
cell lung cancer patients, we analyze networks of global co-expression and disease-
dependent differential co-expression and identify a sharp drop in correlation between two
modules of immune activation processes, with possible microRNA control. Our study
demonstrates that module maps are a powerful tool for deeper analysis of heterogeneous

high-throughput omic data.

2. D. Amar, D. Yekutieli, A. Maron-Katz, T. Hendler and R. Shamir. A
hierarchical Bayesian model for flexible module discovery in three-way time-
series data. Bioinformatics, 31 (12): i17-i26, ISMB/ECCB 2015, proceedings
paper, doi: 10.1093/bioinformatics/btv228, 2015.
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Motivation: Detecting modules of co-ordinated activity is fundamental in the analysis of
large biological studies. For two-dimensional data (e.g. genes x patients), this is often
done via clustering or biclustering. More recently, studies monitoring patients over time
have added another dimension. Analysis is much more challenging in this case, especially
when time measurements are not synchronized. New methods that can analyze three-way
data are thus needed.

Results: We present a new algorithm for finding coherent and flexible modules in three-
way data. Our method can identify both core modules that appear in multiple patients and
patient-specific augmentations of these core modules that contain additional genes. Our
algorithm is based on a hierarchical Bayesian data model and Gibbs sampling. The
algorithm outperforms extant methods on simulated and on real data. The method
successfully dissected key components of septic shock response from time series
measurements of gene expression. Detected patient-specific module augmentations were
informative for disease outcome. In analyzing brain functional magnetic resonance

imaging time series of subjects at rest, it detected the pertinent brain regions involved.

3. D. Amar, T. Hait, S. Izraeli and R. Shamir. Integrated analysis of numerous
heterogeneous gene expression profiles for detecting robust disease-specific
biomarkers and proposing drug targets. Nucleic Acids Research, doi:
10.1093/nar/gkv810, 2015.

Genome-wide expression profiling has revolutionized biomedical research; vast amounts
of expression data from numerous studies of many diseases are now available. Making
the best use of this resource in order to better understand disease processes and treatment
remains an open challenge. In particular, disease biomarkers detected in case—control
studies suffer from low reliability and are only weakly reproducible. Here, we present a
systematic integrative analysis methodology to overcome these shortcomings. We
assembled and manually curated more than 14 000 expression profiles spanning 48

diseases and 18 expression platforms. We show that when studying a particular disease,
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judicious utilization of profiles from other diseases and information on disease hierarchy
improves classification quality, avoids overoptimistic evaluation of that quality, and
enhances disease-specific biomarker discovery. This approach yielded specific
biomarkers for 24 of the analyzed diseases. We demonstrate how to combine these
biomarkers with large-scale interaction, mutation and drug target data, forming a highly
valuable disease summary that suggests novel directions in disease understanding and
drug repurposing. Our analysis also estimates the number of samples required to reach a
desired level of biomarker stability. This methodology can greatly improve the

exploitation of the mountain of expression profiles for better disease analysis.

1.7 Software tools and websites generated

The tools presented in this thesis are available in three websites. All websites provide

tutorials and the datasets used in the studies. First, http://acgt.cs.tau.ac.il/modmap/

provides Java runnables of ModMap, and the Java source code. Second,
http://acgt.cs.tau.ac.il/twigs/ provides R implementation of our complete algorithm

together with auxiliary scripts for running simulations. Researchers can use the scripts to
compare algorithms using the same cases shown in the study. Finally,

http://acgt.cs.tau.ac.il/adeptus/index.ntml provides our complete ADEPTUS database,

including microarray expression profiles, RNA-Seq expression profiles, somatic mutation
data, drug-target interactions, and gene interaction networks. These data are available as
RData files that can be easily loaded into any R session. R code implementation of

several learning algorithms is also available.
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2. Constructing module maps for integrated
analysis of heterogeneous biological networks.
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ABSTRACT

Improved methods for integrated analysis of
heterogeneous large-scale omic data are direly
needed. Here, we take a network-based approach
to this challenge. Given two networks, representing
different types of gene interactions, we construct a
map of linked modules, where modules are genes
strongly connected in the first network and links
represent strong inter-module connections in the
second. We develop novel algorithms that consider-
ably outperform prior art on simulated and real data
from three distinct domains. First, by analyzing
protein—-protein interactions and negative genetic
interactions in yeast, we discover epistatic relations
among protein complexes. Second, we analyze
protein-protein interactions and DNA damage-
specific positive genetic interactions in yeast and
reveal functional rewiring among protein
complexes, suggesting novel mechanisms of DNA
damage response. Finally, using transcriptomes of
non-small-cell lung cancer patients, we analyze
networks of global co-expression and disease-
dependent differential co-expression and identify a
sharp drop in correlation between two modules of
immune activation processes, with possible
microRNA control. Our study demonstrates that
module maps are a powerful tool for deeper
analysis of heterogeneous high-throughput omic
data.

INTRODUCTION

Biological networks provide a comprehensive overview of
biological systems. They enable better understanding of
the system and can shed light on the function of genes
and other molecular compounds. Among other applica-
tions, they have been used for discovery and prediction
of gene interactions, gene functions and disease—gene asso-
ciations (1-9).

In these networks, the nodes represent molecular
entities and the edges represent interdependencies. For
example, in protein—protein interaction (PPI) networks,
nodes represent proteins and edges represent physical
interactions. In genetic interaction (GI) networks, nodes
represent genes and edges represent the organism fitness
for double-knockout perturbations, yielding two major
types of edges: alleviating GIs and aggravating GIs. In
alleviating Gls, also called positive GIs, the organism
fitness after the double-knockout perturbation is better
than expected based on the single-knockout results. In
aggravating or negative GlIs, the fitness is worse than
expected. In gene co-expression networks, nodes represent
genes and edges score the correlation in expression
between the two genes (10,11). In gene differential correl-
ation (DC) networks, edges score the change in gene
pairwise correlation between one set of samples to
another (e.g. cases and controls) (12-14). With the
growing use and number of types of biological networks,
computational methods that exploit these rich data are of
great importance.

Computational methods that make use of several
networks are often better than methods that analyze
only a single network (4,7,8,15-19). For example,
combined analysis of PPI networks and gene co-
expression networks was used to detect gene sets that
are co-expressed and are connected in the PPI network.
Such analysis outperformed standard clustering algo-
rithms and was successfully used for gene function predic-
tion (5,8,16,19). Alleviating and aggravating GI data were
used to find epistasis among and within gene sets. Under
the premise that negative GIs tend to occur between com-
pensatory pathways and positive GIs occur within
pathways (or complexes), analysis of GIs was used to
suggest a map of epistatic relations among functional
gene modules (15,17,20-23). A marked improvement was
reported after adding a connectivity constraint in a PPI
network of the modules (15,17). The ability to construct
a summary map of several networks allows identifying
associations among discovered modules, thus improving
the interpretability of the results compared with standard
clustering of a single network.

*To whom correspondence should be addressed. Tel: +972 3 640 5383; Fax: +972 3 640 5384; Email: rshamir@tau.ac.il

© The Author(s) 2014. Published by Oxford University Press.
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Building on prior studies of specific pairs of networks,
we introduce and study the fundamental problem of con-
structing a summary map of two biological networks H
and G, where the nodes of both are the same genes or
proteins, and the edges in each represent a distinct type
of relations (see Figure 1D). The map nodes are gene sets
that are strongly connected in H, and pairs of sets are
connected by links. A link represents strong connection
between two gene sets in G. The goal is to find gene mod-
ules in H simultaneously with finding module-to-module
interactions according to G, by optimizing a specific
objective function. We call this computational problem
the ‘module map problem’.

Most algorithms for the module map problem to date
were used to find a summary map of epistatic interactions
among pathways (15,17,20-23). Kelley and Ideker (15)
proposed a method that is based on local searches in the
graphs to find pairs of connected modules. Ulitsky et al.
(17) used a clustering of H as a starting point and then
improved the solution by merging modules. An algorithm
akin to (15) has been recently proposed for analyzing gene
co-expression and DC networks. The joint analysis of
these networks revealed gene groups that are much more
(or much less) correlated in one class of individuals (24).
Although previous algorithms for the module map
problem proved valuable, a thorough analysis of the
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Figure 1. Module map: example and simulation results. (A and B) Performance of module map algorithms on 500-node graphs. (A) Unweighted
graphs. (B) Weighted graphs. Each simulated pair of graphs contained an embedded module map of six modules in a tree structure. In addition, two
random cliques and two bicliques were embedded in the graphs as decoys. Module, clique and biclique size was chosen uniformly at random between
10 and 20. In the unweighted model (A) each edge was replaced by a non-edge with probability P and vice versa. In the weighted model (B) edge
weights are sampled from the normal distribution N(1,0), and non-edge weights are sampled from the normal distribution N(—1, ). Results are
averages of 10 simulations for each data point. The four top performing algorithms for each simulation are presented using radar plots. MBC-
DICER with global improvement is denoted as ModMap. The Jaccard coefficient between the modules produced by each algorithm and the true
modules is shown as the distance from the center. Consecutive spokes from the top anticlockwise show increasing values of P in A and of ¢ in B. (C)
Comparison of module map algorithms on unweighted graphs with 1000 nodes, containing a map of 10 modules and five decoys and P = 0.15. (D) A
toy example of the module map problem; left: the two networks. Nodes are genes, H edges are black and G edges are blue; right: the module map.
Nodes are modules and edges are links. Colors and numbers are the same on the left and right. The map contains three modules: module 2 is linked
to modules 1 and 3, whereas module 1 and 3 are not linked. Black nodes are not part of the module map. The graph H (black edges) contains a
clique that is not linked in G to another module and thus is not a part of the map. The example also demonstrates the difference between the local
and global approaches. The local approach identifies modules 1 and 2 as linked, whereas the global approach also identifies module 3 as linked to
module 2. See text.
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problem and of the merits and weaknesses of these algo-
rithms in different scenarios is required.

The problem of finding an optimal module map is NP
hard under most formulations, as it contains the clustering
of H as a subproblem. Hence, heuristics are used. These
algorithms usually contain two phases. We call the first
phase ‘initiators’: algorithms for finding an initial solution
that may contain many small modules. The second phase
uses ‘improvers’: algorithms for improving an initial
solution according to a predefined objective function.
A variety of algorithms can be formed from different
combinations of initiators and improvers.

Here, we study novel and extant initiators and
improvers. We show that a new initiator based on
maximal bicliques in G together with a statistically
formulated global improver strategy performs consistently
better or equal to extant methods on synthetic and real
networks of several types. We call the resulting algorithm
ModMap. We apply ModMap to experimental data in
three biological scenarios: (i) using yeast PPIs and
negative GIs, we find epistatic relations among protein
complexes, (ii) using yeast PPIs and DNA damage-specific
positive Gls, we detect emerging connections among
protein complexes involved in DNA damage response
and (iii) using DC analysis of gene expression profiles
of non-small-cell lung cancer (NSCLC) tissues, we
identify disease-specific loss of correlation between
immune activation processes and detect disease-specific
microRNAs.

MATERIALS AND METHODS
Definition of the module map problem

The input to the problem is a pair of networks
H = (V.Eq,Wn) and G = (V.EG,Wg) defined on the
same set of vertices. These networks can be weighted or
unweighted. The goal is to find a module map that
summarizes both networks. A module map is a graph
F = (M,L), where M is a collection of disjoint node sets,
called modules, M = {My,..., M}, MiCV, M;n M; = ¢,
and L is a set of module pairs {(U,Vy),...,(UpV,)},
where each U; and V; are in M. These pairs are called
the map links. In addition, each module must be linked
to at least one other module. Roughly speaking, our goal
is to find a module map such that each module
corresponds to a heavy subgraph of H, and each link
represents a heavy bipartite subgraph in G between a
pair of modules. A formal notion of heavy subgraphs
will be introduced later. Figure 1D shows a toy example
of two unweighted networks and their module map.
Previous algorithms for constructing module maps vary
in the way they define the objective function and the links.
The DICER algorithm (24) seeks one pair of linked
modules at a time. A pair of modules is defined as
linked if the sum of weights W between them is high
enough. We call the approach of DICER ‘local’, as it
finds one module pair at a time. The algorithm of
Ulitsky et al. (17) aims to maximize the ‘global score’,
namely, the total sum of scores within modules in
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H plus the sum of scores of links in G. In addition to
increasing the global score, links between modules are
accepted only if they pass a statistical significance test.
We call the second approach ‘global’. Both methods
identify the links and the modules simultaneously.

Figure 1D demonstrates the differences between the
local and global approaches. Assume that in both
graphs edge weights are 1, non-edge weights are —1 and
that the local approach uses a threshold of 0 on the sum of
W weights between two modules for reporting a link. In
both approaches, modules are clusters of nodes with high
density in H. According to both approaches, module 1 is
linked to module 2: the local score is 4 (8 edges and 4 non-
edges), the global analysis P-value for linkage is <0.05,
and the total score for the module pair is 13
(module score 6+3+link score 4). The sum of Wg
weight between modules 2 and 3 is —4 (10 edges and 14
non-edges), and the local method rejects that link.
However, the global approach will also link module
2 and 3: the linkage P-value is significant (P = 0.039),
and adding this link will improve the global map score
to 24 [13 for the (1,2) pair +15 for module 3—4 for the
(2,3) link]. This example illustrates the advantage of the
global approach on sparse graphs, in which large modules
are not expected to be densely interconnected.

Algorithms

We conducted a systematic study and developed further a
family of two-phase algorithms for module map detection
that find an initial solution (possibly consisting of many
small modules) and then improve it. We call algorithms
for the first phase initiators and algorithms for the second
phase improvers. For simplicity, we describe the algo-
rithms assuming that edges with positive weight are con-
sidered heavy. For unweighted graphs, we assume edge
weights to be 1 and non-edge weights to be —1. For
weighted graphs, all node pairs (edges) have weights, so
there are no non-edges.

Initiators

We tested five different initiators: (i) DICER (24), which
finds one pair of linked modules at a time, (ii) hierarchical
clustering of the graph H (25), which finds a set of
modules, (iii) a greedy node addition algorithm for
finding modules in H, (iv) DICERy a variant of DICER
wherein the minimum module size is set to k and (v) an
algorithm based on enumeration of maximal bicliques
in G using an exhaustive solver (26,27), followed by
the cleaning process of DICER. We call the latter
algorithm MBC-DICER, see Supplementary Text and
Supplementary Figure S1 for a full description of all ini-
tiators. Each initiator creates an initial module set, but
modules in the map constructed by clustering algorithms
are not necessarily linked.

Improvers

The ‘local improver’ (24) extends module map links by
either adding a single node to a module or by merging
two module map links. One drawback of this approach
is that it cannot create new modules that are not
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represented in the initial solution. Another disadvantage is
that it cannot merge a module whose two parts are linked
to different modules that are unlinked. See Supplementary
Figure S2 for examples. Later in the text we introduce the
global improver, which can often overcome both
problems.

Our ‘global improver’ is based on the procedure in (17).
Let M = {M;,...,M,} be a collection of disjoint node
sets (e.g. a set can be a single gene or not linked to any
other set). Given sets (U,V), U, V € M and xe U, the
significance of the linkage of x with V is calculated using
Wilcoxon rank-sum test by comparing the edge weights
Wg between x and V to the edge weights between x and
all nodes not in V. Such P-values are calculated for all
nodes in U and V, and they are combined using
Stoufer’s method (28). If the final P-value p(U,V) is at
most o then U and V are connected by a ‘link’ in the
map. Let L = {(U,,V)),...,(U,,V,)} be the resulting set
of links.

The ‘global score’ of the solution is the sum Wy of edge
weights within each M; plus the sum of W edge weights

between the linked node sets:
Yoo W)

SM,L)= Y > Walsn+
i\M;eM s,te M; k,l|(M/\-,M/)€L ieMy jeM,;

SN Mk M eMmemy (MiMp) € L & p(Mi,M)) < a

The improvement stage merges a pair of node sets
(two modules or a module and a single gene) if the
global score increases and the new link passes the signifi-
cance test. Considering a merge that creates a new module
Y requires recalculating p(Y,Z) for all other modules Z in
M, in order to calculate the global score. This process is
done greedily: iteratively, the merge that yields the best
improvement is performed until no possible merge can
improve the global score.

We modified the aforementioned method to allow
for fast analysis of large graphs as follows. First,
when calculating p(U,V), we consider the links in G’
(the unweighted version of G). We use a hypergeometric
test to evaluate if a node has significant number of edges in
G’ to the opposite set (e.g. from a node v € V to the set U),
and then all node P-values are merged using Fisher’s
method (29). The sets U and V are linked if the resulting
value <a. This test is much faster and provides maps
of equal quality to using the Wilcoxon test on
G (see Supplementary Text). Weighted tests, such as the
Wilcoxon test, are not always appropriate for detecting
linkage among gene modules. For example, in the DC
graphs, a strong link must contain many positive edges,
whereas the Wilcoxon test only looks at the ranks of the
edge scores.

Second, we set another parameter f>>a, and if at some
point the P-value for the possible link between two sets is
at least B, we say that the sets are ‘anti-linked’. In the
original algorithm, when considering merging two sets
U and V into W, possible links between W and every
other set Y must be calculated. However, if U and Y are
anti-linked or V and Y are anti-linked then we mark W
and Y as anti-linked, avoiding the need to consider the

possible link (W,Y). In practice, we used o = 0.005 for the
yeast data as suggested in (17) and tested several options
in the gene expression data (see Supplementary Text). In
all cases we used B = 0.2. Finally, we perform multiple
merge steps simultaneously in a single iteration in a way
that guarantees that the global score improves
(see Supplementary Text). This provides a speed up of
two-fold or more in practice without loss of solution
quality.

Simulations

We constructed initially empty 500-node graphs H and
G and then added edges creating a perfect module map
in which modules are cliques in H and links are bicliques
in G. The module map topology (M,L) was a random tree
with [M| = 6. We then added two H-cliques and two
G-bicliques to the graphs to represent additional ‘decoy’
structures that are not part of the map. Clique, biclique
and module sizes were randomly selected in the range
10-20 with uniform distribution and disjoint node sets.
Call the resulting edge sets Ey* and Eg*. Finally, we
modified these graphs by introducing random noise:
each edge in G and H was deleted with probability P,
and each non-edge was replaced by an edge with probabil-
ity P. All reversal steps were done independently. For
creating weighted graphs, the same procedure was used,
but all possible edges are present in the final H and G:
w(u,v) is sampled from N(1,0) if (u,v) is in Eg* or Eg*,
and from N(—1,0) otherwise. We also generated in this
manner 1000 node graphs with 10 or 20 modules and five
decoys (cliques and bicliques).

Analysis of negative genetic interactions and
protein-protein interactions in yeast

The PPIs and the negative GIs were downloaded from
BIOGRID (30). These networks were used to find
epistatic relations among protein complexes. The PPI
network was used as H, and the GI network was used as
G (see Supplementary Table S1).

Analysis of DNA damage-specific genetic interactions data

We used the data of (21), in which all pairwise GIs among
418 genes were tested, and of (31), which tested GlIs
between 55 query genes and 2022 genes. A ‘DNA
damage-specific positive GI’ was defined as one that had
S <0 in the untreated cells, S > 0.5 in the treated cells and
the P-value for differential GI was <0.01. This analysis
yielded 840 interactions from (21) and 1677 interactions
from (31). We additionally defined a positive GI as ‘stable’
if it had S > 1.5 both in the untreated cells and in the DNA
damage cells. This analysis provided 491 interactions in
(21) and 3139 interactions in (31). Owing to the different
experimental setups most of these GIs are not directly
comparable.

Calculating differential correlation scores

Given a training set containing gene expression profiles of
subjects, we used the statistical method of (24) to compute
for each gene pair its consistent correlation (CC) and DC
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scores. First, DC scores are computed using the real labels
of the samples. Then, the scores are transformed to
log-likelihood ratio (LLR) scores by comparing the
original DC scores to scores calculated on the same data
with randomly shuffled labels. Thus, positive LLR scores
mark gene pairs with significant change in DC. The prior
probability of real DC changes was set so that only cor-
relation changes of at least 0.4 will have a positive LLR
score. This approach guarantees a similar yet slightly more
stringent acceptance threshold compared with (24). See
Supplementary Text for additional information.

GO and microRNA enrichment analysis

We used TANGO (32) for Gene Ontology molecular
function and biological process enrichment analysis of
modules and FAME (33) for microRNA enrichment
analysis. Both tools are available as part of the
EXPANDER software (34). When a set of modules was
analyzed, we corrected for multiple testing using false
discovery rate (FDR) with ¢ = 0.05. The background set
for the enrichment analysis was defined as the set of genes
in the networks and not all genes in the organism. This
filtering step reduces bias in case of overrepresentation of
GO terms in the networks.

Network visualization

Network visualization was done using Cytoscape (35).

Availability

A command line tool for running ModMap is freely
available for academic use at http://acgt.cs.tau.ac.il/
modmap/.

RESULTS
Simulations

We first tested the different algorithms on synthetic graphs
H and G. Starting from a perfect module map, we first
added cliques in H and bicliques in G to represent
additional structures that are not part of the map and
then introduced random noise to the edges. To generate
both sparse and denser graphs, we tested a wide range
of the noise parameters o and p in the weighted and
the unweighted simulations, respectively (see ‘Materials
and Methods’ section). The results presented here
are for graphs with 500 nodes and six modules per map.
We also tested larger graphs with similar results
(see Supplementary Figures S3 and S4).

We tested 10 combinations of initiator and improver on
10 random data sets for each value of P and o. We
measured the quality of produced solutions using
Jaccard coefficient between the reported modules and
the known modules. The results of the unweighted and
weighted models are shown in Figure 1A and B, respect-
ively. Only the four algorithms that performed best on
average in each simulation are shown. Supplementary
Table S2 contains the results for all combinations. The
local improvement algorithms did not reach perfect
scores even on noiseless data. In contrast, MBC-DICER
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and DICER; followed by global improver reached perfect
Jaccard scores when there was no statistical noise. The
high performance of MBC-DICER remained robust
even when noise levels were as high as P = 0.15 in the
unweighted model and o = 1.2 in the weighted model.
A comparison of all algorithms on unweighted graphs
with 1000 nodes and 10 modules for noise level P = 0.15
is shown in Figure 1C. Performance remains high
although the graphs are much larger. Using the improvers
was beneficial compared with using only the initiator so-
lutions, especially for the DICER variants. MBC-DICER
with the global improver reached highest performance
(0.87). Interestingly, the local improver was better than
the global improver for all other algorithms (e.g. 0.71
versus 0.59 for DICERS). This is probably because the
MBC-DICER initiator detects robust fully connected
modules, which are a better starting point to the global
improver at high noise levels. Tests with different values of
k for the DICERKk algorithm led us to choosing k = 5
(Supplementary Figure S4). In addition, we compared
the performance of the global improver with the hypergeo-
metric test and with the Wilcoxon rank-sum test, which
was used in previous studies. Our results show that using
the hypergeometric test reaches similar quality of results
but is much faster (see Supplementary Text). Overall, the
results indicate that MBC-DICER followed by the global
improver achieved the best performance on both
unweighted and weighted data. We call the resulting algo-
rithm ModMap and will use it as the algorithm of choice
from now on.

Yeast protein-protein interaction and negative genetic
interaction data

We used PPIs and negative Gls from BIOGRID (30) to
find epistatic relations among protein complexes. Only
genes that had both types of interactions were used.
Overall, the networks contained 3979 genes, 45456 PPIs,
and 76237 negative GIs (the interactions are listed in
Supplementary Table S1). This number of genes and
edges is larger than in previous studies. For example,
(22) covered 1460 genes, and (17) covered 743 genes.
Therefore, our networks have the potential to provide a
broader overview of the yeast interactome and allow for a
comprehensive performance testing of the different
algorithms.

As done in previous studies, we evaluated solutions by
their statistics and the functional characterization of the
modules (17,22). The calculated solution statistics
included the number of modules, the number of genes
covered and the maximal module size. We used TANGO
(34) to measure module functional enrichment, and
reported the number of discovered GO terms, the
percent of enriched modules and the percent of module
map links for which both modules are enriched (with the
same or with different functions), which we call ‘enriched
links’. Enriched links represent dense GIs among known
biological terms.

The solution statistics of all algorithms are shown in
Supplementary Table S3. One can observe clear superior-
ity of global over local improvers. In contrast to global
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improvers, which reported at least 100 modules and
covered 800-1000 genes, the local improvers found 2-28
modules covering only 15-192 genes. Except for DICER,
the results of all solutions were similar and of high quality.
ModMap was the best in terms of the percent of enriched
modules (87%) and percent of enriched links (80%).
Taken together, the map of ModMap was best in
combining functional comprehensiveness and quality.
We also compared ModMap with other weighted
approaches for GI data analysis (22,36) on the data of
Collins et al. (37). See Supplementary Text for details.
Our results show that ModMap produces high quality
maps and improves on extant weighted approaches.
Figure 2 shows a portion of the map constructed by
ModMap where links were restricted to P < 10E-50 (for
details see Supplementary Tables S4-S6). Each node rep-
resents a module, and edges represent map links. All
modules in the presented map are enriched at 0.05 FDR
with at least one GO term. The node labels show the most
significantly enriched term. Three major hubs are marked
in green: Rpd3L complex (14 genes, P = 4.35E-38), Swrl
complex (13 genes, P = 1.08E-35) and the mediator
complex (17 genes, P = 4.89E-43). The Rpd3L and Swrl
complexes are chromatin related and were previously

fchromosome,

annotated as hubs of GIs in a gene-based study (38).
Bandyopadhyay et al. (21) discovered some of the same
links; however, module annotation there was manual,
whereas our analysis was completely automatic and
produced a much larger map. Moreover, our map
extends on the previous observations by showing that
the three hubs are linked and by providing additional
links for the Rpd3L complex. In Figure 3, we focus on
the three most significant links in the map (P < 1E-70).
Figure 3A shows the connections between the Rpd3L
and Set3 complexes and between the Rpd3L and Swrl
complexes. Rpd3L and Set3 are both histone deacetilases,
and negative GI between them was reported in (20). The
Rpd3L complex was split into two disjoint modules,
whereas in our map it is detected as a single module, con-
taining all 14 Rpd3L genes. Figure 3B shows a connection
between two well-established subunits of the proteasome
complex (39). This example shows how joint analysis of
PPIs and GIs correctly detects core functional subunits
even when they are connected by many PPIs.

Analysis of DNA damage response networks in yeast

The module map described earlier in the text was obtained
by analyzing the entire set of known negative GIs. Recent

cytoskeleton N proteasome ribosome
organization cer::roir::nc complex biogenesis
) i regulation of
membrane-bounded prefoldin SAGA — Sets Inosg Imethyltransferase histone profeasoms nuclear pore
vesicle complex complex complex complex | blaiililnatien complex
DNA-directed
RNA
polymerase
I, UTP-C
holoenzyme complex
nuclear
mRNA
splicing, via Ha/H2A
spliceosome !‘luAS histone
histone L —
;P—J fy - hcetyltransferase .,
/‘ tyltrar complex internal
Elongator complex S L protein SWI/SNF
holoenzyme T amino acid complex
complex vi-type acetylation
spliceosomal
complex
tRNA )
TRAPP retromer wol_:l_)le [?NA. - cytoplasmic
complex complex position replication RNA binding translation
P P uridine initiation
thiolation
proton-transporting
V-type Golgi DNA
ATPase transport replication
complex complex

Figure 2. The yeast module map. Each node is a module in the yeast PPI network. The name of a node is the most significantly enriched GO term
for that module. Each edge represents a highly significant link between two modules in the negative GI network (P < 1E-50). Modules that were not
enriched for any GO term at 0.05 FDR are not shown. Three main chromatin-related hubs are marked in green. Some links connect disjoint modules
enriched with similar GO terms (e.g. proteasome—proteasome link, top right), and other links show epistasis between different biological processes

(e.g. nuclear pore and ribosome biogenesis, top right).
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Figure 3. Examples of linked modules in the yeast module map. The genes of each module are arranged in a circle. Blue edges represent negative Gls
and pink edges represent PPIs. For each module, the most enriched GO term is shown along with its enrichment P-value. (A) Linkage among
different protein complexes. The significance of the links between Rpd3L and the Set3 complexes and between Swrl and Rpd3L complexes is <10E-
70. The link between Swrl and Set3 is also highly significant (P = 4.29E-59). (B) Detection of subcomplexes. The joint analysis of the PPI and GI
networks partitions the proteasome complex into its two subcomplexes: the accessory and the core complex.

studies have gone beyond static analysis to detect changes
in the GI network in response to DNA damage (21,31). In
these studies, GIs were measured in untreated cells and
following perturbation by the DNA-damaging agent
methyl methanesulfonate (MMS) (40). We combined
two such data sets (21,31) to detect ‘DNA damage-specific
positive GIs’, i.e. differential positive Gls that emerge in
the treated cells and are not observed in the untreated cells
(see ‘Materials and Methods’ section). Negative Gls are
typically observed between genes working in parallel, such
as genes that are involved in two compensatory complexes
or pathways that backup each other, and thus the loss of
one is buffered by the other. Positive Gls are more likely
to be observed between genes from the same complex or
pathway, where most of the phenotypic effect is already
observed in each single-knockout. Hence, DNA damage-
specific positive GIs are expected to represent changes of
the network in response to MMS, revealing DNA
damage-specific interactions within pathways or between
different pathways or complexes working in series. In
total, 1078 genes were included in both studies, with
2227 DNA damage-specific positive Gls among them
(see Supplementary Table S7). There were 6771 PPIls
within that gene set.

We applied ModMap with the PPI network as H
and the DNA damage-specific positive GI network as

G. Because these networks were much smaller than in
the previous analysis, we set the minimal module size to
three. The small module sizes also affected the attainable
P-values for links. Here, a pair of modules was defined as
linked if its P-value was < 0.05 after Bonferonni correc-
tion, considering all statistical tests done by the algorithm
during the improvement steps.

The generated module map contained 78 genes in 12
modules, with 17 links among them. Module sizes ranged
between 3 and 15. A complete description of the map is
provided in Supplementary Tables S§—S10. A map of the
modules that were significantly enriched with GO terms is
shown in Figure 4A. The hub in this map is a module
enriched with DNA repair genes, linked to six modules
that cover a large variety of functions. In Figure 4B, we
focus on the DNA repair-related module and on three of
the modules linked to it. The DNA repair module contains
four genes: RADS5, RADI8, HPR5 and UBCI3. Interestin-
gly, although UBCI3 is known to physically interact with
the three other genes, positive GIs that are consistently
stable across experiments (see ‘Materials and Methods’
section) connect the other three genes, providing further
evidence that the four genes are involved in a common
process. The RADS5, RADIS and UBCI3 genes are
known to be involved in post-replication repair (41-43)
and HPR) is involved in checkpoint recovery (44,45).
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Figure 4. A module map of DNA damage-specific positive GIs. (A) A module map of the significantly enriched modules. Nodes represent modules
and edges represent significant links (Bonferonni corrected P < 0.05). The name of a node is the most significantly enriched GO term. (B) A closer
look at the DNA repair module and three-linked modules. Nodes represent genes and edges represent interactions: blue—DNA damage-specific
positive GIs, pink—PPIs, black—stable positive GIs, which are observed both in the untreated and in the treated cells. This map shows the emerging
connections between functional modules on DNA damage response covering DNA repair and checkpoint responses in the DNA repair module,
response to damaged replication forks (the DNA damage response module), DNA double-stranded response genes (RAD52 module) and RNA
degradation-related genes (SKI complex module). The RAD52 and SKI modules do not appear in A, as they reflect functions that do not have

established GO terms.

The DNA repair hub module is linked to a module
associated with response to DNA damage. It contains
five genes: CTF4, ESC4, MMSI, MMS22 and Rtl0].
The last four genes are part of the cullin-RING ubiquitin
ligase complex (GO:0031461). The last three genes were
shown to form a complex that stabilizes the replisome
during replication stress (46,47). The CTF4 gene is
related to DNA repair and DNA replication initiation
according to its GO annotations. The link suggests that
this complex might work together with the DNA repair
module for coping with damaged replication forks.
Interestingly, the two MMS genes were originally
detected in MMS sensitivity tests but are not expected to
be required for double-stranded repair (47). The RADS52
module (RAD51, RADS52 and RADS59) is related to
double-stranded DNA damage repair (48) and is linked
both to the DNA damage repair module and to the DNA
damage response module, suggesting these modules work
together in the same pathway as a result of DNA damage
to cope both with damaged replication forks and with
double-stranded DNA breaks. The fourth linked module
contains three genes of the SuperKiller (SKI) complex
(SKI12, SKI5 and SKI7). These genes are involved in 3—
5 RNA degradation in the cytoplasmatic exosome (49,50).
Our analysis suggests that this complex might also be
involved in response to DNA damage. Previous studies
have shown that RNA degradation cytoplasmatic genes
might play a role in DNA damage response separately
from their cytoplasmatic activity (51,52). The suggested
roles of RNA degradation genes in DNA damage
response include DNA stability and telomere stability
related functionality (51), mediating the assembly of
multiprotein complexes in double-stranded breaks (52)
and specific mRNA degradation on DNA damage (53).

Hence, our findings match prior studies and strengthen the
role of the SKI complex in the response to DNA damage.

Analysis of human co-expression and differential
correlation networks

We applied ModMap on case-control gene expression
data of NSCLC to reveal DC among highly correlated
gene modules. The contribution of this part is two fold.
First, we show that DC among gene modules is reprodu-
cible in cross-validation tests. Second, we analyze the map
of DC patterns between gene modules discovered by
ModMap.

Given a data set of gene expression profiles from cases
and controls, we used the method of (24) to compute two
scores for each gene pair: the CC score, which is positive if
the gene pair is consistently correlated across phenotypes,
and the DC score, which is positive if the correlation dif-
ference between the cases and controls is higher than
expected by chance. These scores were then used as edge
weights in networks H and G, respectively, on which a
module map was learned. The methodology was evaluated
using cross-validation: given a module map constructed
on a set of profiles (the ‘training set’) and a disjoint set
of samples (the ‘test set’), the quality of the predicted map
was evaluated on the test set by comparing the DC of links
and of non-links using Wilcoxon rank-sum test, where the
null hypothesis is that there is no difference in DC between
links and non-links. This measure is parameter-free and
reflects all DC changes.

We tested several variants of the algorithm using 2-fold
cross-validation. The maps produced by the local
improver received low P-values but suffered from low
coverage. For example, for the MBC-DICER initiator,
the local improver achieved a P-value of 4.43E-4, but
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the map covered only 197 genes. In contrast, when
applying ModMap (i.e. MBC-DICER with the global
improver), the map covered 1289 genes, with P-value of
1.54E-10. Supplementary Text contains further results of
testing different parameters of the global improver and
tests on Alzheimer’s disease (54), which got similar
cross-validation results. The full results are shown in
Supplementary Table S11 for lung cancer and in
Supplementary Table S12 for Alzehimer’s disease. Taken
together, ModMap produces large maps that are robust
when tested on independent data sets.

Next, we analyzed the module map obtained by running
ModMap on all samples of the NSCLC data. The map
covered 1921 genes in 76 modules, connected by 405 links
(see Supplementary Tables S13 and S14 for details). To
focus on strong changes in correlation between modules,
we compared the DC of each link in the map to the DC
calculated between random gene sets of the same sizes in
200 repeats and calculated the fold-change between the
real link and the best random link as proposed in (24).
The link fold-change scores are given in Supplementary
Table S14. In all, 150 links had fold-change >1.5, with
the top five links exceeding 2.3. This indicates that the
DC of the linked modules is far stronger than expected
by chance. We also analyzed the modules of the top links
using pathway enrichment analysis and microRNA en-
richment analysis (see Supplementary Table S15 for
details). One of the links connected two modules related
to immune response activation. The linked modules are
shown in Figure 5. In Figure 5A, we observe many high
co-expression edges between the modules (gene pairs with
r > 0.4) in the control class. Module 11 is enriched with
B-cell receptor signaling pathway genes (6 genes,
P = 3.1E-8). Module 12 is enriched with T-cell receptor
signaling pathway genes (4 genes, P = 1.37E-4). Figure 5B
shows GeneMANIA analysis of these 10 genes (7,55),
which confirms that they are connected by several types
of interactions. Figure 5C shows the co-expression of the
same modules in the NSCLC class. Within each of the
modules a strong level of co-expression is preserved, but
the co-expression between the modules is abolished, sug-
gesting that co-regulation of the different immune re-
sponses is lost in NSCLC. Finally, module 11 is highly
enriched with targets of microRNA 34-a, b, ¢ family
(red nodes in Figure 5A), whose members are annotated
as causal to NSCLC according to the mir-2-disease
database (56). Taken together, these results show the
ability of our analysis to detect NSCLC-related functional
modules without using any prior knowledge.

DISCUSSION

In this article, we presented a methodology for joint
analysis of two gene networks, each representing a differ-
ent type of omic relation between genes. The method
identifies gene sets as modules and the complex structure
of relations among them and summarizes the analysis in a
module map. Modules correspond to interacting gene sets
in the first network, and links in the module map corres-
pond to interacting modules in the second. The map is
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constructed based on both networks simultaneously and
thus can capture and reveal structures that are not identi-
fiable when analyzing each data type separately. Our novel
algorithms recovered the planted map structure in
simulated data, even when the noise level in the data
was high. We tested our methods in three biological ap-
plications: (i) yeast PPIs and negative GlIs, (ii) yeast PPIs
and DNA damage-specific positive GIs and (iii)) DC
analysis of human disease expression profiles. In all
cases, certain parts of our maps are supported by prior
biological knowledge, whereas other parts reveal novel
structure and suggest new biological findings. The
module map paradigm can be applied in principle on
any two types of networks with underlying common
nodes.

Our analysis of the yeast PPI and negative GI data
constructed a large map describing epistatic relations
among complexes. Our findings are in agreement with
previous studies and show a complex map of interactions
among chromatin modification-related complexes but
also provide interactions with other functions, such as
protein modification-related complexes. The analysis of
the yeast PPIs and DNA damage-specific positive Gls
produced a smaller map, which contains a DNA repair
module as a central hub. The interactions of this module
suggest that several mechanisms emerge simultaneously in
response to MMS, including double strand repair,
damaged replication fork repair and exosome complex
activity. In the map constructed based on human
NSCLC blood expression profiles, modules represent
gene sets that are highly co-expressed both in cases and
in healthy controls, whereas the map links correspond to
specific rewiring of the co-expression network in NSCLC
patients. In particular, we identified two modules enriched
with immune activation genes manifesting a sharp drop in
correlation in the NSCLC patients, suggesting diminished
coordination between the T-cell and the B-cell enriched
modules.

The concept of a module map can be viewed as a higher
level combination of clustering and biclustering. Each of
those problems has been extensively studied and was
applied successfully to numerous single-type genomic
and proteomic studies (1,57-68). By performing joint
analysis on two different data types, we allow some relax-
ation of the objective function in each of the networks, for
the sake of obtaining an overall clearer structure.
Therefore, the new analysis can yield results when cluster-
ing or biclustering of one data type fails. One of the
difficulties in clustering and biclustering is that module
(or module-pair) sizes must be large enough to obtain
highly significant sets. As our analysis demonstrates, the
added power of the module map approach can identify
relatively small precise groups that are beyond the detec-
tion ability of those prior methods.

Only a handful of studies have addressed the module
map problem to date, and most of them focused on joint
analysis of yeast PPI and GI networks. Ulitksy et al. (17)
and Bandyopadhyay er al. (69) developed -clustering
methods that seek a map in which the likelihoods of the
edge weights of PPIs and GIs within clusters or of GIs
between linked clusters are higher than a given
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Figure 5. A pair of immune activation-related modules differentially correlated in NSCLC. (A) Two-linked modules, which are a part of the
constructed module map. Nodes are genes and edges represent correlation >0.4 between the genes in the expression patterns of control class.
Edges here correspond to high co-expression between two genes and do not reflect the weights in the CC or DC networks. We observe strong co-
expression both within and between the modules. Nodes with black frames are related to immune activation response (six T-cell activation genes in
module 11 and four B-cell activation genes in module 12). Red nodes in module 11 are targets of mir-34 family. (B) GeneMANIA analysis of the
T-cell and B-cell signaling pathway genes shows that the genes of both modules are expected to interact in healthy controls. (C) The same two
modules and their co-expression network in the NSCLC class. As in A, the genes within each module are highly co-expressed. In contrast to A,

co-expression between the modules is completely diminished.

background distribution. Leiserson et al. (22,36) sought
local maximum cuts in the weighted graph of the GIs by
a greedy incremental approach, producing a collection of
linked pairs of modules. Kelley and Ideker (20) developed
a clustering algorithm that is based on graph compression,
where the original GI graph is compressed to a module
map. Hence, both (22,36) and (20) look for approximate
bicliques that connect gene modules. In contrast, we enu-
merate the maximal bicliques of GlIs, analyze them by
taking into consideration the two interaction types to
ensure that the initial solution contains dense strongly
connected modules and improve the solution using our
global improver. Because our approach is generic, it
does not exploit the specific probabilistic nature of the
GI data as other methods do (22,36). Nevertheless, we
show that our method outperforms these and other

extant methods in several criteria on GI data. In
addition, because our algorithm is not limited by the
type of the input data, we are able to combine many het-
erogeneous data sets (e.g. using all GIs of BioGRID) in
our analysis.

When dissecting human expression profiles of disease
patients and healthy controls, DC analysis was proposed
as a way to discover gene modules whose inter-module
correlation levels are altered in disease (12,14,24,70).
We previously developed DICER (24), which uses a
local approach to detect module pairs. Here, we go
beyond it by finding maximal bicliques in the DC graph
and by concurrently constructing a global map of
modules. As we showed here, in most cases the map
links are highly significant. However, we also observed
cases where the absolute correlation change of modules
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might be mild even though the DC of the module pair is
significant. A possible remedy is to give more emphasis to
high absolute DC of map links so as to see the DC signal
better. Another possible improvement is to enumerate
bicliques using established heuristics [e.g. (68)].

A key factor in the performance of the ModMap
algorithm is the objective function optimized. Here, we
chose to maximize the sum of weights within modules
plus the sum of weights of module links and assigned
these weights based on a probabilistic model. On
unweighted networks, such as the PPI and GI yeast
networks, we set the weight of an edge to 1 and the
weight of a non-edge to —1, thereby promoting strongly
connected modules and links. This setting produced good
results and revealed functional interactions among protein
complexes. By setting different weights to non-edges in the
graphs, future analyses can promote modules that are
sparser, thus enabling better detection of interactions
among complete pathways.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Abstract

Motivation: Detecting modules of co-ordinated activity is fundamental in the analysis of large bio-
logical studies. For two-dimensional data (e.g. genes x patients), this is often done via clustering or
biclustering. More recently, studies monitoring patients over time have added another dimension.
Analysis is much more challenging in this case, especially when time measurements are not
synchronized. New methods that can analyze three-way data are thus needed.

Results: We present a new algorithm for finding coherent and flexible modules in three-way data.
Our method can identify both core modules that appear in multiple patients and patient-specific
augmentations of these core modules that contain additional genes. Our algorithm is based on a
hierarchical Bayesian data model and Gibbs sampling. The algorithm outperforms extant methods
on simulated and on real data. The method successfully dissected key components of septic shock
response from time series measurements of gene expression. Detected patient-specific module
augmentations were informative for disease outcome. In analyzing brain functional magnetic res-

onance imaging time series of subjects at rest, it detected the pertinent brain regions involved.
Availability and implementation: R code and data are available at http://acgt.cs.tau.ac.il/twigs/.

Contact: rshamir@tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying modules of elements acting in concert is a fundamental
paradigm in interpreting, visualizing and dissecting complex
biomedical data. For two-dimensional data (e.g. genes versus condi-
tions), clustering is the simplest way to group the elements of one di-
mension (Hartigan, 1972). Biclustering seeks row and column
subsets that manifest similarity (Cheng and Church, 2000;
Hartigan, 1972; Madeira and Oliveira, 2004). Such analysis has
become standard in computational biology (Mitra et al., 2013;
Oghabian er al., 2014). Algorithms for finding biclusters differ in
how they define (and identify) biclusters (Madeira and Oliveira,
2004). For example, biclusters were defined as sub-matrices with
constant values (Hartigan, 1972), row or column additive or multi-
plicative values (Lazzeroni and Owen, 2002) and submatrices with
order preserving values (Ben-Dor ez al., 2003).

Recent studies have extended the idea of biclustering to more
complex input structures beyond the standard row—column data

©The Author 2015. Published by Oxford University Press.

(Mitra et al., 2013). Meng et al. (2009) extended the classic Iterative
Signature Algorithm (ISA) (Bergmann et al., 2003) to analyze a sin-
gle matrix of time series data together with prior knowledge on gene
function to detect temporal transcription modules that are biologic-
ally meaningful. Li and Tuck (2009) introduced an algorithm for
joint analysis of ChIP-chip and gene expression data to find biclus-
ters that are likely to be regulated by similar transcription factors.
Waltman et al. (2010) and Dede and Ogul (2013) proposed three-
way clustering of gene-condition-organism data. The algorithm of
Waltman ez al. (2010) uses sequence information to integrate data
across species, and a post-processing step allows detection of
species-specific information. Gerber et al. (2007) cluster tissues
hierarchically and then find the representative gene set of each tissue
cluster in the hierarchy.

A common data source that calls for three-way analysis is a col-
lection of gene expression profiles measured for a set of subjects
over a series of time points. Hence, the data are represented by a
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Fig. 1. Overview of the model. (A) A toy example of a core module (A) and its
private modules (B, C). (B) An overview of the dependencies in the hierarch-
ical model. P is the vector of subject-specific probabilities Ps

gene X subject X time 3D matrix (i.e. a tensor of order 3) (Mankad
and Michailidis, 2014; Zhao and Zaki, 2005). For such matrices,
Supper et al. (2007) presented EDISA, an extension of ISA that han-
dles a time-course vector for each gene—subject pair instead of a sin-
gle scalar. Extant models are limited in their ability to detect a signal
that is specific to a particular subject. For example, the set of genes
active under one subject in a module may only partially overlap
with the gene set of other subjects. Another limitation is the assump-
tion of synchronicity of time points across subjects. Although this
assumption is valid for technical repeats or well-tailored experi-
ments, it is less plausible in other situations, e.g. samples taken from
patients over time, due to possible heterogeneity in the response of
different patients.

Here, we introduce a new, flexible definition of a module suit-
able for three-way data where subjects have entities (e.g. genes)
measured over time, but time courses are unsynchronized among
the subjects. A core module is defined by a subset of the subjects
and a subset of the entities, along with subject-specific subset of
the time points. In addition, subjects may have private modules
that only partially coincide with the core set of entities. The as-
sumption is that the resulting submatrices will show values mark-
edly different from the whole matrix. A toy example is shown in
Figure 1A.

We developed a statistical framework and algorithm for ana-
lyzing such data. Our framework can detect core modules and for
each subject in a core module, a private module with relevant time
points. We developed a hierarchical Bayesian generative model for
the data and a procedure that aims to fit model parameters for a
given dataset. Our algorithm uses a regular biclustering solution as
a starting point and then performs iterative improvement using a
Gibbs sampling procedure. The algorithm is called TWIGS (three-
way module inference via Gibbs sampling). In simulations, we
show that TWIGS outperforms standard algorithms even when the
core modules have no additional subject-specific signal. When sub-
ject-specific signals exist, the ability of extant algorithms to detect
the core modules declines markedly, whereas the performance of
TWIGS remains high.

We demonstrate the advantage of our framework on experimen-
tal data from two different domains: gene expression and brain
functional magnetic resonance imaging (fMRI) signals. We first ana-
lyzed whole blood expression profiles, taken daily for 5 days from
14 patients after septic shock (Parnell ez al., 2013). TWIGS detected
two core modules of up-regulated genes, showing enrichment for
different immune system processes. The first was related to response
to bacteria, whereas the second was related to regulation of T-cells.
Analysis of the subject-specific private modules revealed multiple en-
richments that illustrate patient-specific-activated biological proc-
esses. Hence, our analysis produced both shared and subject-specific
insights, highlighting biological pathways that repeatedly emerge as

up-regulated after septic shock, together with additional biological
functions particular to each patient. We also analyzed fMRI read-
ings for 20 subjects at rest (Vaisvaser et al., 2013). The data for each
subject are a matrix of 464 brain regions (parcels) measured over 94
time points at 3 s intervals. Each value in the matrix is the parcel’s
average blood-oxygen-level-dependent (BOLD) contrast. These lev-
els are indicators of the activity at that region. TWIGS revealed sev-
eral core modules of highly activated bi-lateral brain regions.
Reassuringly, the detected modules were enriched with regions that
are known to be active during rest. This analysis shows that our
framework is able to detect large functional networks that reappear
as activated across subjects and also highlight subject-specific activa-
tion patterns.

2 Methods
2.1 The probabilistic model

The input for our problem is summarized as a 3D matrix Z where
Z,, 5 is the activity level of the measured objectv € 1,...,V, at time
tel,..., T, for subject s € 1,...,S. We will say that v and ¢ repre-
sent the rows and columns of the matrix and s represents layers. In
gene expression data, v represents genes, whereas in fMRI, data v
represents brain regions (parcels or voxels). For uniformity, from
now on we use for v the term row or voxel. Here, we describe a hier-
archical probability model for generating a single module from the
distribution of Z.

We assume that there is a set of voxels V{1,..., V} that tend to
have high values jointly in a subset of the subjects. V is specified by
the indicator vector H = (Hj,...,Hy), through the relation
V= {v:H, = 1}. We assume that H, ~ Bernoulli(z"¢). Although
H marks the rows of the core module, the signal in each specific sub-
ject might change. The subject-specific voxel sets are specified by the
matrix HS = {HSy1,---,HSvs}, where HS,; =1 specifies that
voxel v participates in the module of subject s. The relation between
H and HS is as follows: if H,=1 then HS,; ~ Bernoulli(ps), other-
wise HS, ¢ ~ Bernoulli(po).

We next model the time-series relations. C = C,; € {0,1} indi-
cates whether the voxel set of subject s is active at time z. We assume
Pr(Cys = 1) = nbl. The activity at time ¢t =2,..., T, depends on
the time window of size w > 1 before ¢. In times ¢t = 2,...,w, the
time window is 1---¢ — 1. Let C}; = 1, if the time window of sub-
ject s right before time point # contains at least one active time point
and set C; =0 otherwise. We assume that Pr(C;s = 1|C} = 0)
=0 and Pr(C,; = 1|C,, = 1) = n'l.

Finally, we assume that for v, #, s for which C;; =1 and
HS,s=1,2Z,,;s ~F, otherwise Z,;; ~ Fy. An overview of the
model hierarchy is shown in Figure 1B. We assume that
all  hyper-parameters above have Beta prior distributions:
V¢ ~ Beta(ay, by), ps ~ Beta(az, by), po ~ Beta(as, b3), n'! ~ Beta
(a4,bs), ' ~ Beta(as, bs), n'1° ~ Beta(as, bs).

2.2 The Gibbs sampling algorithm

Our algorithm starts from a solution produced using a standard
biclustering algorithm and then applies iterative improvement
steps. In each step, all parameters are fixed except a single one
that is sampled according to its conditional probability. The order
of parameters matches the subsections below. This order is re-
peated cyclically k times. The output of the process is the set of
sampled values for each parameter in all iterations. We then ex-
tract the core modules and the subject-specific modules from this
output.
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(1) As H,, are Bernoulli realizations with success probability 7¥'¢
V¢ .- ~ Beta(a; + |{v: H, = 1}|,by + |{v: H, = 0}|).
Similarly:
ps| -+~ Beta(a, + [{v: HS,s = 1,H, = 1},
by +{v:HS,s =0,H, = 1}).
pol--- ~ Beta(as + |{v,s: HS,, = 1,H, = 0}|,
by + |{v.s : HS,, = 0, H, = 0}]),
L1~ Beta(as + |{s: C15 = 1},
by +|{s: Cis = 0}),
n!l| .~ Beta(as + [{t,s: C,; = 1,C,; = 1}],
bs + {t;s: C,; = 1,Cs = 0}]),
nll0). .. ~ Beta(as + |{t.s: C,, = 0,C;, = 1}],
bs +|{t,;s: C,,=0,Cs =0}

T

(2) H, is affected by 7¥€, and it affects the values of HS, ; for each s:

Pr(H, = 1,HS,s =1|--) =

Pr(H, = 1,HS,; = 0|---) = 1" (1—Ps)
Pr(H, = 0,HS,; = 1]-- ): n‘) po.
Pr(H, = 0, HS,; = 0|---) = YC) - (1= po).

Thus,
Pr(H, = 1,HS,.|---) = "¢ ~pSZSHS“
(1= sl = HSus)
Pr(H, = 0,HS,.|---) = (1 — n¥°) ‘POZSHS“
(1 = po) st = HSus)
Therefore, the conditional posterior of H, is:

Pr(H, = 1,HS,,|-)
Pr(H, = 1,HS,.| ) + Pr(H, = 0, HS,,| - )

Pr(H, =1|---) =

(3) Given C;g, only the value of HS, . affects the distribution of

Zy.+5- Assume for now, that we condition on H, =1, then:
Pr(Zy s, HSps = 0]Cre = 0,--) = (1 = po)fo(Zoss),
Pr(Zyps, HSps = 1Crs = 0,-) = ps - fo(Zus),
Pr(Zyps, HSps = 0|Crs = 1,-) = (1 = p3) - fo(Zoss),
Pr(Zyps, HSps = 1Cro = 1,-) = ps - [1(Zops)-

From the above, it is clear that when C; s = 0:
Pr(HSv.s = 1|Ct.s = O,H,, = 17Zv.t,57 o ) = Ps,
Pr(HSU.s = O|Ct.s = O,H,, = 17Zv.t,57 o ) =1- Ds-

Therefore, a time point ¢ in which C,;; =0 will not affect the

marginal distribution of HS, 5. Let T, = {¢ : C; = 1}, then:
Pr(HS, = 1,Zy.s|H, =1,
=ps- HzeT;fl (Zoss),
Pr(HS,s=0,Z,.sH,=1,--)

= (1 - ps) : HtETifO(Z”’t's)'

On the basis of the equations above, we can calculate the condi-
tional posterior of HS, s, given that H, = 1, through:

Pr(HS,. = 1|H, =1,

B Pr(HS,s =1,Z,.s|H,=1,-")
Pr(HSv.s =0 \/HSI/.S = laZv.*.s‘HU = 1 . )

Similarly, the conditional posterior of HS,  given that H, =0 can be
calculated by replacing every p, with p in the formulas above.

(4) As the value of C; ; affects the value of the time window Cy, ...,
Cy115 and the values of Z, 1 s with HS, ; = 1:

Pf(cLs = 17 Cz,s, Tty Cw+1.,s:Z*‘1,s| o )

w+1 w41
> " Crs > (1—Cr)
=qgbl. gllte=2 (1 = nllyk=2 H fi(Zois)
v:HS, =1

Unlike the equation above, calculating the probability of C;s =0
requires breaking the window into two parts. Assume that the time
window contains at least one active cell. Let / be the first time point
of Cyy, ..., Cyi1, that changes from 0 to 1. Thus:

Pr(Cl,s = 07 C2,5> Tty Cw+1,s>Z*$l.s| o )

w+1
- Chrs
— (l _ Ttl‘l) . |:ﬁ(l _ 7.clO):| ,T[1|0 . nl\l; b
k=2
uil
(1 - Ck.s)
(1 mlltyk=2 : H fo(Zu1s)

v:HS, =1

If there are no active cells in Cy, - - -, C,1 1., then the calculation re-

duces to:

Pr(Cl.s:chl.sv'” Cw+lsyz 15“")
=A== ] fo(Zurs)

v:HS, ;=1
Finally, the conditional of C; s can be calculated by:

PI'(C]_; = 1|C2<57 ) Cw+1‘57 Z*71,sv o )

_ Pr(Cl‘s = 1-, C2‘51 Ty Cu/+1‘51 Z*.l.s‘ o )
Pr(CZ,s; Tty Cu/+l,s:Z*.1,s| o )

The conditional probability of the event C;; = 0 is computed in the
same way.

(5) Fort €2,...,T — 1, the value of C; is affected by the value of
Ci and it affects the value of C;, ...,
ues of Z,,,  with HS, ; = 1. Thus:

PI‘(CLS = 17 C*,s; Z*,t,sl o )

Chin(w+1,1).5» and the val-

min(w-+t,T)
‘ , > Ces
_ nlu% ,nuo]*% P [}y |
min(w+t,T)
(1 - Ck.s)

(1= mlity k=t

GTOZ ‘€T aunf Uo AISIBAIUN AIAY B e /BI0'S[UIN0[PIOIX0'SOITeW 0 U I01g//:01Y WOoI ) papeo umod


http://bioinformatics.oxfordjournals.org/

i20

D.Amar et al.

Pr(Ct,s = 07 C*,sa Z*,z,5| o )
min(t+w,T) o ,
_ H i1 Ces 110 Ces (1-C )
k=t

min(t+w,T)

H (1 — 1) (1=Ces) G,

k=t

min(z-+w,T)
[[ (- rl)0-crt-c)
k=t

H fO (Zv.t,s)

v:HS, =1

Thus, Pr(C;s = 1]--+) can be calculated similarly to the calculations
in the previous section.

2.3 Setting fy and f;

Here, we discuss two options for setting f, and f; and their hyper-
parameters: (i) a Bernulli-Beta model for binary data and (ii) a
Normal-Gamma model for normal distributions. Let A be the cells
within the module (including the core and private parts):
A={Z,,;s: C,s=1ANHS,s =1}. Let B be the cells outside the
module: B={Z,;,: C,; =0V HS,; =0}

For binary data, we assume that Z,,; € {0,1}, fo = Bernoulli(
1) and f; = Bernoulli(r®"). Thus, our model learns the back-
ground probability 1 of observing a value of 1 and the probability
¢! of observing 1 within the module. In this model, 7°° and n' fol-
low Beta posterior distributions:

...~ Beta(as +|{i:B; =1}
...~ Beta(ar +|{i: A =1}

b7 +|{i: Bi = 0}))
by +|{i: A = 0}])

In the continuous case, we assume that £y is N1, o0) and f; is
N(uy, 01). Under the Normal-Gamma model, the prior distribution
for the mean p and the standard deviation & of a normal distribution
N(p, o) is:

1/c ~ Gamma(y—o,&>

272
1
~ N|(my,—
g ( ’ P0>
The conditional posteriors for Y = (y1,...,y,) where for each i,

yi ~ N(, o) are:

1/0]Y ~ Gamma(1/2 - (v + n),

1/2- <SSO +y =9+ :4—12)0 - m0)2)>
i=1

MY ng(M S )

n+po po+n

Thus, we apply the model above for A and B, thereby modeling £,
and f; as normal distributions.

2.4 Finding multiple modules

To find a single module, we use a standard biclustering algorithm to
produce an initial solution and then use the Gibbs sampler to im-
prove it. The biclustering algorithm is applied on a 2D matrix M ob-
tained by concatenating the layers in Z, i.e. M,; = Z,,,, where
i=(s—1)S+¢. In this study, we tested Bimax (Prelic ez al., 2006)
and ISA (Bergmann et al., 2003) as the base algorithms. To binarize
real-valued data Z to run Bimax, we use a threshold t: we set every
value Z,,s > 1 (< 1) to 1 (0). By default, we set t to be the 0.9

quantile of the values in Z. After running the Gibbs sampler, we
take the mode of H, HS and C as the solution. By default, all hyper-
parameters of the Gibbs sampler are set to non-informative priors.
This means that the algorithm infers these parameters and thus no
tunning is required.

To find multiple modules, we tested two previously used heuris-
tics (Serin and Vingron, 2011; Shabalin et al., 2009). In the first
(Cheng and Church, 2000), which we call masker, we run the algo-
rithm iteratively on the residual matrix of Z. The residual matrix is
calculated by going over all cells in the module and updating their
values in Z. In the binary model, the update rule is to change all
module cells to zero. In the normal model, we subtract the mean of
f1 from the value of each cell.

The second heuristic, called filter, takes a set of biclusters U as
input and produces a reduced set. It first uses the overlap reduction
method of Serin and Vingron (2011): initially U’ = (), then the larg-
est module in U is added to U’ and all remaining modules with a
large overlap with it (we used Jaccard index > 0.5) are removed
from U. The process is repeated until U is empty. Next, we run the
Gibbs sampler on the original matrix Z starting with each module in
U'. The result is a set of new modules U”. Finally, as different mod-
ules in U" might converge into similar modules in U”, the overlap re-
moval process is used again, taking U” as input.

For both heuristics, we define when to add a module to the final
output. When using masker, we add modules until the first time a
module is rejected. A module is accepted if it is large enough and the
difference |fi — fy| for it is large enough. In the binary case, we set
7 > 0.5 and in the normal case we set > 0.3. Setting the minimal
module size depends on the application and on the size of the input
data. By default, we set the minimal size of a core module to 5 rows
and 5 time points (combining all subjects).

2.5 Performance measures
In the results below, we compare algorithms on simulated data. In
each case, we compare the known H, HS, C to the algorithm output
H',HS', C' using the Jaccard coefficient. For example, the Jaccard
score of H and H' is:

i H; AN H'}|
H,H') = |{l i i
JEH =16 B )
When the data contain more than one module we use the running
max average of all pairwise Jaccard scores. Given the known
solution H = (Hy,...,H,) and the algorithm output

H' = (HY,...,H},) the running max average score is:
max J(H;,H}) ) + (max H,H')
16; </El""’ 2]( l /)) iegkz iel"""kl]( l ,)
ki + ka

The same method is used for HS and C.

3 Results

3.1 Simulations

Our simulations setup was as follows. We set V=500, T=50,
S=10 and create an initial matrix Z in which all values are zero.
We then add modules to Z in which all values are 1 and later add
noise according to the tested model (binary or normal). To define a
new module, we first need to randomly select the rows and columns
of each subject s. Time points are selected randomly with w=1,
nbt =0.05, n'l' = 0.6 and ©!l® = 0.1. Rows are selected randomly
as follows. We first select randomly 20 rows #;...i0 for the
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Fig. 2. Simulation results for data with a single module. Each bar represents the average over 10 repeats. (A) Case 1: no subject-specific signal. (B) Case 2: with
subject-specific signals. The Bimax-Gibbs variant was later chosen as the default TWIGS algorithm

core module. Then, we add row 7 to the private module of subject s
with probability p if » € {i; .. .10}, otherwise 7 is added with prob-
ability pj.

Adding random noise to the data depends on the tested model.
In the binary case, we randomly replace Z,,s with 1 — Z,,, with
probability p,, if (v, t, s) belongs to the private module of s and with
probability p, otherwise. In the normal model for each (v, ¢, s)
within the private module of s we select €,,; ~ N(0, 5,,), otherwise
we select €,,; ~ N(0,0,). We then add the noise by updating
Zyts = Zyss+ €prs. We tested scenarios of a single module with
and without subject-specific signals and of multiple modules.

3.2 Case 1: a single core module

In this test, we set p, = 1 and p;, = 0. This case represents the stand-
ard biclustering task because there is no subject-specific signal.
Thus, biclustering algorithms are expected to achieve high
performance.

The results are shown in Figure 2A and B. Each algorithm was
tested on 10 instances and the average Jaccard score, which quanti-
fies the agreement between the known solution and the algorithm
output, is shown. We set high noise levels both in the binary data
(Fig. 2A)—p!, =p) =0.25 and in the normal data (Fig. 2B)—
o), = o, = 1. The Bimax algorithm had a low Jaccard score in most
cases, since its output covered only a small part of the true bicluster.
Although the false-positive rate was very low (<0.01 both for the
bicluster rows and columns), the true-positive rate was low as well
(<0.25). ISA performed much better, especially in terms of identify-
ing H and HS. Using TWIGS to improve the solution was beneficial:
it was able to keep the high performance of ISA for H and HS and to
considerably improve the score of C. It greatly improved the Bimax
solution in all criteria. For example, in the normal data, the score of
C went up from 0.053 to 0.93. The ISA solution improved from
0.63 to 0.95 using TWIGS. Notably, this improvement was achieved
with only 50 sampling iterations, which took less than 7's on average
(over simulation repeats). Thus, this boost in performance was
achieved at a low cost of running time. We kept this number of iter-
ations also in subsequent analyses. Note, however, that when the
data are much larger (e.g. |T| > 1000), the running time could in-
crease to several minutes.

We also tested a binary case in which the noise levels were not
symmetric: we set p/, = 0.5 and p/, = 0.1. The results are shown in
Supplementary Figure 1. In this case, the Bimax—Gibbs combination
reached the top performance in all measurements, with very high
scores: 0.92 (H), 0.86 (HS) and 0.93 (C). The performance of both
ISA and Bimax was low (all scores were <0.7), indicating that
standard algorithms have difficulty in such noise levels.

3.3 Case 2: a core module with subject-specific signal

In this test, we set p. = 0.9 and p;, = 0.01. Thus, this scenario is dif-
ferent from standard biclustering and triclustering tasks in two
ways: (i) not all shared rows are necessarily part of each private
module and (ii) each private module is likely to contain additional
rows that are not shared among all subjects.

The results (averaged over 10 instances) are shown in Figure 2C
and D. The noise levels were p, = p! =0.25 in the binary data
Fig. 2C) and &), = 6/, = 1 in the normal data (Fig. 2D). Similar to
Case 1, Bimax had low scores because it typically covered only a
small perfect fraction of the module, whereas ISA reached higher
performance. However, the performance of ISA was much lower
than in Case 1. For example, in the normal data the score of H,
which represents the core module rows, dropped from 0.87 in Case
1 to 0.57. This result demonstrates a weakness of standard bicluster-
ing algorithms when the data contain subject-specific signal: the al-
gorithms might fail to discover even the shared information. In
contrast to ISA and Bimax, TWIGS improved the solution consider-
ably in all measures. For example, the score of H and C was >0.89
when starting with the Bimax solution.

3.4 Case 3: multiple modules
Here, we tested the performance of TWIGS with filter and masker
on data with five core modules, each with it own subject-specific sig-
nals, using as before p, = 0.9 and pj, = 0.01. The results are shown
in Figure 3. As expected, the results were lower than in the single
core module tests. Nonetheless, the results were still high in spite of
the high noise levels.

Unlike the previous cases, using masker with Bimax as the base
algorithm was much better than all other algorithms. For example,
in the binary case (Fig. 3A), it reached scores of 0.86 and 0.8 for H
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Fig. 3. Simulation results for data with five core modules. Each bar represents the average over 10 repeats. (A) Binary data. (B) Normal data. The Bimax-Gibbs-

masker variant was later chosen as the default TWIGS algorithm

and C respectively, where all other algorithms had scores below 0.6.
In the normal data, we observed a sharp decrease in performance
when setting the noise levels to 6o = 1 as in the previous sections,
see Supplementary Figure 2. With a bit lower noise levels of 0.75,
the results were similar to the binary case (Fig. 3B). Interestingly,
forcing high mean value in f; (i.e. by setting 729 > 1 and high p( con-
stant in the Normal-Gamma model, see Section 2) achieved higher
performance scores. For example, setting the mean value to 1.5 im-
proved the score of H from 0.8 to 0.9 and the score of C from 0.71
to 0.77. We discovered that the non-informative variant had some
detrimental instances in which some core modules were grouped to-
gether (average number of detected modules was 4.2), whereas
enforcing high mean for f; detected the correct number of core
modules.

On the basis of the above results, from this point on, we used the
Bimax-Gibbs-masker as the default variant of the TWIGS
algorithm.

3.5 Gene expression data

We tested the performance of TWIGS by analyzing transcriptional
response of patients to sepsis. Parnell ez al. (2013) monitored pa-
tients after septic shock. For up to 5 days after sepsis, blood samples
were taken daily, and whole blood gene expression was measured
using Illumina microarrays. The dataset contained 14 patients for
which five profiles, one for each day after sepsis, were available.
Our goal was to detect up-regulated biological functions after septic
shock. Therefore, for each subject we calculated the log fold change
between time points 2, 3,4, 5 and the first time point. We binarized
the data by setting a threshold of 2 for the fold change (i.e. 1 for the
log fold change) and ran masker with Bimax as the base algorithm.
See the Supplementary Text for additional analyses using the non-
binarized data and for sensitivity analysis of the binarization thresh-
old. We set the minimal size of the detected core module to 10 rows
and 10 columns (number of time points from all patients) and f; to
have n¢! > 0.5. Using these stop criteria in masker, a single small
module of 5 genes was detected over 20 repeats in which we inde-
pendently and randomly shuffled the values of each row in the input
matrix.

Two core modules were detected on the real expression matrix.
The first covered 11 patients and 53 genes. The second covered
seven patients and 62 genes. Four patients were represented in both.
Distinct private modules were assigned to each subject in each mod-
ule. Thus, a total of 20 modules (core or private) were detected in
the analysis. GO enrichment analysis [using EXPANDER (Ulitsky

et al., 2010)] detected significant enrichment (0.05 FDR) in 19 of
the modules. The two detected core modules differed in their en-
riched biological functions. The first was highly enriched with genes
related to killing of cells of other organisms (P = 2.7E — 11) and re-
sponse to bacterium (P = 2.2E — 9).The second core module was
enriched with functions that were more specific to T-cell activity
(e.g. regulation of T cell activation P = 4.5E — 10). Thus, TWIGS
identified a fuzzy partition of the subjects into two main branches of
the immune system and also pointed out the relevant up-regulated
genes.

The private modules in the solution were often much larger than
the core modules. For example, in the first core module, the private
modules of subjects 19 and 24 contained more than 450 genes each.
The first core module and the enrichment analysis results of its pri-
vate modules are shown in Figure 4. See Supplementary Figure 3 for
the results of the second core module. Only biological functions that
were not significant in the core modules are shown. The figure illus-
trates how our analysis provides a complementary view to the core
modules. That is, although the core modules indicate which biolo-
gical functions tend to reappear across subjects, the private modules
reveal additional enrichments that are sometimes much more spe-
cific biologically. For example, the private module of subject 24 was
highly enriched with genes related to viral infectious cycle
(P=1.7E — 9). The network also highlights patients without sub-
ject-specific unique enrichments (subjects 30, 46, 49 and 50) and
two hubs: subjects 24 and 19. Strikingly, out of the 11 patients cov-
ered by this core module, these two patients had much larger private
modules and they were the only patients that did not survive the sep-
tic shock.

3.6 fMRI data

Vaisvaser et al. (2013) collected brain fMRI data from 20 male sub-
jects at rest over 94 time points. In this technique blood flow
(BOLD) intensity is measured at every voxel of the brain along time,
providing levels of some 100000 voxels every 2-3s. The level re-
flects the activation intensity of the brain voxel. Standard MRI pre-
processing was applied on the raw data as reported in (Vaisvaser
etal.,2013). We used a whole brain functional parcellation to trans-
form the data into 517 brain parcels (Craddock et al., 2012). Parcels
were masked to include gray matter voxels only using the WFU Pick
Atlas Tool (Maldjian et al., 2003; Stamatakis ez al., 2010) and 54
parcels that had <5 gray matter voxels were excluded. For each
subject, average BOLD value across all gray matter voxels was cal-
culated within each parcel at each time point. As is standard practice
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in fMRI analysis (Birn, 2012), to reduce the effect of physiological
artifacts and nuisance variables, the whole-brain mean signal, six
motion parameters, cerebrospinal fluid and white matter signals
were regressed out of the parcel signals. The result is a matrix M, for
each subject s, in which rows are parcels and columns are time
points. We standardized the signal of each row in M; by subtracting
the mean and dividing by the standard deviation. This normalization
allows us to find relative changes in the activity of brain regions to
highlight temporally activated regions (Rana et al., 2013).

We ran TWIGS with the normal model, Bimax as the initial solu-
tion finder and masker. With non-informative priors, the algorithm
converged to large modules with relatively low mean value (<0.5).
As we were interested in highly activated brain regions, we reset the
mean of f; to a high value: we tested p; = 1.5 and p; = 2. As in the
simulations, using such prior improved the results considerably since
the non-informative variant tended to merge core modules with high
mean value. No module was detected when running the algorithm
after randomly and independently shuffling each row of the data
matrix (20 repeats).

Unlike in the gene expression analysis, each subject participated
in each core module. For p; = 2 (Fig. 5A), four core modules were
detected (labeled 1A-4A), with an average of 48.5 parcels. For 1
= 1.5 (Fig. 5B), five core modules were detected (labeled 1B-5B),
with an average of 66.4 parcels. Out of the five core modules de-
tected using p; = 1.5, four had a parallel core module detected using
w; = 2. In addition, modules 1A and 1B maintained similar spatial
structure and size and so did 3A and 3B. Modules 2A and 4A were
larger than their counterparts.

We evaluated the parcel sets of the identified core modules by
comparing them to known functional annotations of the brain (Yeo
etal.,2011). The results show that our analysis detected well-known
functional modules that are expected to share common activation
patterns both during task and at rest. In both solutions, core module
1 was enriched with regions that are involved in visual processing in
the occipital lobe of both hemispheres (¢ < E — 11) (Belliveau et al.,
1991). Core module 2B was enriched with parcels located within
the ventral attention network, which is involved in bottom-up ori-
enting of attention (q < 0.02) (Fox et al., 2006). In both solutions,
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core module 3 was enriched with parcels located in regions that are
involved in sensori-motor processing (¢ < 1E — 11) and in parcels
located within regions of the dorsal attention network, which is
involved in top-down orienting of attention (g < 0.03) (Fox et al.,
2006). Modules 4A and 4B were enriched with parcels located in
the default mode network (g < 1E — 4), which is composed mainly
of midline structures and is involved in self referential functions that
include remembering the past as well as planning the future, and the
frontoparietal control network, which is responsible for adaptive be-
havior (¢ < 1E — 7) (Dosenbach ez al., 2007). Finally, core module
5B contained 29 parcels and was enriched with regions that are
involved in visual processing (¢ < SE — 9) and with parcels that are
located within the dorsal attention network (g < 0.001).

Inspecting the private modules, we observed large heterogeneity
in their tendency to overlap with their core module parcels and in
the number of time points. Figure 5C and D shows the results for
core module 4B. This module is of particular interest as it was en-
riched with both the default mode network and the frontoparietal
control networks. Patterns of co-activation between these two
networks have been reported before and suggested to support goal-
directed thought processes (Spreng et al., 2010). On average, each
private module covered 44.4% of the core module parcels (Fig. 5C)
and contained 15.5 time points. In addition, in 18 out of 20 subjects,
the overlap between the subject-specific parcels and the core module
parcels was significant (hyper-geometric P < 0.001). Other modules

had much higher coverage. For example, core module 1B had mean
coverage of 64.4% and a larger number of time points (mean 23),
see Supplementary Figure 4.

When including the private modules in the enrichment analysis,
15 out of 20 private modules of core module 4B were also enriched
with the default mode network. The frontoparietal control network
was identified in 12 of the 20 subjects. Although to a much lower
extent than in the gene expression analysis, we also detected subject-
specific signal. For example, ventral attention enrichment was iden-
tified in 4 out of 20 subjects but not in the core module. This sug-
gests a tendency of these four subjects to engage in bottom-up
processing (e.g. be more attentive to sensory stimuli) during goal-
directed thought processes. These results demonstrate the advantage
of our multi-subject analysis: it was able to detect large functional
networks that reappear as activated across subjects and even high-
light subject-specific activation patterns.

3.7 Comparison to related algorithms

Extant algorithms for three-way data analysis were mainly de-
veloped for gene expression data. Triclustering (Zhao and Zaki,
2005) assumes that a module is a subcube created by one subset in
each of the three dimensions. This setting is too rigid for simultan-
eous analysis of responses in many patients. Figures 4 and 5 show
that our modules are not triclusters since the time points and gene
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set of each private module differ under the same core module.
Another type of three-way analysis seeks biclusters < G', S’ > where
G’ is a set of genes and §' is a set of subjects, such that all genes in
G’ manifest a similar time response across all subjects in §'. Two
such algorithms are EDISA (Supper ez al., 2007), which seeks high
correlation between subjects across time points, and the plaid model
of Mankad and Michailidis (2014), which extends (Lazzeroni and
Owen, 2002) and seeks up- or down-regulated time responses.
Finally, Gerber et al. (2007) simultaneously cluster tissues and genes
to produce biclusters, while accounting for three possible time re-
sponses for each tissue when introduced to a drug. However, this
analysis answers very different questions than TWIGS as it assumes
a hierarchical structure of tissue clusters without overlap, whereas
we analyze a single tissue over many time points at rest and allow
overlapping core modules.

We compared TWIGS to seven methods: ISA (Bergmann et al.,
2003), Bimax (Prelic et al., 2006), SAMBA (Tanay et al., 2004),
EDISA (Supper et al., 2007), the plaid model (Mankad and
Michailidis, 2014), sliding window analysis of fMRI data (Allen et al.,
2014) and modularity analysis of fMRI data (Rubinov and Sporns,
2010, 2011). For each method, we tested a wide range of its internal
parameters to fine tune it for the tested dataset. The Supplementary
Text provides all details; here we give a brief overview.

Our comparison shows that except for modularity analysis
(which enforces using all subjects by the method’s definition), extant
methods have difficulties in finding modules that cover many sub-
jects. TWIGS provides an almost 2-fold improvement in the ability
to find modules that cover many patients. For example, on average,
modules identified by EDISA on the sepsis data covered less than
five patients compared with nine by TWIGS. The sliding window
analysis, which estimates the covariance matrix of each time win-
dow and then clusters all windows from all subjects, had an average
coverage of less than 10 on the fMRI data, whereas TWIGS covered
all 20 subjects. TWIGS was comparable to other methods in enrich-
ment analysis for known biological functions in terms of: (i) the
total number of covered functions, (ii) the strength of the detected
enrichments and (iii) the fraction of modules with enriched terms.
When consolidating scores 1-3 using non-parametric ranking,
TWIGS ranked first.

When applying the plaid model to the sepsis data, it tended to
find much larger gene sets. However, these modules manifested a
very mild up-regulation response compared with the TWIGS mod-
ules. The fMRI modularity analysis method of Rubinov and Sporns
(2010, 2011) partitioned the brain into clusters, each containing one
of our core modules. TWIGS’s subject-specific module augmenta-
tions provided additional biological results.

4 Discussion

We presented a novel problem formulation and algorithm for flex-
ible three-way clustering of multi-matrix time course data. We
defined a core module as (i) a set of rows that are likely to be active
together across a set of subjects and (ii) a set of active time points in
each covered subject. In addition, each core module has subject-spe-
cific private modules that can contain additional genes and have
high overlap with the core module. The set of active time points of a
module can vary in size and times among subjects.

Our model is much more flexible than existing models. First, it
allows different active time points for each subject, thereby accom-
modating heterogeneity and asynchrony in the response of different
subjects. Second, different subjects can differ in their underlying fea-
tures (rows) and time points (columns). The row set of a particular

subject in a module does not necessarily cover all core module rows.
This property was crucial in the analysis of fMRI data, where it
allowed discovering core modules that better covered active brain
regions. In addition, the row set of a private module can contain
additional rows that represent subject-specific signal. This property
was crucial in the gene expression case as it allowed discovering pa-
tient-specific up-regulated immune processes.

We compared TWIGS to seven other methods and showed that
extant methods have difficulties in finding modules that cover many
subjects, whereas TWIGS easily finds modules that represent a bio-
logical function shared by many subjects. In addition, our method
outperformed other methods in terms of enrichment analysis. We
employed additional metrics for evaluation in each domain. Other
comparison criteria can be used in the future, e.g. test-likelihood or
perplexity.

Our current analysis has some limitations that can be addressed
by future studies. First, we assume that the data originated from two
distributions f; and f;. Other approaches could be considered, such
as row-based or column-based additive models (Lazzeroni and
Owen, 2002). Second, our basic model deals with only a single mod-
ule at a time. More complex models and algorithms could be pro-
posed to directly model multiple modules. Finally, additional tests
are needed to fully exploit the abilities of the model. For example,
we focused only on testing a time window of size 1 to find homogen-
ous highly activated private modules.
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ABSTRACT

Genome-wide expression profiling has revolution-
ized biomedical research; vast amounts of expres-
sion data from numerous studies of many diseases
are now available. Making the best use of this re-
source in order to better understand disease pro-
cesses and treatment remains an open challenge.
In particular, disease biomarkers detected in case—
control studies suffer from low reliability and are only
weakly reproducible. Here, we present a systematic
integrative analysis methodology to overcome these
shortcomings. We assembled and manually curated
more than 14 000 expression profiles spanning 48
diseases and 18 expression platforms. We show that
when studying a particular disease, judicious utiliza-
tion of profiles from other diseases and information
on disease hierarchy improves classification qual-
ity, avoids overoptimistic evaluation of that quality,
and enhances disease-specific biomarker discovery.
This approach yielded specific biomarkers for 24 of
the analyzed diseases. We demonstrate how to com-
bine these biomarkers with large-scale interaction,
mutation and drug target data, forming a highly valu-
able disease summary that suggests novel directions
in disease understanding and drug repurposing. Our
analysis also estimates the number of samples re-
quired to reach a desired level of biomarker stability.
This methodology can greatly improve the exploita-
tion of the mountain of expression profiles for better
disease analysis.

INTRODUCTION

Gene expression studies use expression profiles of cases
and controls to understand a disease by identifying genes
and pathways that differ in their expression between the
two groups. This methodology has become ubiquitous in
biomedical research, and is often combined with additional
information of either the patients or the genes to interpret
the results (1-7). However, these analyses suffer from several
limitations: the discovered biomarkers often have low repro-
ducibility, and are difficult to interpret biologically and es-
pecially clinically (8,9).

A promising direction for increasing robustness is by in-
tegration of many gene expression datasets. The difficulty
here is in creating a common denominator of multiple stud-
ies, often conducted using different platforms under diverse
experimental conditions and tissues. Huang et al. (10) used
9169 gene expression samples, each associated with a set
of disease terms of the Unified Medical Language System
(UMLS). UMLS, and similar databases such as Disease
Ontology (DO), provide ontology of disease terms orga-
nized in a hierarchy that models dependencies among dis-
eases (11,12). The authors presented an algorithm that pre-
dicts a set of disease terms for each gene expression sam-
ple (10). Schmid et al. analyzed 3030 samples of one plat-
form and predicted their UMLS terms using similarity-
based analysis (13). Lee et al. used >14 000 profiles of one
microarray technology to predict the tissue of a sample (14).
While these studies reported good prediction quality, they
have some limitations. First, data of only one or two expres-
sion platforms were analyzed, limiting the data used and the
applicability of the results. Second, in Huang et a/. and in
Lee et al. the mapping of samples to their disease terms was
done automatically, inevitably introducing mapping errors
(10). Third, the predictor in (10) can be applied on new pa-
tient samples only if a set of new control samples accom-
panies them. Fourth, while the prediction performance of
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the classifiers was far from random there is still substantial
room for improvement. Finally, many biomarker sets are
hard to interpret biomedically, which hampers their adop-
tion in clinics.

To improve interpretability, several classification meth-
ods that integrate different biological data were suggested.
For example, combining patient gene expression profiles
and protein—protein interaction data or pathway informa-
tion was demonstrated to improve disease classification ac-
curacy or biological interpretability in some studies (1-
7,15,16). However, other studies reported no significant im-
provement when utilizing network data (1,17). Moreover,
in some cases the contribution of the additional gene data
was very mild, which questions the benefit from interpreting
these models. Other methods for biomarker discovery used
prior knowledge on genes to extract differential genes of
similar functionality. As another example, Ciriello et al., in-
tegrated gene expression profiles, methylation profiles, and
single nucleotide polymorphism (SNP) data from 3299 can-
cer patients to construct a hierarchical structure of the pa-
tients, and used it to detect novel biomarkers of cancer sub-
types (18).

The main goal of this study is integration of numerous
heterogeneous expression profiles to produce reliable results
that could be used as a starting point for novel biomedi-
cal insights. We focus on identification of the main genes
that are specifically differential in a disease of interest and
putting them in the context of interactions, mutations, and
drugs. To be able to produce such overviews in a meaningful
way we developed a four-step procedure (Figure 1). Each
step is essential to obtain reliable results. First, we manu-
ally annotated more than 14 000 gene expression profiles
from 175 datasets to produce a compendium called ADEP-
TUS (Annotated Disease Expression Profiles Transformed
into a Unified Suite). ADEPTUS covers 13 314 microar-
ray samples from GEO and 1526 RNA-Seq samples from
TCGA. To overcome study and sample heterogeneity, each
sample was normalized using a non-parametric rank-based
method. Samples were manually annotated with the most
relevant disease terms in DO. Second, as a quality assur-
ance step we tested different multi-label classification al-
gorithms. Two key issues here were: (i) performing leave-
dataset-out cross validation to reduce bias of unknown co-
variates (e.g. batch effects), and (ii) showing that standard
performance measures produce over-optimistic results, and
rectifying this by introduction of more stringent classifica-
tion measures. Using our measures, classification perfor-
mance was very high for 24 diseases, mostly cancer sub-
types. Limiting the data to a single platform improved the
performance for six additional diseases.

Third, we detect disease-specific differentially expressed
genes, by accounting for the diversity of non-disease sam-
ples and the relationships among diseases. We demonstrate
a shortcoming in the integration of multiple datasets of
a single disease: without using alongside it data of other
diseases, such analysis might find genes of general dis-
ease phenotypes that are not specific to the target dis-
ease. Our method was designed to overcome this difficulty.
We demonstrate the robustness of our method, and also
achieve estimates for the number of datasets and samples
required to improve stability of biomarker detection. Func-

tional enrichment analysis shows that the detected gene sets
recapitulate known hallmarks of the diseases. Finally, for
three cancer types we produce a network that highlights the
molecular modification in the disease. This is done by an
integrative analysis of the discovered differential genes with
information on somatic mutations, drug targets, and gene
interactions. We show that our results detect well known dis-
ease genes and treatments, and even suggest new indications
of several known drugs.

MATERIALS AND METHODS
The expression profile compendium

We constructed a large compendium of expression profiles
generated using different technologies, and manually anno-
tated the diseases attributed to each profile (Supplementary
Figure S1A). The compendium, called ADEPTUS, con-
tains 174 gene expression studies from GEO (19), each with
at least 20 samples. Overall, ADEPTUS covers 13 314 sam-
ples from 17 different microarray technologies, and 1526
RNA-Seq samples from TCGA (20). See Supplementary
Text regarding using even larger compendia. For each study
we used the preprocessed expression matrix given in the
database. Each sample was either labeled as ‘case’ and man-
ually assigned a set of the relevant DO terms based on the its
textual description, or labeled as ‘control’. To allow cross-
validation on whole datasets, we kept only DO terms that
were represented by at least five different datasets in our
compendium. This resulted in 48 disease terms.

Single sample gene scores

To allow joint analysis across platforms, expression pro-
files were transformed to rank-based scores (2,21) (Supple-
mentary Figure S1A, see ‘Materials and Methods’ section).
Given a gene expression profile of a single sample S in which
k genes were measured, we ranked the genes by their expres-
sion levels g1, g2, g3,. . ., g (With g having the highest level),
and assigned a score to each gene based on its rank: Ws(g;)
= ie~"/*. See Supplementary Text for details.

The final compendium can be summarized as two ma-
trices (Supplementary Figure SIA): A binary (samples x
diseases) matrix Y where Ys,d = 1 if sample s is annotated
with disease d, and a real-valued (samples x genes) matrix
X where Xs,g = WS(g).

Multi-label classification

In multi-label classification each sample can belong to mul-
tiple true classes (e.g. cancer and lung cancer) (22,23). A
sample can be predicted to have several labels and the sum
over the predicted label probabilities need not be 1. Re-
cent multi-label classification approaches (22,24,25) can be
partitioned into two types: problem transformation and al-
gorithm adaptation (23). See Supplementary Text for de-
tails. Here we used the label power-set (LP) transforma-
tion method, which defines for each sample a categorical
class variable by concatenation of the sample’s original la-
bels (26). We also used the Bayesian correction (BC) adap-
tation method, which uses the known label hierarchy to cor-
rect errors after learning an independent single binary clas-
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Figure 1. Study workflow overview. Step 1: Assembly of the ADEPTUS database: expression profiles from public sources were normalized and manually
annotated. Step 2: Classification methods were used to identify well-classified diseases while avoiding over-optimistic results due to tissue and batch effects.
Step 3: Disease-specific biomarker detection using the Disease Ontology structure. Step 4: Integration with other biomedical data produces gene-centric,

disease-specific overview with therapeutic potential.

sifier for each label (10,27). Linear SVM (28,29) and ran-
dom forest (30) were used as the binary classifiers.

Somatic mutation data

We analyzed the raw data of known somatic mutations from
COSMIC (31). These data contained associations between
genes and tumor samples. We kept only associations to non-
silent mutations in coding regions that were also marked
as ‘confirmed somatic mutations’. The result was 559 727
gene-tumor associations, covering a total of 43 517 tumor
samples and 20 332 genes. We then assigned genes to tumor
sites by calculating a hyper-geometric (HG) p-value for the
overlap between the samples that had a mutation in the gene
and the samples from the site. The p-values were FDR cor-
rected for multiple testing and only significant associations
were kept (¢ < 0.05).

Gene—drug associations

Gene—drug associations were taken from DrugBank (32).
Only approved drugs were used.

Network visualization and functional genomics

Network visualization was done using Cytoscape (33) and
the Cytoscape application enhancedGraphics (34). Enrich-
ment analysis in Cytoscape was done using BiINGO (35).
GeneMania (36) was used to generate networks of a selected
gene set. EXPANDER (37) was used for enrichment analy-
sis of all discovered gene sets.

Validation of the multi-label classifier on RNA-Seq data

To test the performance of a multi-label classifier that was
trained using the microarray samples, on the RNA-Seq
samples, we transformed each RNA-Seq sample to gene
weighted ranks. We then performed quantile normalization
on all samples together. That is, we created a matrix whose
rows are the samples including both the microarray sam-
ples and the RNA-Seq samples. The columns were the genes
covered by the microarray data and the matrix values were
the weighted ranks. Quantile normalization was performed
to ensure that rows in the matrix would have similar dis-
tributions. This is crucial as any classifier assumes that the

tested data and the training data are similarly distributed.
Finally, the classifier was tested by computing its predic-
tions on the rows of the RNA-seq samples.

Testing how biomarker stability depends on the amount of
data

To test how the stability of our approach depends on the
number of datasets used, we focused on DO term ‘organ sys-
tem cancer’, which had 46 datasets in the compendium, of
which 16 were not assigned to any sub-disease. To measure
stability, we (i) randomly selected from these 46 datasets
two disjoint subsets A and B of k datasets each, (ii) ran our
pipeline and obtained biomarkers on each subset separately
and (iii) measured the Jaccard score and the significance of
the overlap between the two biomarkers. This process was
repeated with k ranging from 5 to 23. As background con-
trols, we added half of the remaining 128 non-’organ system
cancer’ datasets to A and the rest to B. We rejected sets gen-
erated in step (1) if the total numbers of samples in A and
B differed by more than 20%.

RESULTS

We collected and curated a large compendium of gene ex-
pression profiles from diverse diseases and developed and
tested several approaches for classifying patient samples
originating from each disease. For those diseases whose
classification was validated successfully we developed spe-
cific biomarker genes and summarized them in the context
of protein interaction, mutation and drug target data. Fig-
ure 1 shows an outline of our approach.

A curated gene expression compendium

We constructed a large compendium of >14 000 expression
profiles generated using 18 different technologies. Each pro-
file was designated as case or control and cases were man-
ually assigned DO terms. The compendium, called ADEP-
TUS, contains 174 gene expression microarray studies and
1526 RNA-Seq samples. It covers 48 DO terms, includ-
ing many cancer subtypes, obesity, neurodegenerative dis-
eases and cardiovascular disease (see Supplementary Fig-
ure S2). Each sample was rank-normalized to allow com-
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parison of samples from different technologies (see ‘Ma-
terials and Methods’ section). We observed that following
rank normalization, the correlation between samples from
different platforms (preprocessed using different methods)
is high, see Supplementary Text.

Classification

We conducted a systematic analysis of classification meth-
ods in order to identify diseases in which the expression sig-
nal was consistent across datasets. The main components
of the analysis were (i) utilization and comparison of sev-
eral multi-label classification algorithms, (ii) leave-dataset-
out cross validation to overcome technology and batch ef-
fects and (iii) a careful examination of the results in each
disease separately in order to avoid over-optimistic conclu-
sions due to tissue effects.

The classifiers. Samples in the compendium can have mul-
tiple related disease labels (e.g. hematologic cancer and
ALL). Classification of the samples can be addressed in
such situation as a multi-label classification problem. In
that problem a sample can be classified into several dis-
ease terms, and the sum of its label probabilities need not
be 1. See Supplementary Text for full details and references.
We first analyzed the 13 314 microarray samples. We tested
three multi-label classification approaches: (i) Single: learn-
ing a classifier for each disease separately, (ii) LP: classifi-
cation using multiclass algorithms on the label power-set of
the training data (22,23) and (iii)) BC: Bayesian correction
of single-label classifiers (10,27). All three approaches rely
on a binary ‘base classifier’. See Supplementary Text for de-
tails. We tested support vector machines (SVM) (28,29) and
random forest (RF) (30) as the base classifier.

Three sample categories for each disease. The common
practice when testing a classifier is to train and evaluate
its performance in a binary setting, separating the samples
into the cases versus all the rest. However, this is problem-
atic when the data come from many diseases: When clas-
sifying one disease, samples that come from other disease
studies would typically originate from different tissues, and
thus may be casier to separate from the cases based on tis-
sue characteristics, irrespective of the disease. On the other
hand, controls in the same study will typically originate
from the same tissue, or the same patient, and match the
cases in sex and edge distribution. As a result, they would
be biologically more similar to the cases and harder to clas-
sify. For that reason, for each disecase we chose to define
three types of samples: (i) positives: patients with the dis-
ease; (i) megatives: control samples originating from the
same studies as the positive samples and (iii) background
controls (BGCs): all other samples. Thus, a classifier that
performs well in separating the positives from the rest may
actually provide poor separation of the positives from the
negatives (see Supplementary Figure S3).

Cross-validation. We wanted to test the classification qual-
ity on samples that are completely unrelated to those used
for training, and possibly from different technologies. This
would also reduce the risk of batch effects. For this purpose,

we used leave-datasets-out cross-validation (LDO-CV): In
each cross-validation round 15 complete datasets were put
aside, a classifier was learned on the rest of the data and then
tested on the left-out datasets. The output of each classifier
is a matrix P, where Pj; is the probability that sample i has
disease j (computed when it was in the left-out test set dur-
ing the LDO-CV).

Evaluation criteria.  For each disease (i.e. taking a specific
column of P) we calculated three scores: (i) PN-ROC: the
area under the ROC curve (AUC-ROC) comparing posi-
tives and negatives (ii), PB-ROC: AUC-ROC comparing
the positives to the BGCs and (iii) a meta-analysis statis-
tical significance score, based on Stouffer’s method (38), for
separation of positives and negatives within datasets (see
Supplementary Text), denoted as SMQ (Study-based Meta-
analysis Q-value). These three scores provide complemen-
tary evaluation criteria.

Comparing classifiers. The performance of the classifiers is
shown in Figure 2A. We designated a disease well-classified
if its PB-ROC and PN-ROC scores exceeded 0.7 and its
SMQ was significant (<0.05). See Supplementary Text for
further explanation on the thresholds. Single-SVM and
SVM-BC had the highest average PN-ROC (0.69). Notably,
all classifiers had high standard deviation across diseases
(0.175 < 0 < 0.19). As expected, the PB-ROC scores were
higher than the PN-ROC scores, indicating that obtaining
separation between positives and BGCs is an easier task.
Overall, Single-SVM performed second in PN-ROC, only
slightly below the best algorithm (BC-SVM), and achieved
the highest number of well-classified diseases (24). More-
over, when changing the ROC threshold, the SVM-based al-
gorithms consistently outperformed the rest in terms of the
number of well-classified diseases. For these reasons, and
since the single-SVM classifier is simpler, we used this clas-
sifier in all subsequent analyses.

Comparison to extant algorithms. We calculated a global
precision-recall curve, also known as a micro-AUC score in
learning (22): we treated P and Y as a set of pairs (Yj, Pj),
and used P;; to rank all pairs. This ranking was then used to
calculate a precision-recall curve, see Figure 2B. The AUPR
was 0.68. Both precision and recall were much higher than
in (10): we achieved 93% precision (compared to 82%) at
20% recall, and 44% recall (compared to 20%) at 82% pre-
cision (Figure 2B).

Testing classification on samples from a new technology.  As
an additional validation, we used the 1526 RNA-Seq sam-
plesin ADEPTUS. We trained the Single-SVM classifier us-
ing all microarray samples and tested its performance on the
RNA-Seq samples. The RNA-Seq test data contained 918
breast cancer samples, 102 control breast biopsies, 182 in-
testinal cancer samples, 173 leukemia samples, and 151 sam-
ples from other cancer types. Given the classifier for each
disease, we calculated the ROC curve comparing the dis-
ease samples to all other RNA-Seq samples, see Figure 2C.
All ROC scores were >0.96. Note that in these data only the
breast cancer samples had direct negative samples. This can
explain why these ROC scores are much higher than those
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Figure 2. Multi-label classification performance. For each classifier we calculated for each disease the area under the ROC curve comparing positives
and negatives (PN-ROC) and the area under the ROC curve comparing positives and background controls (PB-ROC). (A) Average performance of the
classifiers. Left: Each bar shows the average ROC-AUC over all diseases. LP: label power-set, BC: Bayesian correction, single — single-class classifier; RF:
random forest, SVM: support vector machine. Right: The number of disease terms that had both PN-ROC and PB-ROC at least 0.7 and were found
significant in the SMQ test. (B) The global precision-recall curve of the single-SVM classifier. This analysis measures the overall agreement between the
predicted probabilities of sample-disease association and the known labels. The point represents the performance of (18). (C) The Single-SVM classifier
performance on a test set of 1526 RNA-Seq samples. The ROC score for both leukemia and large intestine cancer is 1.

obtained in the cross validation. Nevertheless, our classifier
correctly assigned the cancer to the patients even though the
samples were from a technology that was not used at all in
the training.

The validation confirms that our classifiers perform well
across technologies and platforms. Our analysis produced
successful classification for 24 diseases, most of which are
cancer subtypes (see Figure 3). It may be possible that the
other diseases were less well classified due to loss of infor-
mation in the rank normalization. To test this, for each of
those diseases we reran the LDO analysis process above us-
ing only samples from one platform, choosing the platform
that had the largest number of the disease datasets. Pro-
files underwent standard quantile normalization, which re-
tains more of the original signal than the weighted rank-
ing needed when combining data across platforms. The re-
sults show that classification performance can be improved
for some of these diseases by narrowing down the analy-
sis to one platform, see Supplementary Text. For example,
analyzing separately six datasets of ‘musculoskeletal system
disease’ that used the same platform (GPL96, Affymetrix
133A), the classifier achieved a ROC score of 0.84.
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Figure 3. The 24 well-classified diseases. For each node, the Disease On-
tology term and the number of positive samples are shown. Edges mark
‘is-a’ relation in the DO hierarchy.

Detecting disease-specific differential genes

In order to identify genes that are specifically differential
in a particular disease, we used the three-way partition of
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Figure 4. Expression patterns, specificity and robustness. (A) Expression
of TP53 in cancer. (B) Expression of IFNGR1 in ALL. The y-axis repre-
sents the weighted rank of a gene, where higher ranks have better values.
The boxplots show the expression distribution of the three sample cohorts:
positives, negatives, and BGCs. TP53 is over-expressed in cancer compared
to both negatives and BGCs. IFNGRI1 is up-regulated compared to nega-
tives, but down-regulated compared to BGCs. (C) Ranking of gastric can-
cer biomarker genes and of biomarkers for more general cancers on gas-
tric cancer datasets. Plots for biomarkers of more general diseases (parent
and grandparent nodes in the Disease Ontology) are further to the right.
General cancer genes are ranked higher, indicating that analysis of these
datasets alone will not discover the gastric cancer specific genes. (D) Test-
ing stability. The plots show the overlap between solutions obtained using
two disjoint sets of k disease datasets each, as a function of k. Each boxplot
shows the distribution of the overlap scores for a specific k over 50 repeats.

the samples for that disease, and calculated for each gene
the PN-ROC, PB-ROC, and SMQ scores. Note that here
the distance from 0.5 (in either direction) indicates how in-
formative a gene is. For simplicity, for each ROC score x
we report here max (x, 1 — x), and indicate whether the
gene is up- or down-regulated. Figure 4A and B shows
two differential expression patterns. For TP53 in cancer,
the positives are up-regulated compared to both negatives
and BGCs (PN- and PB-ROC > 0.65, SMQ < 2.22E-10).
For IFNGRI1 in ALL, IFNGI is up-regulated in positives
compared to negatives (PN-ROC = 0.675, SMQ = 0.001)
but down-regulated compared to BGCs (PB-ROC = 0.7).
Although the PN-ROC and PB-ROC scores are computed
by comparing the positives to two disjoint sample groups,
we observed high correlation between them across different
diseases (0.46 £ 0.15). For example, in cancer, most differ-
ential genes showed the same direction of change in pos-
itives versus negatives and in positives versus BGCs, and
only a few showed different directions as in Figure 4B.

We designate a gene as specific to a disease D if both of
its ROC scores are >0.65 and it has SMQ score <0.05. (We
chose the ROC threshold more permissively here since some
diseases had only few genes with ROC > 0.7). Note that this
approach is highly stringent in that we remove genes with a
significant g-value whose differential signal is not intense
enough. This process produces an initial set of potential
genes for D, but can leave high overlap between gene sets of
related DO terms. To make sure that a selected gene G is in-
deed specifically differential in D, D was considered only if
itisaleaf or it has at least three datasets whose most specific
annotation is D (i.e. samples in them were assigned to D but

not to any of its children). In that case we re-calculated the
SMQ score using these datasets only. If G was found signifi-
cant in that test, this indicates that G is differential in D even
when we exclude the samples of its sub-diseases. This test
markedly reduces the overlap between related DO terms, see
Supplementary Text. The resulting disease-specific gene set
is designated the disease biomarker. These sets are provided
in Supplementary Table S1.

Selection of the biomarker can also be done as part of
classifier training. We compared the classification with both
gene sets and the results were similar. We preferred deter-
mining the biomarker by the procedure described here, as it
focuses on genes that are differential and directly addresses
the redundancy between related diseases.

Biomarker specificity and robustness

We evaluated the specificity of the disease biomarker sets
that we obtained. In each dataset we ranked all the genes
by their differential expression score (the difference in the
mean rank based score between the cases and the controls)
and then computed the median rank of each gene across all
the datasets of each disease (see Supplementary Text). Fo-
cusing on the datasets of a particular disease, we computed
the ranks of its biomarker set, the ranks of the biomarker set
of the parent disease, and of the grandparent disease, when
available. We expected that a specific biomarker should
show higher ranks on its disease data than the biomarker
of the more general parent and grandparent disease. The re-
sults are summarized in Supplementary Figure S4 and Fig-
ure 4C. For most diseases, e.g. lymphoblastic leukemia (Fig-
ure 4C), the ranks of the disease gene sets are significantly
higher than those of their ancestors. However, in gastroin-
testinal cancer (Figure 4C), the biomarker sets of the an-
cestors (organ system cancer and cancer) have much higher
ranks (p < 1E-21). Hence, analyzing gastric cancer datasets
without expression profiles of BGCs would lead to prefer-
ring general cancer genes over genes that are specific to gas-
tric cancer.

A key problem in disease classification has been low
overlap between biomarker gene sets obtained in different
studies (39). We therefore tested how the stability of our
biomarkers depends on the number of datasets used for
learning. We focused on the disease term ‘organ system can-
cer’ because it had a large number of usable datasets (46, of
which 16 were not assigned to any sub-disease). We com-
puted biomarker sets twice based on disjoint data, and mea-
sured the overlap between the sets. This was repeated with
the number of training datasets ranging from 5 to 23 (see
Materials and Methods). The results (Figure 4D and Sup-
plementary Figure S5) show that the overlap is highly signif-
icant when k > 10. Importantly, stability increases roughly
linearly as a function of the number of datasets in the range
we could test. We therefore fit a linear regression model to
this trend and estimated the required numbers to achieve
higher stability, assuming the linear trend continues. At 46
datasets and 4258 samples (all of the 46 datasets available
for that disease) the predicted Jaccard score is 0.29 (expected
p < 1E-270). Increasing the numbers to 100 datasets and
10 000 samples is expected to improve the Jaccard score to
roughly 0.6.
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Figure 5. The main connected components of protein-protein interaction network of the cancer-specific differential genes. Up-regulated genes in cases
versus negatives and BGCs are in red, down-regulated genes are in green. The large connected component (left) can be separated into two up-regulated
sub-modules by removing the down-regulated genes. The down regulated genes are related to cytoskeleton, whereas the sub-modules contain mitosis,
replication, and cell cycle genes. The small connected component (right) also contains mainly up-regulated genes, and has TP53 as the main hub.

Functional analysis rediscovers known disease factors and
suggests novel ones

For each disease, the set of biomarker genes was parti-
tioned by their differential expression compared to nega-
tives and BGCs (compare Figure 4A and B) and each sub-
group was tested for functional and pathway enrichment
(see Materials and Methods). The results are summarized in
Supplementary Table S2. Overall, the results validated our
analysis by rediscovering known disease factors. In cancer
the enriched biological processes included well known hall-
marks of cancer such as cell cycle regulation, DNA repli-
cation, P53 signaling, chromosome organization and cell
proliferation (40). In neurodegenerative disorders, the re-
sults included oxidative phosphorylation, Alzheimer’s dis-
ease and Parkinson’s disease. In lymphoblastic leukemia,
primary immunodeficiency was down-regulated both com-
pared to negatives and BGCs, whereas lymphocyte differen-
tiation and V(D)J recombination were up-regulated. In gas-
trointestinal cancer, several pathways were down-regulated
compared to negative samples, including the calcium sig-
naling pathway and fatty acid metabolism. Interestingly, the
latter is up-regulated compared to BGCs, indicating that this
pathway’s expression level in gastrointestinal cancer is re-
duced but not to the full extent manifested in other unre-
lated tissue.

We also performed network-based analysis of the identi-
fied cancer-specific gene set. This set contained 258 genes,
of which 222 were up-regulated in cancer both compared
to negatives and to BGCs. Figure 5 shows the two main
connected components formed when connecting this gene
set with the protein—protein interactions (PPI) from In-
tAct (41). The first component contains 14 genes including
TP53 as the main hub. The second contains 64 genes. Sur-
prisingly, two down-regulated cytoskeleton related genes,

NDEL1 and GABARAPLI, connect two up-regulated sub-
modules of this connected component. Functional analy-
sis of these two sub-modules revealed that the first is com-
posed of 12 mitosis-related genes (p = 2.5E-22), whereas
the second is related to cell cycle and DNA replication (e.g.
the MCM complex, p = 1.2E-10). Thus, the mitosis related
sub-module is up-regulated but its ability to form physical
interactions with cytoskeleton related factors is impaired,
which suggests differential rewiring of the replication path-
way in cancer. Such cellular modifications might cause in-
stability and mitosis defects through impairment of cellular
morphogenesis (42).

Integration with information on SNPs and drugs reveals ther-
apeutic potential

In order to interpret our biomarkers, we integrated them
with external databases to produce an overview of the
molecular changes in a specific cancer and suggest poten-
tial consequences to therapy. We used COSMIC (31) for as-
sociation between genes and cancer types based on occur-
rence of somatic mutations in coding regions (see Materi-
als and Methods), Drugbank (32) to mark druggable genes,
and GeneMania (36) for genetic interactions (GlIs) and PPIs
between the genes. We tested in detail three examples: lung
cancer, ALL, and colorectal cancer. In each case we focused
only on genes that (1) were differential in the disease or one
of its ancestor DO terms, and (2) either are targets of known
drugs or the gene was found associated with the disease in
COSMIC.

Lung cancer. Part of the network of lung cancer, contain-
ing the two largest connected components in the PPI net-
work, is shown in Figure 6A. The network shows TP53
as a main hub. TP53 and most of its PPI neighbors are
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Figure 6. A network overview of the biomarkers in lung cancer and ALL. Each network shows genes that (i) were found differential specifically in the
disease or in a more general disease that contains it according to the DO database, and (ii) have a drug targeting them, or were found to be associated with
the disease according to the COSMIC database. Black edges are PPIs, and gray edges are Gls. Each node shows four features of a gene: (i) differential
pattern compared to negatives, (ii) differential pattern compared to BGCs, (iii) whether a targeting drug exists and (iv) if the gene was associated to lung
cancer according to COSMIC. Nodes without a purple background are genes that are not associated with any pathway in KEGG, Reactome, NCI, or
Biocarta. (A) Lung cancer. The initial network (top left) contained 89 genes. The two largest connected components in the PPI network are shown. The
GeneMANIA analysis added COL5A2 and TMPI1 to the network. (B) ALL. The original network contained 136 genes and 424 edges. The figure focuses

on the largest PPI connected component.

differential in cancer but are not specifically differential
in lung cancer. Two neighbors of TP53 - TOP2A and
HSPAS, however, are up-regulated but are not associated
to the disease based on mutations. Interestingly, TOP2A
(topoisomerase) is a target of multiple cancer-related in-
hibitory drugs such as Teniposide, and Valrubicin. In an-
other PPI-based connected component of the network, the
hub is DDRI1, a key player in communication of cells with
their microenvironment (43). It interacts with up-regulated
collagen related genes COL5A2, COL11A1 and COL3Al1
(44). DDR1, which is not covered by the major pathway
databases KEGG (45), Reactome (46), NCI (47) and Bio-
carta (47), is specifically up-regulated in lung cancer and
also associated to lung cancer based on mutations. In addi-
tion, this gene is a target of Imatinib, a drug used for treat-
ment of leukemia and gastric cancers (48,49) caused by the
ber-abll translocation and by cKit mutations, respectively.
In summary, the network highlights two main differential
hubs (TP53 and DDR1) and additional connected genes,
some of which could be targeted by known cancer drugs.

ALL. In the ALL network (Figure 6B), the largest PPI-
based connected component has TP53 as a hub, connected
to genes that are specifically up-regulated in ALL such
as ATM and TOP2A. An up-regulated sub-module of
the network is enriched with to T-cell activation genes (p
= 9.2E—7), which were not found to be associated with
leukemia according to COSMIC. However, some of the
genes are targets of well known drugs of leukemia sub-

diseases, such as ADA (Pentostatin, inhibition - lympho-
proliferative malignancies) and LCK (Dasatinib and Pona-
tinib - chronic myeloid leukemia, ALL) (50-53). Interest-
ingly, NR3ClI, a glucocorticoid receptor transcription fac-
tor that promotes inflammatory responses, has high degree
and is also connected to TP53. This gene is a target of 39
drugs, including both agonists and antagonists (32). In sum-
mary, the network reveals two main functional areas in the
PPI network: the module surrounding the TP53 hub, and
the T-cell sub-module. Both are differential in the disease.
In addition, the network captures known related genes and
treatments.

Colorectal cancer. As the initial network was large (see
Supplementary Table S3) we focused only on up-regulated
genes with PN-ROC > 0.8 (Supplementary Figure S6). The
result was 27 genes interconnected by 30 GIs, and only one
PPI. All GIs were from (54), representing gene pairs that
are expected to share similar biological functions (55). The
network is enriched with genes related to detection of me-
chanical stimulus (p = 2.11E—6). JUN, the main hub, is re-
lated to angiogenesis and to positive regulation of endothe-
lial cell development. The network also contains three drug-
gable genes associated with intestinal cancer based on the
mutation data: SLC12A2, GABBR1, and CACNAID. In-
terestingly, the drugs that target these genes are not known
cancer drugs. For example, CACNAID is a target of 13
inhibitory drugs related mainly to hypertension treatment
(e.g. Felodipine, Israpidine) (56). In summary, our results
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suggest an up-regulated gene module in colorectal cancer
and a possible link between colorectal cancer and other fac-
tors related to hypertension and psychological stress.

DISCUSSION

In this study, we present a novel approach for producing
reliable disease-specific biomarkers that are readily inter-
pretable, especially in terms of their clinical potential. To
be able to do this, we first compiled and manually curated
a very large collection of gene expression profiles span-
ning many studies from multiple diseases, called ADEP-
TUS. Each sample was normalized separately based on its
weighted ranks, in order to allow joint analysis of samples
from different technologies and studies, at the expense of
some loss of information. Importantly, it also allows the
use of a biomarker to classify a single new sample. Future
studies could apply other non-parametric approaches that
process the raw expression data and do not preserve the
measured gene ranking, e.g. Barcode (57) or SCAN (58).
ADEPTUS can be readily used to test novel multi-label
classification algorithms, and it can be utilized alongside
other data (expression or other) in future studies.

We utilized the compendium for improved disease clas-
sification. In contrast to previous studies, in our analysis
the simple single-classifier approach outperformed more
sophisticated methods. A possible explanation is that our
analysis used fewer labels compared to other studies (since
we only addressed diseases with at least five datasets), and
therefore had fewer dependencies among them.

A key insight of our study is the risk of misleadingly op-
timistic performance when classifying multi-disease data.
We showed that one must treat the non-disease samples as
two distinct categories: negatives (non-disease samples from
studies of the same disease) and background controls (sam-
ples from studies of other diseases), and evaluate the per-
formance against each subgroup separately. The good clas-
sification results validated the approach and the data qual-
ity and allowed us to focus subsequent analyses on well-
classified diseases. Our method reached substantially higher
classification performance than (10) (e.g. 22% improvement
in recall). However, performance is not directly comparable
because in (10) fewer samples were used, and samples were
limited to just two microarray platforms, the classifier did
not predict the control class, and more diseases were tested.

Having identified 24 well-classified diseases, we set out to
identify disease-specific genes in each of them using the DO
structure, the three-way partition of the samples, and meta-
analysis significance. This analysis reduced the overlap be-
tween gene sets of related diseases. Reassuringly, the discov-
ered gene sets included established disease factors. While we
focused on disease-specific genes, future studies could po-
tentially use our database to search for genes with a similar
expression pattern across different cancer types.

The issue of robustness in disease biomarker discovery
has been troubling the community for quite some time
(59-62). It has two aspects: good predictive power when
biomarkers from one study are tested on a different cohort
from an independent study, and reproducibility of the same
biomarker gene set in independent studies. While the pre-
dictive power has been typically high, reproducibility re-
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mains low. Domany and colleagues estimated that for breast
cancer prognosis prediction, thousands of samples will be
needed in order to achieve 50% overlap between two such
sets (39). Our study sheds additional light on this issue. It
shows that reproducibility of the detected biomarkers im-
proves as the number of disease datasets and samples in the
training set grows. When the number of datasets available
for a disease is at least 10, our analysis produces biomarker
sets that are significantly overlapping on disjoint subsets of
the data. Using the whole compendium, the expected Jac-
card score for overlap is 0.3 (»p < E—250) for the most repre-
sented disease category. In fact, with over 4200 samples for
the organ systems cancer category, robustness is less than
predicted by the model of (39). This can be attributed in part
to factors that were not taken into account in that model,
e.g. batch effects of different studies and technologies. Over-
all, our results imply that in order to further improve ro-
bustness and reproducibility, future studies should aim to
increase the number of datasets and samples, while making
judicious use of data on other diseases to guarantee speci-
ficity.

The final step of our approach involved integration of our
results with information from external databases: somatic
mutations in cancer, drug—gene associations, and protein in-
teractions. For each tested disease, we summarized all this
information and our results in a network. These networks
provide a bird’s eye view of the disease-specific genes, their
relations and properties, and thus point to new therapeutic
potential. Such an overview can serve as a starting point for
considering novel therapeutics, such as drug repositioning
that exploits approved genes for new treatments, or multi-
drug treatments, in which several drugs are used to target
different aspects of the biological network.

While our approach is effective, it has several limitations
that future studies can address. We tested only 48 diseases
since we included in the compendium only diseases that had
at least five datasets with at least 20 samples each, in order
to allow reliable cross validation on whole datasets. In addi-
tion, we analyzed only ~15 000 gene expression profiles, a
modest fraction of the human profiles in GEO, since we re-
quired manual curation of the disease terms for each profile
(automatic curation had unsatisfactory quality). We view
our work as a proof of concept: with some more effort of a
team of curators, all available large databases can be curated
and the same methodology can be applied for their analy-
sis. Second, our multi-platform integration proved benefi-
cial for half of the tested diseases, and most well-classified
diseases were related to cancer. Nevertheless, neurodegener-
ative disorders and cardiovascular disease were well classi-
fied as well. In addition, we showed that narrowing down
the analysis to a single platform can improve the perfor-
mance in other disease terms. The low performance in some
of the diseases could be due to several reasons: (i) low num-
ber of non-cancer datasets, (ii) integration of a large num-
ber of platforms, (iii) limitations of using methods that rank
genes by their expression levels, (iv) inexistence of gene ex-
pression based robust classifier and (v) the tested disease
might be too broadly defined (e.g. ‘disease of anatomical
entity’).
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5. Discussion

In this thesis we described our contributions to integrative analysis of
heterogeneous biological data. We introduced two algorithms for discovery of
meaningful modules. The first, ModMap, detects gene modules and links between them
in a pair of biological networks. The second algorithm, TWIGS, detects flexible modules
that reappear across different subjects for which time series data were measured. In both
cases we compared the algorithms to the state of the art and showed a very significant
improvement. In addition, we applied each of our algorithms to a wide variety of
different biological applications. Next, we described our ADEPTUS study in which we
extracted clinically meaningful and reliable disease biomarkers by analyzing more than
14,500 gene expression profiles from more than 180 studies, and somatic mutation data
from more than 30,000 patients. All algorithms presented in this thesis were implemented
(in R or Java) and made freely available for the community. All analyzed datasets,

including the ADEPTUS database, were made available as well.

5.1 Network data analysis and module discovery

5.1.1 The ModMap algorithm

In network biology the key task is to learn interrelations among different
components of the biological system. Learning such interactions is essential since any
biological molecule (e.g., gene, protein, etc.) is a part of a complex system and does not
act alone. The ModMap algorithm, described in Chapter 2, aims for learning a set of gene
modules, which represent very basic functional units, and the links between them. This is
achieved by simultaneous analysis of two conceptually different networks. The first
network contains "positive"” edges: these are gene pairs that are expected to work together
in the same processes. The second network contains "negative™ edges: gene pairs that are

expected to work in parallel or in compensatory pathways. The output of ModMap is a
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set of gene groups (the modules) and a set of group pairs (links the map). Each module
represents a set of genes that are highly connected by positive edges. Each module link
represents two gene sets that are highly connected by negative edges.

The ModMap algorithm is based on a global objective function that uses both the
within- and between- module scores. A link between two modules is added to the map if
and only if they are significantly interconnected in the negative network. This constraint
can be a major hurdle when trying to analyze large networks, as testing for significant
connectivity between all module pairs could be quite costly in terms of running time. To
overcome this difficulty, our algorithm starts with a given initial solution and improves it
using an iterative process. It works in a way that quickly updates the solution in each
round mainly by merging module pairs. We used two major techniques to allow analysis
of large networks in a reasonable running time. First, we keep track of module pairs that
cannot induce a link in the map due to insignificant connectivity between them. In
subsequent improvements such a module pair (and newly formed modules pairs that
contain its members) is never considered as a possible link in the map. We therefore
avoid the need to recalculate the connectivity significance among most module pairs.
Second, we perform multiple improvement steps in parallel. Our heuristic is guaranteed
to improve the global score of a given solution (as long as new merging options are
found), which also guarantees convergence (see Supplementary Text in (1) for details and
a proof). Using our new algorithm we were able to analyze large networks of more than
5,000 genes. Previous studies analyzed roughly 1,500 genes or less.

We compared ModMap to extant methods on both simulated and real data and
showed that it improves upon the other methods. A major advantage of our method is that
it uses information on gene pairs and is not dependent on the technology used to generate
the network. This allowed us to: (1) use complete interactomes, which contain
information from many studies that used different technologies, and (2) analyze three
very different data types: (i) PPIs and Gls, (ii) PPIs and dynamic Gls, and (iii) differential
coexpression data. We showed that the joint analysis was crucial for detecting patterns

that were not detected when each network was analyzed separately. For example, the
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proteasome complex genes form a large highly connected subgraph in the PPI network.
However, when we jointly analyzed PPIs and negative Gls we found smaller, yet highly
functionally relevant gene modules: ModMap correctly (and perfectly) partitioned the
proteasome complex into its two sub-complexes: the core and accessory parts (see
Figure3 in (1)). While there are many negative Gl edges between these two sub-
complexes, many genes have no outgoing Gl edges that link them to the other sub-
complex. Thus, analyzing the GI network separately could not fully recover these two
complexes. In summary, ModMap recovered the basic functional subunits of the
proteasome complex, which could not be found by analyzing one of the networks
separately.

In differential coexpression (DC) analysis we showed that ModMap can markedly
improve the number of genes covered by a solution while keeping the detected DC level
very high. Recent studies suggested new methods to better quantify the DC level between
a pair of genes (103). ModMap can be applied on the output of these methods (i.e., as the
negative network) for summarizing the results and detecting gene modules. While these
studies looked at the DC of single gene pairs or major gene hubs that showed DC with
many other genes, we think that ModMap can give a more systems level interpretation.

In our lung cancer example, we have demonstrated how DC between gene
modules can highlight possible dysregulation via miRNA activity. While this analysis
was given as an anecdotal example in the ModMap paper, we have demonstrated in a
previous work that DC analysis performs much better than other gene expression
analyses in detecting modules that are linked to miRNA activity (28). In this work, we
focused on algorithmic contributions by showing that ModMap outperformed our
previous algorithms both on simulated and real data.

Our approach has two main limitations that are common to most module finding
and clustering paradigms: the edge independence assumption, and application-specific
manual parameter tuning. In ModMap, we assumed that edges are drawn independently
given the degree of each node. While this assumption is naive, modeling edge

dependency relies on the assumptions made regarding the null space of the graphs, which
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makes any solution application-specific. For example, in a recent work we used an
MCMC approach to mimic the expected null space of brain-related networks (104). The
downside of this approach is that it is very slow even though it only calculates
significance among known modules (i.e., it does not search for patterns in the networks).
Thus, it currently cannot be used within ModMap as an alternative for scoring module
links. As for manual parameter tuning, we used it both to adjust the parameters when we
analyzed relatively small networks (e.g., Figure 4), and to interpret the module maps. For
the former we believe that we give reasonable default values from which the user can
start. However, for the latter, manual tuning is inevitable, as the goal of ModMap is to
give an overview of the analyzed networks in order to help the researcher interpret the
data.

5.1.2 The TWIGS algorithm

In Chapter 3 we described TWIGS, an algorithm for detecting flexible modules in
three-way time series data. We expect that as technology prices decrease, time series
datasets that monitor the state of multiple patients over time will become much more
prominent. Thus, computational tools that can exploit these rich data and find information
that is shared by different subjects will be needed. In this respect, TWIGS can be viewed
as a tool for detecting replicable patterns across patients, which is a basic task that should
be solved when moving from analysis of a single patient to analyzing many patients.

In our experiments we observed that available methods for module discovery
define patterns that are too rigid. For example, triclustering enforces synchronous
response across subjects. While this approach is suitable for data from biological repeats
or from well tailored experiments, it does not fit the paradigm of monitoring response in
patients over time. As another example, methods that seek biclusters of subjects and
genes (or voxels) can suffer from low coverage of the subjects because they require that

all genes of the bicluster will be relevant in each of the subjects.
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To cope with such problems we suggested a novel definition of a module in three-
way datasets. The components of the module are: (1) a set of subjects, (2) a set of genes
that constitute the core of the module, (3) a gene set for each of the subjects; these
include the genes in the core with some high probability, and possibly additional genes,
and (4) a set of relevant time points for each subject. We suggested a hierarchical
Bayesian generative model for explaining a dataset that contains such a module. Our
hierarchical Bayesian model implicitly defines the underlying global scoring function of
a candidate module. We detect modules by starting from an initial solution of a
biclustering algorithm and improving the results using Gibbs sampling. Multiple modules
are detected by rerunning our algorithm on the data after removing the effect of the
modules that were detected in previous runs. The algorithm stops when it cannot find an
additional module. Finally, we used advanced domain-specific downstream analyses to
interpret the results. For example, in the gene expression case we used enrichment
analysis and network visualization to stratify the patients based on their detected highly
enriched pathways.

The advantages of our approach are: (1) we allow asynchronicity of the biological
response across subjects while explicitly modeling the time response, (2) we allow a
subject-specific added signal (e.g., an additional activated pathway that is added to the
module in a specific subject), (3) some of the core module genes could be missing in any
specific subject, and (4) our algorithm for detecting multiple modules can detect a fuzzy
solution: a subject can be in more than one module. We applied TWIGS to many
different simulated datasets, gene expression data, and fMRI data. In all cases we showed
that TWIGS markedly outperforms extant methods.

A detailed analysis of the detected modules indicated that the ability to detect
subject-specific information was crucial both for getting better results, and for identifying
novel biological insights. Specifically, it led to >2-fold improvement in subject coverage
as compared to extant methods, which is a major advantage when analyzing large
datasets. In the gene expression data analysis TWIGS outperformed all methods in terms

of enrichment analysis. The two detected modules were fuzzy and the core gene sets were
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enriched with different immune response pathways. The subject specific information
revealed that some of the patients that did not survive the septic shock manifested an
increasing number of up-regulated pathways over time. Thus, this module represents a
pattern that can be used to detect patients at immediate risk. In the fMRI case TWIGS
recovered the main brain networks implicated in rest. Unlike the gene expression case,
the extent of the subject specific additional information was mild. Nevertheless, the
detected subject-specific information contained interesting patterns. For example, four
subjects were pointed out as much more attentive to the situation of staying in the scanner
than others. This local signal was not detected by the original studies, nor by the extant
methods.

To the best of our knowledge, our definition of a flexible module is the first of its
kind. We therefore expect that multiple improvements could be suggested in the future.
For example, additional information such as PPl data could be used to improve PPI
connectivity of the detected core modules. In addition we used a simple two group model
for modeling the likelihood of the data. Future works could use more complex methods.
The Markovian window model of time point selection could be replaced by others, e.g.,
allowing independent subset of time points to accommodate non-sequential profiles of
perturbations. Finally, we used a Gibbs sampler to obtain modules, and better algorithms
could be suggested. Future studies can tackle the problem in a combinatorial fashion, or
suggest a model that allows simultaneous detection of more than a single module.

5.1.3 Characterization of the algorithms

Both problems mentioned above (i.e., the problems studied in Chapters 2 and 3)
can be considered as generalizations of biclustering. In the module map problem ignoring
the positive network (i.e., by setting all gene pairs as edges with the same positive score)
results in a biclustering problem, whereas ignoring the negative network is similar to
standard clustering of the nodes. Our flexible module discovery problem for three-way
datasets can be reduced to a biclustering problem when there is only a single subject

being studied.
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Both studies above were designed similarly. We started with a thorough
simulation study. We generated both discrete and continuous simulated data in which we
planted modules. We then added different noise levels to create different scenarios. We
tested a wide range of possible noise levels, some of which are beyond those expected to
be in biological data. Using the simulated data we tested the performance of a large set of
both extant and novel algorithms. The top selected algorithms, TWIGS and ModMap,
were much better than the other alternatives. We then applied all algorithms to real data
where TWIGS and ModMap remained the top algorithms in most tests.

These algorithms share some technical similarities, even though they address
different problems. First, both algorithms utilize standard biclustering algorithms to
obtain an initial solution. These initial solutions are far from the desired output, but they
provide a good starting point that is much better than selecting a random point in the
search space. Moreover, in both cases the biclustering algorithms that were eventually
selected are based on an exhaustive search for perfect bicliques in the underlying graph.
Furthermore, several heuristics were added in both cases in order to avoid spending too
much time for obtaining the initial solution. Second, both algorithms perform iterative
improvement steps that aim to maximize a global score. In ModMap this is done
explicitly by selecting only improvement steps that lead to a better score. In TWIGS this
is done implicitly by the Gibbs sampler. That is, we try to achieve a solution with a high
posterior probability under the hierarchical model.

In summary, we presented a general paradigm for developing algorithms that
integrate multiple data sources for finding meaningful modules. Instead of "reinventing
the wheel", we first carefully utilize existing algorithms to obtain an initial solution.
Thereby, we make use of the rich knowledge accumulated by the community over the
recent decades. While extant methods were very beneficial for getting an initial solution,
it was essential to develop an additional algorithm that simultaneously analyzes all data

sources in order to obtain a final output of the desired quality.
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5.2 Integrative analysis of many expression studies

Improving reusability of published biological data is a major effort whose success
could lead to a leap in our ability to understand biological information. Although new
exciting technologies are being introduced almost every year, it takes time for the
community to garner a sufficiently large number of samples using the new technologies.
On the other hand, for well established technologies, e.g., microarrays or RNA-Seq for
MRNA quantification, the number of samples in the public databases is vast (especially
for microarrays). Therefore, we sought a novel methodology for large scale studies that
aim to exploit these data. In Chapter 4 we described how researchers can utilize such data
for detecting reliable gene expression-based biomarkers, and integrate them with other
gene-based information sources. To reach this goal we presented a methodology that
contains four major steps.

1. Collection and standardization. We collect many gene expression profiles from
multiple studies. For each sample public databases provide a vector of probe or gene
expression intensities, and a textual description of the phenotype. To transform all
expression profiles into a common ground we calculated a rank-based score for each gene
(which required transforming probe level data of microarrays into gene level intensity).
In addition, for each sample we manually annotated its phenotype description and
assigned it a set of disease ontology terms. In our study we also tested an automatic
annotation approach. However, although the automatic mapping was far better than
random, it was of unsatisfactory quality for our subsequent analyses.

2. Multi-label learning. We utilized multi-label learning algorithms in order to
validate our database. This step was crucial for selecting well classified diseases for
which a reliable gene expression-based, cross-technology, biomarker can be learned. We
observed that unlike previous studies using complex multi-label algorithms (e.g.,
Bayesian Correction (80)) had a negligible advantage over learning an independent
binary classifier for each disease term. This probably occurs because the other studies
analyzed more disease terms (>100), and thus a more delicate estimation of the

dependencies among the disease terms was required there.
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A key insight of our study is that when evaluating the performance of a specific
disease term, using standard performance scores (e.g., ROC scores) might lead to over-
estimation. The reason is that these scores ignore the complexity of the non-positive cases
(i.e., samples that do not have the disease). This group can be divided into two: negatives,
which are direct controls from the same studies as the cases, and background controls,
which are all others. When evaluating a classifier of a disease, one must make sure that it
can differentiate between positives and negatives and between positives and controls. In
fact, more than 20 of the tested disease terms had poor results when we applied this
simple methodology, including well studied diseases such as diabetes. There can be
several reasons for this low performance. Our rank-based preprocessing probably leads to
some loss of information that impairs the ability to learn classifiers for these diseases. To
illustrate this we showed that when the analysis is limited to a single technology (so there
is no need for our normalization) additional disease terms become well-classified. Still,
roughly a third of the tested disease terms remain poorly classified. Additional reasons
might explain this low performance: inexistence of a good gene expression-based
classifier, and a definition of some disease terms that is too broad (e.g., "disease of
anatomical entity").

3. Finding disease-specific differential genes. Our next goal was to identify
disease-specific differential genes for the selected well-classified diseases. When
analyzing if a gene is differential in a disease, we corrected both for biological and
disease ontology-related artifacts. Correction for biological covariates was done similarly
to the way we tested if a classifier performs well: we tested if the gene is differentially
expressed between the positives and the negatives and between the positives and the
background controls. Note that the negatives are direct controls of the positives as they
probably have similar phenotypic background (e.g., same tissue, age, etc.). In addition,
we looked only for genes that exhibit differential expression in both of cases above.
While other interesting patterns could be present in the data, we discovered relatively
large disease-specific gene sets, which were highly enriched for known relevant

pathways. For example, in cancer the discovered gene set induced two highly connected
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PPI active modules (see Figure 5 in (3)) that contain the main genes related to the
hallmarks of cancer.

Ontology-related artifacts are cases in which a gene is detected as differential in a
disease term and is erroneously suggested as differential in one of its ancestors only
because the original term has many patients. We avoid these cases by removing the
samples of the descendant term and reanalyzing the gene. This simple correction
removed most overlaps between child and parent disease terms.

4. Disease-specific gene-based overview. In our final step we added multiple non-
expression data types in order to improve the interpretability of our discovered gene sets.
For a specific disease we created a network whose nodes were the disease-specific
differential genes and the gene sets of the ancestral disease terms (e.g., for lung cancer we
took the lung cancer genes and the general cancer genes). We used both PPIs and positive
Gls as edges that indicate genes that are expected to work together. For each gene we
indicate (i) whether it is up- or down- regulated, (ii) whether it is associated to the disease
according to the COSMIC database (105), and (iii) whether there are known drugs that
could target it. The joint visualization of all these data manifests the major active
modules of each of the analyzed diseases (lung cancer, colon cancer, and ALL), pointed

out some of the major genes, and even suggested novel candidates for drug repurposing.

In this study, we created an analysis procedure that starts from publicly available
data and results in a biologically and clinically interpretable disease summary. We
analyzed, in total, 13,314 microarray profiles, 1,526 RNA-Seq profiles, and somatic
mutation data from more than 30,000 COSMIC samples. Note that other recent studies
that utilized many expression profiles were able to analyze a much larger set of profiles
because they were either not limited to human data (e.g., [68], >60,000 microarrays), or
they did not require high quality phenotypic annotation (e.g., (106)).

Nevertheless, in this study we analyzed 174 datasets from the Gene Expression
Omnibus (GEO) (10). A subsection of GEO contains datasets that were annotated and
analyzed by their own team (i.e., datasets with a GDS id). When we searched for

annotated datasets that satisfy our criteria for inclusion in the ADEPTUS database (e.g.,
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human samples, >20 samples in the study, etc.) only 320 studies were detected of which
only 254 are of the same platforms covered in our study. Hence, our manually curated
collection captures in a single study some 70% of the relevant data collected by the GEO
curators over more than a decade. We also note that for seven datasets containing over
1,500 samples that we collected, the GEO description was not detailed enough to assign
DO ids, and when we contacted the authors of the publications we got no response. So
the numbers of useful GEO samples are effectively even smaller. Finally, note that the
previous supervised multi-disease studies covered less samples and platforms, although

some of them used automated annotation.

5.3 Future research

The studies in this thesis can be used as a basis for additional research directions. Above,
we already outlined some improvements that could be applied to our models and
algorithms. Below we list additional research directions.

1. Module map extensions

1.1 Module maps with sparse modules. Our current algorithm for module-map discovery
outperforms extant methods, but it cannot handle well sparse modules. Sparse modules
may represent signaling pathways, in which elements may be connected in a serial
fashion and have relatively low degrees. One straightforward option is to use algorithms
that analyze weighted graphs by reducing the penalty for non-edges (or low scored edges)
in the positive network. For example, consider a PPI network and give a weight of 1 to
each edge, and a weight of —a (0<o<1) to each node pair that is not an edge. As a result,
for small a a module can achieve a positive score even if most pairs within it are not
connected. We expect that when applied to PPl and GI networks, such analysis may

better detect Gl links between large pathways.

1.2 Integrated analysis of miRNA expression profiles and DC networks. In our work we

have shown how module maps can detect gene modules that are highly enriched with
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miRNA targets. This was achieved without using any auxiliary information on the
expression profiles of the miRNA themselves. As these data are becoming more
common, a possible extension of ModMap can use the miRNA expression profiles to
guide the search process of the DC modules. We expect that such algorithms may be
more powerful in detecting the complete landscape of miRNA-mediated dysregulation

processes.
2. Large scale multi-label analysis of additional molecular profiles.

Our methodology for analyzing many datasets together could be easily extended to non-
expression molecular profiles. Two possible data sources are methylation profiles (7) and
mutation profiles (8). Creating a database for our multi-label analysis flow requires three
components for each sample: (1) a vector of scores for each measured object (i.e., gene,
exon, promoter, etc.), (2) a set of DO ids that explain its phenotype, and (3) the original
study id. Fortunately, for cancer somatic mutation data public databases provide many
well annotated samples. For example, COSMIC (105) provides binary associations
between genes and samples (the gene scores), a relatively well defined vocabulary that
explains the patient cancer type in terms of site and histology, and additional information
from the original studies. Our preliminary results show that mapping the COSMIC
phenotypic annotation is relatively simple (in fact, much simpler than for GEO), and that

multi-label analysis is successful for roughly 60% of the tested disease terms.
3. Improving ADEPTUS and adding a new user interface.

3.1 An extended database. Our ADEPTUS database could be extended to contain many
more gene expression profiles. First, the TCGA (12) provides >2,500 gene expression
profiles that were not used in our study. In addition, any microarray dataset from the
popular Affymetrix and Illumina platforms could be easily added as long as the DO ids of
the samples are known. With a sufficient number of additional datasets a larger set of
diseases could be studied. If the number of diseases increases markedly (e.g., to >100) it

might be worthwhile to rerun the comparison of the multi-label classification algorithms.

70



Such analysis could reveal whether advanced multi-label algorithms can improve the
classification performance.

3.2 Better user interface. In addition, our current website is not interactive and a user
cannot instantly analyze a set of genes of interest. Therefore, a we think that
implementing a web-server that allows users to analyze either a disease or a gene set to
automatically create gene-based overviews (e.g., Figure 6 in Chapter 4) will be a very
useful tool for the community. Using such maps for visualization is not limited to our
case only. Similar gene-based overviews can also be created to represent the molecular
alterations in a single patient.

3.3 Drug repositioning. In our work, we have shown how additional data can be
integrated with our results to suggest new possibilities for drug repositioning. This field
has received much attention in recent years (107). Standard methods use drug and disease
features to predict new repositioning options (see (108) for example). An interesting
venue for research is to integrate such machine learning approaches with our analysis in
order to seek new hypotheses that cannot be detected by looking only on drug-drug,
disease-disease, or drug-disease interactions. A major hurdle to such venture is the
shortage of public data on drug repositioning outcomes, which is needed to validate

algorithms.
4. General methods for advanced meta-analysis.

An interesting computational and statistical problem is dealing with a matrix of p-values.
For example, in Chapter 4, we came across such a matrix: each row denoted a gene and
each column denoted a dataset. The p-value in a cell i,j indicated whether the gene i was
differential in study j. Of course, all p-values were calculated in order to test the same
biological question (e.g., test if a gene is differential in neurodegenerative diseases). In
our study we used standard meta-analysis that merges all p-values of a gene. However,
the underlying null hypothesis of such analyses is that the gene has no effect in each of
the studies, and the calculated statistic is based on averaging the log of the p-values.

Thus, such methods are very sensitive to outliers, e.g., genes that were assigned
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extremely low p-values in only a single study. In addition, these methods do not model

the contribution of single datasets (e.g., all datasets get the same weight when the p-

values are merged). We think that modeling the gene effect and the dataset effect

explicitly can provide better methods for ranking genes by their relevance to the tested

hypothesis. Such methods could be used to obtain robust disease biomarkers.
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Appendix

Supplementary Material of Chapter 2 (ModMap)

Here we give the supplementary text and figures. For the supplementary tables please go to the
online version of the paper, at http://nar.oxfordjournals.org/content/42/7/4208.

Supplementary Text

Initiators

We tested five different initiators. Three are based on previous methods and two are novel. The
three extant initiators contained the DICER algorithm (1) and two clustering algorithms. We
developed two additional initiators. The first is a modification of the DICER initiator, and is
called DICER. The second utilizes an exhaustive solver for the maximal biclique problem (2,3)
and is called MBC-DICER.

The DICER initiator

The DICER initiator (1) starts from a positive edge (u,v) in G, and defines two node sets (U,V),
where U is the set of (high weight) neighbors of u in H, and V is the set of neighbors of v in H.
The goal is to remove nodes from U and V such that the resulting sets will constitute heavy sub-
graphs of H and the weight of edges between U and V will be high in G. A simple example is
shown in Supplementary Figure 1. Nodes that appear both in U and V are removed. In the next
step, nodes in U and V are removed if this improves the score of the module map link in G or the
module scores in H.

DICER works greedily, by iteratively removing a “bad” node, that is, a node that either has a
negative sum of edge weights in H with its own group, or has a negative sum of weights in G
with the other group. The total score of a node is the sum of the two scores. Nodes for which both
G and H scores are negative are removed first, followed by other bad nodes, sorted by their total
score. The process ends when there are no bad nodes. The resulting node sets U’ and V’ are
accepted as modules only if each of them contains at least k nodes. In that case the nodes of U’
and V’ are removed from the graphs, and the process is repeated until no new module pair is
found. In the original DICER algorithm we used k=2. Here we used k=5, which provided better
results on real and simulated data (see Results).

The MBC-DICER initiator

We now describe an alternative method for constructing initial node sets U and V. Define an un-
weighted graph G’= (V,E’) with the same node set as G, and edge (u,v) € E’ if and only if
W (u,v)>0. Two disjoint node sets (U,V) are called fully connected or a biclique in G’ if every u
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€ U is connected to every v € V. A biclique (U,V) is maximal if it is not a proper subset of
another biclique. We search for maximal bicliques in G’ using an exhaustive solver (3),
restricting the search to maximal bicliques (U,V) such that |U|>k and |V|=k. Each such pair
(U,V) is then subjected to the node removal procedure.

Since the number of maximal bicliques can be exponential we use only the first 50,000
discovered bicliques as candidates for the node removal stage of the DICER algorithm. Let S be
a heap that contains the current set of candidate bicliques. We select the biclique (U,V) in S of
maximal size |U|+|V| as the next candidate. The node removal stage produces from (U,V) a
module pair (U’,V’). If the latter is accepted, we remove the nodes of U’ and V’ from G’ and
from all bicliques in S, and remove bicliques whose new size is less than 2k. When S is empty we
try to run the solver again. If the solver fails to find additional bicliques then the process is
terminated.

Clustering algorithms

We included in our tests two clustering algorithms. Both look for clusters in H and disregard
information from G. The first is complete-linkage hierarchical clustering (4). The second, which
we call NodeAddition, starts with all nodes as modules, and repeatedly adds a singleton (a
module with a single node) to a module if the sum of edge weights between them is the largest
among all singleton-module pairs (5). This process is repeated until no singletons remain or until
the best sum is negative.

Proof of the guaranteed improvement during the iterations of the global improver

Notations: The input to the problem is a pair of networks H=(V,E,W},) and G=(V,F,W;) defined
on the same set of vertices. These networks can be weighted or un-weighted. The goal is to find a
module-map that summarizes both networks. A module-map is a graph F=(M,L) where M is a
collection of disjoint node sets, called modules, M={Mj,..., My}, i€V, MiN M; =0, and L is a
set of module pairs {(U1, V1), ..., (Up,V,)}, where each U; and V; are in M. These pairs are called
the map links an express the set of significant links among modules according to some hypothesis
testing function. In addition, each module must be linked to at least one other module.

The global score of the solution is the total sum Wy of edge weights within each M; plus the total
sum of W edge weights between each linked node set:

SMLLY= D) WaM)+ D Wo(M M)
i kl| (Mk,Ml)EL

Where Wy(M)) is the total sum of weights within M; in H, and Wg(My, M) is the total sum of
weights between My and M, in G. The improvement stage merges a pair of node sets if the merge
improves the global score. This process is done greedily: iteratively, the merge that yields the best
improvement is performed until no possible merge can improve the global score.
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We perform multiple merge steps simultaneously in a single iteration in a way that guarantees
that the global score improves. Let L; be the group of sets linked to M;. Denote M;; as the set
resulting from merging M; and M;. Let L;; be the group of sets linked to M;; after performing the
merge. Consider a case where two possible merges can improve the global score of a given
solution (M,L): M; with M;, and M, with M. If there is no overlap between the union of the sets
Mi,M;, Li, L, Lj and the union of the sets M,,My, L,, Ly, and La, then we say that {M;,M;} and
{M,,M,} are gain-independent.

Theorem: When two possible merge steps {M;M;} and {M.,M,} are gain-independent,
performing both merge operations will improve the global score. Moreover, if the gain of the first
merge is g and the gain of the second merge is ga, then the gain of performing both merges is at
least gi; + Qab-

Proof: Let M={M,..., M} be the partition of the node set before the merge, and let L={
(U, V), ..., (Up,Vp)} be the links, where each U; and V; are in M. The global score after merging
M; and M; can be written as:

Snew = S(M, L) + Wy(M;, M;) — z We(M;, M) — z We (M;, My,)

My€L; MkELj

+ z We (M;j, M)

My€EL;;

Thus, the gain can be written as:

gij :WH(Mier)_ z Wg(Mi,Mk) - z Wg(M],Mk) + Z WG(Mij’Mk) >0

MyeL; MK€ELj Mk€L;;

Note that under our assumptions of gain-independence this term does not involve any of the sets
Ma,My, L, Lp, and Lg,. Therefore after merging M, and My, we get:

Snew = S(MIL) +gU + gab + SWG(ML'j'Mab) 2 S(M’L) -|-gU +gab

Where §=1 if Mj; is linked to My, and 6=0 otherwise. Thus, performing the additional merge
between M, and M, would add g, to the new global score. The total gain is at least gij+ga, Since
we perform the merge steps without examining the possible link between Mj; and M. m

Corollary: A sequence of 1 merge steps can be performed simultaneously if the k’th merge in the
sequence is gain-independent of merges 1 through k-1, for k=1,...,1. . m

As a result of the theorem, instead of performing a single merge step and estimating the links on
the new set we perform several merges, and evaluate the links between the new sets after
merging. When we consider the merges in an iteration of the global improver, if many have a
positive gain, we select the top B gains (we used B=1000). We then perform the set of merge
steps ordered by their gain, skipping a merge if it is not gain-independent with all previous
merges. We repeat this process until there is no merge that improves the global score.
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While the asymptotic worst-case running time of this procedure is similar to performing a single
merge at a time, we discovered that in practice many merge steps are performed per iteration. For
example, in the lung cancer differential correlation analysis the maximal number of merges per
iteration was 20, and the average was 4.

Comparison of scores for module links in the global improver

Our global improver used a statistical score to determine if two modules are linked. When the
graphs are weighted, either the Wilcoxon rank-sum (WRS) test or the simpler hyper-geometric
(HG) test can be used. We compared of the results of the global improver with each of the two
scores using simulations. We generated weighted and unweighted graphs with 2000 nodes and 20
modules (see the main text for details). In each test, we ran the global improvers with both scores
on the initial solution of DICERS. For graphs without any noise (i.e., the graph induces a perfect
module map) the running times of the HG and WRS variants were 3 and 240 seconds
respectively. Both variants perfectly discovered the planted module-map. On unweighted graphs,
when the noise levels were increased to p=0.1, both algorithms reached the same performance of
0.97 but the HG running time was 3.8 seconds and the running time of the WRS variant was 394
seconds. We also applied the same test on weighted graphs with a standard deviation noise level
of 0.8. The performance of the HG variant was 1 in 3.85 seconds. The performance of the WRS
variant was 0.975 in 603 seconds. Our results show that the HG variant is much faster than the
WRS variant, but achieves a similar performance.

Comparison to other weighted approaches

In our analysis in the main text we used un-weighted PPl and Gl networks and included
algorithms that are akin to previous methods. Other extant methods make use of the probabilistic
scores of each Gl edge, and incorporate both positive and negative Gls (6,7). Leiserson et al. (7,8)
developed a method called Genecentric, which looks for locally maximum cuts in the GI graph.
On the data of Collins et al. (9), this method was reported to outperform other methods, including
algorithms that integrate Gl and PPI information (10,11). We compared the performance of our
methods to Genecentric and the graph compression method of Kelley and Kingsford (6), on the
Collins data. Note that the other methods use all Gls while our algorithm uses only the negative
Gls of the Collins data. Genecentric solution contained 116 modules of average size 10.75. These
modules were paired, so that the map contains 58 links. Kelley and Kingsford reported 117
modules of average size 3, and the map contained 403 links. The results are summarized in the
table below. Kelley and Kingsford reported many small modules that are not significantly
enriched after FDR correction. Thus, the percent of enriched modules and links is not high. The
solution of Genecentric covered 1248 genes, whereas the ModMap solution covered only 238 (in
32 modules). The total number of enriched GO terms in our solution was 53, compared to 39 in
Genecentric’s solution. Finally, 79% of the links in our map were enriched, compared to only
43% in Genecentric. This comparison indicates that ModMap produces comparable or better
maps than state of the art methods for analysis of Gl data.
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Comparison of ModMap to extant methods on the yeast PP1 and GI data of Collins et al.

ModMap
Genecentric 116 1248 25 39 63 58 43
Kelley and 117 355 17 32 17 403 6
Kingsford

Differential correlation cross-validation analysis

Our tests on human data utilized expression profiles of lung cancer and Alzheimer’s disease and
matching controls in each dataset. The first tested dataset, GSE13255 (12), contained 256
peripheral blood mononuclear cells gene expression profiles of patients with non-small cell lung
cancer (NSCLC, n=150) and controls (n=106). The second tested dataset, GSE15222 (13),
contained 363 post mortem cortex gene expression profiles of Alzheimer’s disease (AD) patients
(n=176) and controls (n=187). Since the networks used in this analysis were completely different
from these used in the yeast studies, we first re-evaluated the different algorithms on them, based
on the ability to reveal major changes in co-expression between sick and healthy individuals.

We used the method of Amar et al. (1) to compute two log-likelihood ratio scores for each gene
pair: the consistent correlation (CC) score is positive if the gene pair is consistently correlated
across phenotypes, and the differential correlation (DC) score is positive if the correlation
difference between the cases and controls is higher than expected by chance. These scores were
then used as edge weights in networks H and G, respectively, on which a module map was
learned.

Given a module map constructed on a set of profiles (the training set) and a disjoint set of
samples (the test set), the quality of the map prediction was evaluated on the test set as follows.
For each pair of modules we calculated the absolute average DC between the modules on the test
set data, and compared the DC values for links and non-links (i.e., two modules in the map that
are not linked) using the Wilcoxon rank-sum test, where the null hypothesis is that there is no
difference in DC between links and non-links. This measure is parameter-free and reflects all DC
changes. As an additional test, in order to focus on major DC changes, we ignored all links with
DC < 0.4, removed unlinked modules and calculated the proportion and number of remaining
modules, links and the gene coverage. These parameters reflect the overall predictive quality of
each reported map, and its ability to find strong DC signals. We used 2-fold cross-validation, that
is, half of the data served as the training set, and the other half served as the test set. The process
was repeated with the roles of test and training set switched and results were averaged.
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An important parameter in calculating the DC LLR scores is the prior probability of real DC
changes. In (1) a parameter K controlled this prior probability. Given a value of K, the prior
probability was set such that only DC scores that are distant from the mean of the random
distribution by at least K standard deviations (of the random distribution) will get a positive LLR
score. Informally, this process guarantees that if the difference between the real and random
distributions is minor, all LLR scores will be negative. In (1) a stringent approach was taken and
the K parameter was set to 2. In this study we take a different, more direct approach to set the
prior probability, using the following simple procedure: given a fixed threshold n>0 we set the
prior to the maximal probability for which the LLR of n is negative. The intuition is that only DC
of at least 1 receives a positive LLR score. Thus, unlike the K parameter, our approach is easily
interpretable: we are guaranteed that absolute correlation changes lower than n will be assigned a
non-positive LLR score. We used n= 0.4, which was equivalent to K =2.3 on the tested datasets.
Thus, our criterion was even slightly more conservative than (1).

An important parameter of the global improver is a, which is used to determine if the link
between two modules is significant. We tested several values for a: 1E-4, 1E-6, and 1E-8. For
each combination of an initiator and a value of a, we evaluated the map using the Wilcoxon rank
sum test as explained above. The performance of the different initiators as a function of a is
shown in the table below. A clear advantage for a=1E-6 is observed. For this value, the p-values
of all initiators except DICER remain significant after Bonferonni correction over all tests. In
addition, a clear advantage for MBC-DICER (i.e., ModMap) is observed, achieving a p-value of
1.54E-10 in the lung cancer data, and 9.06E-6 in the AD data.

DICER 4 0.029494 9.02E-07
DICER5 4 0.003697 5.31E-07
hierarchical 4 0.23858 1.48E-07
ModMap 4 0.12515 4.69E-04
NodeAddition 4 0.471779 4.31E-04
DICER 6 1.38E-07 0.026652
DICER5 6 7.23E-07 4.21E-04
hierarchical 6 1.80E-10 1.57E-04
ModMap 6 1.54E-10 9.06E-06
NodeAddition 6 4.49E-05 0.00115
DICER 8 0.067356 0.019777
DICER5S 8 0.021281 0.463172
hierarchical 8 0.373946 0.014721
ModMap 8 0.343799 0.110778
NodeAddition 8 0.394908 0.334608

The full cross-validation results for a=1E-6 are shown in Supplementary Table 11 (NSCLC
data) and Supplementary Table 12 (AD data). The maps produced by the local improver
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received a very low p-value in the Wilcoxon rank-sum test between DC of map links and non-
links, but suffered from low coverage. For example, for the MBC-DICER initiator, the local
improver achieved a p-value of 4.43E-4 in the NSCLC data, and 3.31E-11 in the AD data.
However, the map covered 197 genes in the NSCLC data, and 2197 genes in the AD data. In
contrast, when applying ModMap (i.e., MBC-DICER with the global improver), the coverage
was 1289 and 4955, respectively, with comparable p-values (1.54E-10, and 9.06E-6). Taken
together, ModMap produces large maps that are robust when tested on independent datasets.
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Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1 llustration of the DICER algorithm local search; A) An edge (u,v) in
G is used as a starting point to form two sets U and V, which are the neighbors of u and v in H,
respectively. B) Nodes are removed if they are not densely connected to their set in H or not
densely connected to the other set in G. The final result after removing these nodes is shown — a
pair of modules in H that are strongly linked in G.

Supplementary Figure 2

Supplementary Figure 2 Possible pitfalls of local improver that can be solved by the global
improver. Edges of H are colored black; edges of G are colored blue. The number of a node is
the module it belongs to. The initial solution that is provided to the improver is encircled by a
dashed line. A) Given an initial solution that contains modules 0 and 2, a new module cannot be
formed by the local improver. Hence, module 1 cannot be detected. B) Given an initial solution
that partitions module O and links each part to a different module, the local improver cannot
merge the two parts of module 0 since module 1 and module 2 are not linked.
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Supplementary Figure 3
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Supplementary Figure 3 Performance of module map algorithms on simulated data with 1000
nodes. A) Unweighted graphs. B) Weighted graphs. The 1000-node graphs contain an embedded
module-map of six modules in a tree structure. In addition, random cliques and bicliques are
embedded in the graphs. Module, clique, and biclique size is chosen uniformly at random
between 10 and 20. In the un-weighted model each edge is replaced by a non-edge with
probability p, and vice versa. In the weighted model edge weights are sampled from the normal
distribution N(1,5), and non-edge weights are sampled from the normal distribution N(-1, ). A-
B) The top four performing algorithms are presented. The y-axis shows the Jaccard coefficient
between the output of the algorithms and the known modules.
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Supplementary Figure 4
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Supplementary Figure 4 Comparison of DICERy variants for different values of k on simulated
unweighted data with 1000 nodes and 20 modules. A) Performance. B) Running times. The 1000-node
graphs contain an embedded module-map of 20 modules in a tree structure. In addition, random cliques
and bicliques are embedded in the graphs. Module, clique, and biclique size is chosen uniformly at
random between 10 and 20. Each edge is replaced by a non-edge with probability p, and vice versa. The
results show that using k=5 gives better performance than k<5, and that k>5 does not improve
performance. Running times are very similar for k>3. Based on these results, since we expect biological
data to contain both large and small modules, we concluded that using k=5 gives a good balance of quality
and considering small modules, and used it in subsequent analyses.
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Supplementary Material of Chapter 2 (TWIGS)

Supplementary Text

This text is organized as follows. Section 1 provides additional analyses of the sepsis gene
expression data. Section 2 explains how ISA and BIMAX were used, especially how their
parameters were tuned. Section 3 gives a thorough comparison of TWIGS to five methods:
three that were developed for gene expression analysis, and two that were developed for
functional connectivity analysis of fMRI data. For each method we tested a wide range of its
parameters.

1. Additional results of TWIGS on the sepsis data
1.1 Analysis of the sepsis data without binarization

In this section we analyze the sepsis data using the normal distribution assumption for our
model. Under the assumption that the vast majority of the cells (e.g., >90%) in the input
matrix represent the background distribution, the overall empirical distribution of the data is
expected to be similar to a normal distribution, with possibly heavier tails (Efron, 2009). By
analyzing the log fold change values of the sepsis data we observed that our normal
distribution assumption did not approximate the empirical distribution well. Figure ST1
shows the histogram of the log fold change values. The solid curve shows the normal
distribution density using the same mean and standard deviation of the empirical distribution.
The right plot shows the QQ-norm plot of the data. As can be seen by both plots, the
empirical distribution of the data did not fit the normality assumption.

Histogram of log fold change values QQ-norm plot of log fold change values

Density

Sample Quantiles

r T 1 T
£ 4 2 0 2 4 6 4 2 0 2 4

z Theoretical Quantiles

Figure ST1. Distribution of the log fold change values of the sepsis gene expression data.
Left: histogram of the values. The solid curve represents a normal distribution with the same
mean and standard deviation as the empirical distribution. Right: QQ-norm plot shows that
the distribution is not normal as the curve does not fit a straight line.

In contrast, the fMRI data did fit the normal distribution assumption, as can be seen in Figure
ST2.
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Figure ST2. Distribution of the values of the fMRI data. Left: histogram of the values. The
solid curve represents a normal distribution with the same mean and standard deviation as the
empirical distribution. Right: QQ-norm plot shows that the distribution is very similar to a
normal distribution.

When we tested TWIGS on the sepsis data using the normal variant we observed that the
algorithm wrongly inferred extremely high standard deviations (a value > 2 as compared to
the empirical value of 0.5). This was detrimental for the algorithm as it now allowed many
negative values to be included within biclusters. We therefore conclude that although very
simplistic, our binarization based analysis was better for these data. Future studies can use
empirical Bayes inference methods as a pre-processing step in order to evaluate the mixture
distribution better (Efron, 2009; Dialsingh, 2012).

1.2 Additional results using different binarization thresholds

We also tested different binarization thresholds in the preprocessing step for our binary
model. In the main text we report results for a threshold of 1 for the log-fold change (i.e., a
fold change threshold of 2). Here we tested changing this threshold to 0.5 or 1.5.

Using a threshold of 0.5 two core modules were identified. These two core modules cover the
same subjects as the two core modules detected using a threshold of 1. In addition, the core
modules highly overlapped in their gene sets with their counterparts of the threshold 1
solution. For example, the first core module had 19 genes in common with the first core
module (p<1E-33). However, a noticeable difference is that the gene sets of the subject-
specific modules are much larger: the average size increased from 195 to 436. Also, all
modules, including the subject-specific modules were enriched with known biological
functions. The detected functions were similar to those of the threshold 1 solution. For
example, core module 1 was highly enriched with response to bacteria (q<0.001). However, it
had additional enrichments, such as modification of morphology (q<0.001). Using a threshold
of 1.5 was too rigid. Only a single core module was identified and it was similar to the first
core module of the previous solutions in terms of subjects and biological function.

In summary, this analysis shows that our results remained similar in terms of covered subjects
and enriched biological functions when modifying the binarization threshold. Using a
threshold of 0.5 more biological terms were detected, but the price was much larger gene sets.
Using a threshold of 1.5 was too rigid and a complete core module was lost. We therefore
conclude that a threshold of 1 represents a reasonable compromise.

2. ISA and Bimax
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In this study we used solutions of Bimax (Prelic et al., 2006) and ISA (Bergmann et al., 2003)
to produce starting points for the Gibbs sampling process. On binarized data Bimax searches
for complete submatrices that contain only non-zero values. The main parameters are the
minimal number of rows minr, the minimal number of columns minc, and the maximal
number of detected biclusters number. In our tests, we used number =1000. Setting the other
parameters was done as follows. We tested a wide range for both parameters in order to
promote detection of biclusters with many columns. We set minr (i.e., minimal number of
genes) to 10 and tested a range of minc values, starting from a relatively high value (50 in
fMRI data and 10 in gene expression data) to a lower value (10 for both datasets), in
decreasing order until at least one bicluster is found. If no bicluster was found we also tested
setting both minr and minc to 8, 7, or 6, until we found some biclusters.

The ISA algorithm has two main parameters 1t and tc that represent thresholds for the
normalized expression values. We used ISA's common strategy of running the algorithm with
different values of these parameters (Bergmann et al., 2003). For both parameters we tested
values of 0.5, 1, and 1.5. Since ISA tended to produce many small biclusters, we removed
biclusters with less than 5 rows or 5 columns from the final output. For example, this filter
removed more than 100 biclusters on the sepsis data.

3. Comparison to other approaches
3.1. Overview

Extant algorithms for three-way data analysis were mainly developed for gene expression
data. However, existing models are too rigid for simultaneous analysis of responses in many
subjects. For example, Triclustering (Zhao and Zaki, 2005) assumes that a module is a sub-
cube created by one subset in each of the three dimensions. Our results show that both in the
gene expression data (Figure 4) and in the fMRI data (Figure 5) the discovered modules are
not triculsters since the time points and gene/neural position set of each private module differ
under the same core module.

Another type of three-way analysis seeks biclusters <G',S'> where G' is a set of genes, and S'
is a set of subjects, such that all genes in G' manifest a similar time response across all
subjects in S'. Thus, such algorithms do not detect the relevant time points for each subject
and they also require that all genes in G' would be relevant in each subject in S'. For the sepsis
gene expression data, we compared TWIGS to two such algorithms: the three-way plaid
model of (Mankad and Michailidis, 2014), and EDISA (Supper et al., 2007). Of these two, the
plaid model searches for a signal that is much more similar to the goal of TWIGS, which was
to highlight up- or down- regulated pathways.

In fMRI data analysis we compared TWIGS to two methods. The first (Allen et al., 2014)
used a sliding window approach to detect different global correlation patterns in the brain.
The output of this method is a clustering solution of all sliding windows from all subjects. We
implemented four variants of this method in order to test different ways to learn the
covariance matrices. The second approach (Rubinov and Sporns, 2011, 2010) averages the
parcel correlation matrices of all subjects (where each correlation score is calculated using all
time points), and uses a clustering solution in order to find clusters of brain regions.

In all comparisons we tested a wide range of parameters for each tested method. Below we
repost on the tests in detail. We observed that while most methods produced a meaningful
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output that is highly enriched with known biological functions of the gene/parcel sets, they
lacked the ability to find modules that cover many subjects (see sections 3.2-3.4 below). In
addition, in most cases our modules had a comparable and even better enrichment results (see
section 3.5). Finally, our subject-specific modules provide an additional dimension of the
signal that most methods fail to identify (see sections 3.2-3.4).

3.2. Comparison to three-way data analysis for finding extreme value submatrices

The algorithm of (Mankad and Michailidis, 2014) extends the classic plaid model of
(Lazzeroni and Owen, 2002) to find biclusters < G', S' >, such that all genes in G' manifest an
up- or down-regulated time response across all subjects in S'. A main threshold of the
algorithm is the number of noise layers the algorithm learns internally. We applied the
method to the sepsis gene expression data. We tested setting 2-5 noise layers (the default
value of the tool is 3), and the number of detected biclusters was 4, 3, 4, and 1, respectively.
Figure ST3 shows the mean and max number of subjects covered by the biclusters in each
solution.

B Mean number of patients
=7 1 Max number of patients

o 2 3 4 5
Figure ST3. Comparison of the three-way plaid model to TWIGS in terms of the number of
patients covered by each solution on the sepsis gene expression data. For the plaid model

different numbers of noise layers were tested: 2 (4 biclusters were detected), 3 (3), 4 (4), and
5 (1). TWIGS detected two core modules.

Number of patients

TWIGS

The figure shows that the plaid model usually covers only a small number of patients in each
bicluster. TWIGS, however, can cover many patients due to the flexibility of its statistical
model, which identifies subject-specific modules with a different set of genes and time points
for each subject.

For each module (a bicluster in the plaid model solution or a module, a core module or a
subject-specific module in our solution) we also looked at the induced submatrix in the data
and calculated (for each number of noise layers in the plaid model and for the TWIGS
solution) the percent of cells with fold-change > 2, and the average number of genes in a
bicluster. Figure ST4 shows that the solution of TWIGS reported far fewer genes (average
183), and a much higher percentage of cells with fold change >2.
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Figure ST4. Additional comparison of the three way plaid model to TWIGS on the sepsis
data. Top: the fraction of module cells with high values (fold change > 2). Bottom: the
average number of genes in a module. Numbers on the x axis indicate the number of layers
used in the plaid model.

In summary, the plaid model identifies biclusters such that each covers a few subjects and has
a large gene set that represent a moderate signal of differential expression. In contrast,
TWIGS finds core modules with many subjects, the average number of genes in a module is
much lower and the differential expression signal is much higher.

3.3. Comparison to correlation-based three-way data analysis methods
3.3.1 ESIDA

The EDISA algorithm (Supper et al., 2007) extended the classic ISA algorithm to deal with
three-way data. EDISA analyzes the correlations between genes within each subject and
searches for biclusters <G',S'> (G' is a set of genes, and S' is a set of subjects) such that all
genes in G' are highly correlated in the subjects in S'. It has three main parameters. First, the
type of bicluster sought: (1) biclusters that represent independent response in each subject;
that is, the genes in G' manifest high correlation within each subject but there is no constraint
on correlation between the signals of different subjects; (2) biclusters with coherent response
across subjects (i.e., a similar signal between subjects), and (3) responses that appear
specifically in a single subject, called single response modules. In each run of the algorithm
we tried all three options. The second and third parameters are tg and 1c that represent
thresholds for the correlation between genes within a bicluster (tg, default 0.2), and between
subjects (tc, default 0.1). Low values of © will increase the required correlation of the
biclusters. Hence, increasing these thresholds results in a higher number of genes and higher
overlap between biclusters (Supper et al., 2007).

Using the default parameters no module was detected on the binarized sepsis data. Even after
increasing the T parameters up to 0.3 or 0.5 no module was detected. Therefore, the algorithm
could not detect modules that represent up-regulation of modules in response to sepsis.

Running the algorithm on the non-binary sepsis data, with default parameters, the algorithm
detected seven independent response modules and a single coherent response module. The
average number of genes was 108 (0=62), and the average number of subjects was 4.28
(6=2.75). Thus, most modules in the EDISA solution cover a much lower number of subjects
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compared to TWIGS. Only two out of eight EDISA modules were enriched with GO terms,
compared to 19 out of 20 for TWIGS. Forcing higher correlation in the EDISA solution (by
decreasing the tg parameters up to 0.05) resulted in a single bicluster of 24 genes that covers
five subjects. No significant GO enrichment was detected.

Lowering the correlation of the modules by increasing the t parameters up to 0.3 resulted in
28 independent response modules, two coherent response modules, and six independent
response modules. The average number of genes in a bicluster jumped to >400 (for example,
an average of 434 for the independent response modules). Surprisingly, the number of
subjects decreased to a mean of 3.833 (c=2) in the independence response modules, and 3 in
the coherent response modules (both modules had three subjects). This is a weakness similar
to that of the plaid model. GO terms enrichment was detected in 27 out of the 36 modules.
That is, 75% of the biclusters were enriched with at least a single GO term, as compared to
95% in the TWIGS solution. An advantage of EDISA is that it searches for general
correlation patterns, which results in many genes per module and a larger number of enriched
GO terms in modules (70, compared to 55 for TWIGS). However, not all of these can be
attributed to up-regulation as in the TWIGS solution.

3.3.2 Sliding window analysis
3.3.2.1 The output of TWIGS in the context of sliding windows

A common approach in fMRI data analysis is to calculate correlation between voxels or
parcels in time windows in order to find changes in correlation across time. The goal of such
analyses is to find dynamic changes in brain connectivity (Allen et al., 2012; Damaraju et al.,
2014).

We used a sliding window approach to analyze the modules of TWIGS. For each subject-
specific module we analyzed its submatrix. For each time window of size 15 we calculated
the correlation between the module parcels in that window. For a defined subset of windows,
we computed the median correlation score. Three subsets were considered: (1) windows
containing at least one of the module's time points, (2) windows containing none of the
module time points, and (3) all windows. We call the groups W, WO, and ALL, respectively.
We expected that W scores would be higher than WO scores as these scores represent
correlations around time points that are highly activated. Figure ST5 compares the W, WO,
and ALL distributions from all modules.
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Figure ST5. Distributions of correlation values of time windows of size 15, for different
subsets of windows. Top: correlation between the module parcels in windows containing at
least one of the module's time points. Center: correlation between the module parcels in
windows containing none of the module's time points. Bottom: distribution of the correlation
between all pairs of windows across all parcels.

Figure ST5 suggests two main conclusions that are rather obvious due to the characteristics of
the signal that TWIGS detects. First, the correlation between parcels from TWIGS modules is
much higher than expected by chance (comparing the W and WO scores to the ALL
distribution). Second, as expected, the W scores are much higher than the WO scores
(Wilcoxon rank-sum test p = 1.3E-33).

3.3.2.2 Comparison to sliding window-based analysis

(Allen et al., 2014; Damaraju et al., 2014) clustered the covariance matrices of tapered sliding
windows from all subjects in order to detect patterns that represent similar temporal
functional connectivity across subjects. To reduce noise levels, they estimated the covariance
matrices using the graphical lasso approach (Friedman et al., 2008), which adds a lasso
penalty term to the estimation of the inverse covariance matrix. The expected effect is that
many low covariance values, which are expected to occur due to noise, would be reduced to
zero. The final step of the algorithm is to use k-means to cluster the covariance matrices of all
the different windows from all subjects. The value of k is selected by plotting the ratio of the
within-cluster sum of squares to the between-cluster sum of squares. Using the plot, Kk is
selected manually using the "elbow" rule: select the k from which little gain is achieved.

The graphical lasso approach depends on a parameter p that determines the amount of
regularization of the covariance matrix. Higher p values will produce more zero values.
Estimating p is a challenge that requires experimental analysis. When testing the graphical
lasso algorithm on our data we encountered two main difficulties: (1) the algorithm had
convergence difficulties in low p values (e.g., p=0.001), which led to unreasonable running
times (e.g., > 10 minutes for estimating a single covariance matrix), (2) p values similar to
that used in the original studies either had a little effect (e.g., when a value of 0.05 or 0.1 was
used less than 5% of the values were zero) or gave a covariance matrix that was almost
diagonal (e.qg., using a value of 0.25 or 0.3, >99% of the values were zero).
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In our analysis we tested two approaches for learning covariance matrices. First, we used the
graphical lasso algorithm with a p value of 0.25. Note that as stated above this value removes
most of the information from the covariance matrix as typically >99% of the values were set
to zero. As an alternative we also tested the shrinkage algorithm of (Schéfer and Strimmer,
2005), which also estimates covariance matrices using a shrinkage approach, but estimates its
trade-off parameter internally. Empirically, using this algorithm only a few values were set to
exact zero, but the overall shrinkage effect was noticeable. To cluster the covariance matrices
we used k-means with k ranging from 2 to 30. For each of the variants above we tested
clustering the data with and without standardization.

Figure ST6 shows the performance curve of the clustering solutions as a function of k:
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Figure ST6. Performance of the sliding window methods as a function of the number of
clusters k. For each value of k between 1 and 30 the ratio of the within-cluster sum of squares
to the between-cluster sum of squares is shown.

We observed that using the graphical lasso algorithm the "best" number of clusters was low,
roughly 5. These results are in agreement with the original studies. However, as we noted
above, this algorithm removes most of the covariance information from the data. Using the
shrinkage algorithm we concluded that the “best” Kk is larger than 5. (Between k=5 and k=10
the within/between value decreases by a factor of 1.8. Similar values are obtained when
comparing k to k+5 for k=6-9. For k=10 and beyond the factor drops below 1.4.)

We also observed that all variants had difficulties in covering many subjects in the detected
clusters. Figure ST7 shows the mean number of subjects covered by each clustering solution.
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Figure ST7. Mean number of covered subjects (over all clusters) in the sliding window
approaches as a function of the number of clusters k.

Figure ST7 shows that as K increases the mean number of covered subjects decreased rapidly.
Although this is expected, we note that for values of K that represent the number of selected
clusters (i.e., 10 for shrinkage, and 5 for graphical lasso) the mean number of covered subjects
is below 5. In contrast, each of TWIG's core modules covered all subjects in the data. The
graphical lasso solution with k=5 did have a single cluster that indeed covered all subjects,
whereas the shrinkage algorithm with k=10 had a single cluster that covered 11-13 subjects
(depending on the algorithm variant).

Our overall conclusion is that sliding window approaches have difficulties in finding several
core clusters that cover many subjects whereas TWIGS can easily achieve that. Another
important difference is that the output of TWIGS contains the parcel set of each core module,
whereas the output of the sliding window approach does not.

3.4. Comparison to modularity analysis approaches of fMRI data

Another standard approach for analyzing multiple fMRI matrices simultaneously is
modularity analysis (Rubinov and Sporns, 2011, 2010). In this approach, a preprocessing step
is used to create a single graph G=(V,E) in which V represents parcels and E represents edges
between parcels. In the weighted version of the algorithm E covers all parcel pairs and the
score of each pair is the average correlation across all subjects. In the unweighted version E
contains only parcel pairs for which the average correlation across all subjects exceeds a
predefined threshold. Given the graph G, a modularity algorithm is used to partition the graph
into sub-graphs (i.e. modules) attempting to maximize weights within modules and minimize
weights between modules (Rubinov and Sporns, 2011).

We tested both the weighted and unweighted version of the algorithm. In the unweighted case
we used a graph-density-based threshold (3%, 5% and 10%). The common practice in
modularity analysis is to generate several clustering solutions and compare their Q score,
which represents the gain of the solution compared to a random solution in terms of both
homogeneity and separation of the clusters (Rubinov and Sporns, 2011, 2010). Table ST1
shows that the weighted version achieved a much higher Q score.

Table ST1. Statistics of the different variants of the modularity analysis algorithm.

Graph Density (%) | #Modules Q
Weighted 100 4 1.658
Binarized 3 6 0.5379
Binarized 5 5 0.4599
Binarized 10 5 0.363

Interestingly we observed that the solution of the weighted version was very similar to the
core modules detected by TWIGS. In fact each core module was almost contained in one of
the detected modules. Table ST2 shows for each module in the modularity analysis solution
its most similar TWIGS core module, the fraction of parcels in the core module that were in
the overlap, and the enriched functional terms in each module (Thomas Yeo et al., 2011). The
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results above confirm that TWIGS indeed identified functionally relevant core modules in the

brain.

Table ST2. Comparison of the modularity analysis solution to the core modules of TWIGS.

Module | Size | Enriched Most Size of % of % of module | Enriched
Terms similar parallel TWIGS covered by term
TWIGS TWIGS module TWIGS
core module covered module
module (n1=1.5, (n1=1.5, (n1=1.5,
ni=2) ni=2) ni=2)
1 93 | VAN, AN 2 82,21 1,0.77 0.88,0.17 VAN
2 95 VN 1 57,55 1,1 0.6,0.58 VN
3 120 SMN, 3 84,72 0.99,0.86 0.69,0.52 DAN,
DAN, SMN
VAN
4 155 FPCN, 4 80,46 0.93,0.86 0.48,0.26 FPCN,
DMN DMN

We also evaluated the “strength” of that identification in each solution, calculating its
enrichment factor. The enrichment factor score (EF) of a module G for a term T is the ratio
between the observed number of parcels labeled with term T in G, and the expected number
parcels labeled with term T in modules of size |G|. The average EF score of the terms
identified by TWIGS was 3.4 with p=2, and 3.7 with p=1.5 (see the main text for details),
whereas that of the modularity analysis was 2.7. In addition, note that the modularity analysis
cannot (by definition) produce a fuzzy clustering of brain parcels, nor can it find subject-
specific augmentations of each module. The added value of TWIGS is in the ability to also
reveal heterogeneity among the subjects. For example, Figure 5 in the main text shows that
on average each subject covers <50% of the parcels in the core module. The application of
such analysis is in identifying subjects with unique patterns. For example, TWIGS identified
four subjects whose private modules of core module 4 were enriched with parcels of the
ventral attention system as well as parcels of the default-mode and frontoparietal control. This
may indicate a tendency of these subjects to engage in bottom-up processing (e.g. be more
attentive to sensory stimuli) during goal-directed thought processes.

3.5 Summary of the enrichment analyses on the sepsis gene expression data

Here we summarize the GO enrichment results for the modules and biclusters detected on the
sepsis data. For each method we ran the TANGO algorithm (Ulitsky et al., 2010) using 0.05
FDR correction, and calculated three statistics based on the results: (1) the total number of
GO terms covered, (2) the average enrichment factor (EF, calculated as explained in Sec. 3.4
above), and (3) the percent of modules in which at least one significant enrichment was
found.

The tested methods were: (1) TWIGS, (2) EDISA with default parameters, (3) EDISA with
1=0.3, (4) the plaid model with 2-5 noise layers, (5) SAMBA with default parameters, (6)
SAMBA with overlap parameter set to 0.2 (i.e., more biclusters are filtered out compared to
the default parameters), denoted as SAMBA-0.2, and (7) ISA with parameters set as
described in section 2 above.
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In terms of the total number of GO terms covered, EDISA-0.3 achieved the highest number
with 89 terms (over all bicluster types, see Section 3.3.1), and TWIGS ranked second (Figure
ST8). In terms of EF, the top performer was EDISA with default parameters, reaching a mean
EF score of 27, followed by SAMBA-0.2 (Figure ST9). Both of these algorithms completely
failed in terms of the fraction of modules showing enrichment (Figure ST10. We counted
those modules showing at least one enrichment with a q value < 0.05). All plaid solutions
reached a perfect score of 1 in this measure, followed by TWIGS with a score of 0.95.
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Figure ST8. Number of GO terms in the enrichment analysis results on the sepsis data.
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Figure ST9. Enrichment factor scores of the enrichment analysis results on the sepsis data.
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Figure ST10. Fraction of enriched modules in the enrichment analysis results on the sepsis
data.
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Finally, since no single method reached top performance in all scores, we consolidated the
three scores as follows. We ranked the methods according to each measure and calculated the
average rank of each method, where 1 means best rank and 10 is worst. Figure ST11 shows
the results. The top method was TWIGS with an average rank of 3.66. The next best methods
were EDISA-0.3 and the plaid models with 2-3 noise layers, all with a score of 4.
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Figure ST11. A consolidated rank of all methods based on all three scores calculated to
measure the enrichment results.
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Supplementary Figures
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Supplementary Figure 1. Simulation results on data with a single module and non-
symmetric noise levels p’ . = 0.5,p",, = 0.1.
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Supplementary Figure 2. Simulation results on normal data with five modules and noise
levels 6,=1 and 6,=1.
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Supplementary Figure 3. The second core module and its subject-specific enrichments in the
sepsis data. Top: the first core module heatmap. Bottom: the subject-specific enrichments.
The red stripes in each patient's node represent the time points that were covered by its private
module. An edge between a subject and a category (blue node) indicates that the subject-
specific module was enriched for that category.
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Supplementary Figure 4. Statistics of the subject-specific module of shared-bicluster 4A. A)
The percent of core module parcels covered by the private modules. Asteriks indicate subjects
whose private module had a significant overlap (hyper-geometric p < 0.001) with the core
module. B) The number of time points in each private module.
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Supplementary Material of Chapter 4 (ADEPTUYS)

Here we give the supplementary text and figures. For the supplementary tables please go to
the online version of the paper at http://nar.oxfordjournals.org/content/43/16/7779.

Supplementary Text

MetaMap analysis

We tested the MetaMap tool to automatically assign samples to their UMLS or MeSH disease
terms. To test the quality of the tool, we used the description of the GEO datasets as an input.
Manual examination of the results indicated that using this tool will introduce errors to the
labels of the samples. For example, for the GEO dataset GDS4222, the top scored disease was
“HIV infections”. However, the description of this dataset includes: "Analysis of diagnostic
lymph-node biopsies from classic Hodgkins lymphoma HIV- patients before ABVD
chemotherapy". Thus, the top prediction is an example of a false positive association between
a text and a disease term. In another case, for the GEO dataset GDS1067, MetaMap produced
six different disease terms although the dataset contained samples of three diseases
(monoclonal gammopathy of undetermined significance, multiple myeloma, and plasma cell
leukemia). Although the output was highly relevant for the input text, manual analysis is
needed to assign the samples of this dataset to their most specific terms. Due to such
examples we decided to manually annotate samples in the current study.

Enlarging the compendium

ADEPTUS covers 13,314 samples from 17 different microarray technologies. Note that
although the raw number of human datasets in GEO is much larger, annotating datasets is a
major hurdle. As of July 2015, the number of annotated human microarray datasets (datasets
with a GDS id) with at least 20 samples, a 'disease’ flag, and that originate from the platforms
covered by ADEPTUS is only 254. Further enlargement of the compendium would require
substantially more manual annotation work and is left for future work.

Rank-based scores

Given a gene expression profile of a single sample S in which k genes were measured, we
ranked the genes by their expression levels g, gz, 0s...., gk (With g; having the highest level),
and assigned a score to each gene based on its rank: Ws(g;) = ie**. Note that in [1] the weights
were Ws(gi) = ie”, whereas in [2] the weights were calculated with the minus sign. We
preferred the latter as it produces very low differences among genes ranked low (i.e., it keeps
a low difference among genes with low expression intensities).

The use of previously preprocessed data followed by our rank-based scoring may raise a
concern regarding the ability to compare results of different platforms and preprocessing. The
plot below shows the correlation distribution when taking 200 samples at random from each
of the three largest platforms. The correlation was calculated between the weighted ranks
profiles of the samples. The results show that in general the correlations between platforms
are high and are very similar (mean correlation 0.46- 0.49). There is a modest advantage to
correlations of samples from the same company and platform. Hence, overall, the correlation
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among samples - after our normalization - is very high even between platforms of different
companies, preprocessed in completely different ways.
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Finding disease-specific differential genes

For each gene G and a disease term D we used G's expression pattern to rank all microarray
samples and then utilized the disease labels on this ranking to calculate G's PN-ROC, PB-
ROC, and SMQ scores (see details below). Note that the SMQ scores are calculated using the
Wilcoxon rank-sum test that assumes independence between samples within a study. Hence,
this score could be problematic for datasets with strong batch effects. Nevertheless, we used
this analysis only for diseases that were well classified in leave-dataset out cross validation.
Hence in these cases the discriminatory signal was consistent across platforms and batches.

We assign a gene G to a disease term D if both of its ROC scores are at least 0.65 and the
SMQ (g-value) is at most 0.05. To make sure that a selected gene G is specific to D. D is
considered only if it is a leaf or it has at least three datasets with samples whose most specific
annotation is D. In the latter case we re-calculate the SMQ score using these datasets only and
keep G only if it is found significant again. We call the last constraint the sub-annotation
filter.

As an example of the effect of the filter, consider the case where a parent DO term and its
child term have high overlap in their positive samples. For example, leukemia has 1125
samples, and its child term lymphoblastic leukemia (LL) has 852 samples (see Figure 3).
Applying the initial gene-disease association process will associate 272 genes to leukemia,
and 642 to LL, with an overlap of 176. Hence, 64% of the leukemia genes correspond also to
its child LL. Using the sub-annotation filter on 273 leukemia non-LL samples (from 4
studies), the analysis produced 81 leukemia genes, with only four genes in common with the
LL gene set.

To better characterize the specificity of biomarkers produced by our method we looked at
gene ranks within datasets. For every gene g, we calculated the gene's z-score of differential
expression (Wilcoxon rank-sum test) for each pair (x,D) where X is a dataset (out of 174) and
D is a disease (out of the 24 well-classified diseases). The dataset x was considered only if it
contained both samples of D and other samples (controls). For every pair (x,D) we then
ranked all genes by their absolute z-score. For each disease D and gene g, we calculated g's
median rank across all of D's datasets. Given a disease D, we computed the distribution of
these median ranks for (1) D's biomarker genes (2) the biomarker genes of its parent disease
(P(D)) and (3) when available, the biomarker of its grandparent disease (P(P(D))). We
emphasize that in all three cases the median ranks are computed on D's datasets.
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Multi-label classification algorithms

The input to our learning problem is a training set {(X1,Y1),....(Xn,Yn)}. Each vector x; € RP
contains the p gene scores of sample i, and each vector y; e {0,1}", where N is the number of
labels (i.e., the number of diseases), and y; is 1 if and only if sample i originated from a
patient with disease D;. Our goal is to learn a multi-label classifier, that is, a function that
receives as input a sample x € RP, and for each disease D; predicts the probability that the
sample x belongs to D;. Multi-label classification problems have received considerable
attention in recent years [3]. These methods can be broadly partitioned into two types:
problem transformation and algorithm adaptation [4]. Problem transformation methods
transform the original problem into one or more standard classification problems. For
example, the label power-set (LP) method defines a new categorical variable (for each
sample) whose values are all possible combinations of the original labels, which is then used
as the class attribute. This method models the label dependencies implicitly and is usually
effective when the number of labels is small [5]. Algorithm adaptation methods extend a
specific learning algorithm to deal with multi-label classification. For example, predictive
clustering tree (PCT) learns decision trees for the multi-label task [6, 7]; and Bayesian
correction (BC) uses the known label hierarchy to correct errors introduced when learning an
independent single binary classifier for each label [8, 9].

In this study we tested three simple approaches for multi-label classification our database.
The first, Single, learns a separate classier for each disease. Thus, this approach ignores
dependencies among different diseases. We tried two different classifiers: linear support
vector machines (R package e1071, with default parameters and logistic models for
calculating probabilities), and random forests. When training a classifier for a specific disease
we used the top 100 features only (using simple t-test feature selection). Note that when
performing leave-dataset out cross validation the feature selection and classifier learning steps
are performed using the training set only, in order to avoid over-fitting.

The second approach, Bayesian Correction (BC), is a method that adapts single classifiers
and uses the DO structure [8, 9]. This method was used in previous studies, see [8-11] for full
details. Briefly, single-label classifiers are learned on one portion of the training set. Then, the
predictions of these classifiers on a second set of excluded samples are used to learn a
Bayesian network in which nodes are diseases. For each disease D; two connected nodes were
added to the network: D;* marks the real labels, and D;> marks the predictions of the single
classifiers. The DO network edges are also added between the D* nodes. The task is to learn
the conditional dependencies. We used the BNLearn R package [12] for inferring the network
parameters. Given a new, unlabeled sample x, first a single classifier is used to get a vector of
predictions y’ € {0,1}" that is, a binary prediction for each disease term. Then, the network is
used to estimate the probability of the unknown true assignments y (D' nodes) given y' (the
D? nodes) and the network structure. Once such probabilities are estimated, the marginal
probability of each disease node D' is calculated. These probabilities are used as the final
predictions of the algorithm.

The third approach, label power-set (LP), is a simple problem transformation approach [3, 4].
We used the concatenated input label vectors as the classes. For example if the label vector of
a sample is y=(0,1,1) then it is assigned to class “011”. Note that by construction a sample
labeled with a disease is also labeled with all its ancestors in the DO hierarchy. Let Cy,...,Cy
be the resulting classes, and let §(D, C;) be 1 if samples of class C; belong to disease D and 0
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otherwise. After a multiclass classifier was learned using the new classes, predicting the
probability pp that a sample x has a disease D is done as follows. First, we use the multiclass
classifier to compute p;, the probability that x belongs to C; for i=1,...,M (Note that }; p; =
1). Then, pp = Y; p;6(D, C;). Intuitively, when considering the DO structure a sample x will
be assigned to a disease D if according to the classifier the sample has either D, or one of D’s
sub-diseases, thus, preserving the is-a property of the DO structure. This strategy is
reasonable when the number of the artificial classes generated is not large (in theory it could
be an exponential of the number of labels) [5]. We used random forest as the multiclass
classifier. The number M of classes in practice was 53, which is only slightly higher than the
number of tested diseases (48).

Study-based Meta-analysis g-value (SMQ)

This simple test takes as input three features for each sample originating from a study of a
disease D: (1) a score X, (2) a binary value y where y=1 if the sample is positive in D, and y=0
otherwise, and (3) the dataset DS; that the sample belongs to. The Study-based Meta-analysis
Q-value (SMQ) of the score x in disease D is calculated as follows. For each dataset
DS,,....DSy that contains positive and negative samples we use the Wilcoxon rank-sum
(approximated) test to calculate a Z-score for the separation between the positives and the
negatives based on their scores. This approximation is reasonable as we used studies with at
least 20 samples each. This calculation produced a set of Z-scores: Zy,...,Zx. Then, under the
assumption that the datasets are independent, and the null hypothesis that the positives and
negatives have the same x distribution, the sum of the Z-scores follows a normal distribution
with mean zero, and variance k [13]. The SMQ score is the FDR corrected [14] two-tail p-
value based on this distribution. Note that we calculated the Wilcoxon rank-sum test p-values
for all gene-disease pairs and the SMQ is calculated by correcting all p-values together.

Well-classified diseases

We designated a disease well classified if its PB-ROC and PN-ROC scores exceeded 0.7 and
its SMQ was significant (< 0.05). Since the number of samples used is very large, even lower
ROC scores would have been highly significant although classification quality is low. We
therefore chose the threshold of 0.7 as a good bipartition point (see the figure below), and
used the SMQ score to account for significance.

PB-ROC

PN-ROC

In the plot above each point represents a disease. Triangles are diseases that were not
significant in their SMQ. Blue points are diseases with both ROC scores above 0.7.

The independence assumption
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We assume independence between samples in several parts of the manuscript -- e.g. when
assigning genes to tumor site via a hyper-geometric test and when assessing the specificity of
a biomarker. This assumption is likely violated when pooling data across multiple studies and
multiple platforms and likely even within a single large data set due to batch effects.

As most published literature, our analyses throughout the paper provide reasonable simplified
estimations that approximate the complex real underlying distributions (e.g., by using the
independence assumption). Nevertheless, in each analysis we took additional precautionary
steps to alleviate that effect. For example, in the gene expression analysis the key step was
leave-dataset out cross validation. This validation points out diseases for which the
discriminatory signal is consistent across studies and batches. In the mutation data analysis
we used only "confirmed somatic" mutations, which are the most confident category
(reducing false positive rate), and only from whole-genome studies, thereby reducing the false
negative rate. We also used a very stringent approach for accepting a mutation: although we
used the COSMIC data only for three cancer sites (out of 28 primary cancer sites in
COSMIC) we corrected the p-values for association jointly for all sites together (0.05 FDR).

Finally, note that simplifying assumptions, while problematic, are often reasonable for
detecting an average global signal. For example, Efron comments that when estimating FDR,
dependence increases variance but is not expected to distort the mean FDR [15] . As another
example, Cirrielo et al. [16] clustered patients using a statistical modularity score that also
assumes independence across samples. Their analysis detected many known factors related to
cancer and even suggested novel insights.

Single platform analysis in low performance diseases

In our multi-platform analysis 24 diseases were well classified. For each disease that was not
well-classified, we tested leave dataset out cross validation using only samples from the
platform with the highest number of datasets. We tested two ways to normalize the datasets:
using our rank-based normalization and simple quantile normalization. Our results below
show that for six disease terms the classification performance could be improved to achieve a
ROC score > 0.7, using the quantile normalization.

Disease Platform | #samples | #datasets Quantile | Ranks

disease of mental health GPL570 417 6 0.63 0.67
lower respiratory tract disease GPL570 331 6 0.57 0.52
respiratory system disease GPL570 331 6 0.57 0.52
disease of anatomical entity GPL570 1591 28 0.55 0.57
lung disease GPL570 331 6 0.57 0.52
myeloid leukemia GPL570 457 4 0.15 0.14
nervous system disease GPL570 494 8 0.68 0.66
musculoskeletal system disease GPL96 249 6 0.84 0.83
gastrointestinal system disease GPL570 165 5 0.59 0.63
brain disease GPL570 232 3 0.72 0.7
disease by infectious agent GPL570 127 3 0.63 0.63
acquired metabolic disease GPL570 210 6 0.5 0.48
diabetes mellitus GPL570 125 3 0.71 0.6
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disease of metabolism GPL570 256 8 0.26 0.26

glucose metabolism disease GPL570 125 3 0.71 0.61

carbohydrate metabolism disease GPL570 125 3 0.71 0.61

Lymphoma GPL570 412 4 0.82 0.79

reproductive organ cancer GPL96 255 6 0.37 0.34

immune system disease GPL570 104 2 0.45 0.44

cognitive disorder GPL570 271 5 0.63 0.67
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Supplementary Figures
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Supplementary Figure S1. The studied disease. The graph shows the 48 Disease terms in
ADEPTUS that had at least 100 samples from at least 5 datasets. For each node, the Disease

Ontology term and the number of positive samples are shown. Edges mark “is-a” relation in
the DO hierarchy.
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Supplementary Figure S2. Over-optimistic performance when ignoring the partition of non-
positive samples into negatives and BGCs. The curves show the result of a simple simulation
in which values of positive samples (n=500) and the values of negative samples (n=500) were
drawn from the same distribution (U[0,0.5]), whereas the values of BGCs (n=10000) were
drawn from a distribution with lower values (U[0.5,1]). The sizes of the classes are extremely
skewed as expected in large databases (most samples are of the BGC class). The curves show
the separation between the positives and all the rest. ROC and precision-recall were plotted
using the sample values to rank the samples. The ROC AUC is 0.97, and the PR AUC is 0.5.
These results are misleading, since positives and negatives cannot be separated in this case.
Thus, this example illustrates a case in which a classifier can only distinguish BGCs from the
rest. In such cases, ignoring the known partition of non-positive samples into negatives and
BGCs produces inflated performance scores.
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0.5
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Cancer PB-ROC

T T T
02 03 04 05 06 07 08
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Supplementary Figure S3. High correlation between PN-ROC and PB-ROC scores of genes
in cancer. The correlation between the two scores was 0.49. The cancer-specific differential
genes are colored in blue. Note that here ROC scores are more significant the further they are
from 0.5, in both directions. Also, note that unlike the main text, we plot here the raw ROC
scores and not using max(x,1-x) function. This was done in order to better view the
correlation between the PB- and PN- ROC scores. The two marked down-regulated genes are
CRY2 (PN-ROC 0.3) and CBX7 (PN-ROC 0.18). The marked up-regulated gene is TOP2A.
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Supplementary Figure S4. A comparison of disease gene sets with the sets of their ancestral
diseases. For every gene g, we calculated the gene's z-score of differential expression for each
pair (x,D) where X is a dataset and D is a disease. For every pair (x,D) we then ranked all
genes by their absolute z-score (See Supplementary Text). For each disease D, we show (from
left to right) (1) the distribution of the genes' median rank across D's datasets. (2) the
distribution of the median rank of the biomarker genes of the parent disease (P(D)) across
D's datasets, and (3) when available, the distribution of the median rank of the biomarker of
the grandparent disease (P(P(D))) across D's datasets. The reported p-values are for the
difference between the distributions of D and P(D), and when available, also of D and

P(P(D)).
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Supplementary Figure S5. Stability tests results by the number of samples. The plots show
the Jaccard overlap score between solutions obtained using two disjoint sets of k disease
datasets each. The x-axis shows the number of samples in each run, and the color shows k.

D Differential in ancestor

. Up-regulated
D Down-regulated

Vs. Neg Vs. BGCs

. Has Drug
D No Drug

. Mutations
D No Mutations

PF4

CACNAID

JUN

KIAA0226L
SLC12A2

MGST2 GABBR: COL1IAL

TNFSF11
MMP7 KCNQ1

COLsA3 ITGAs

’

SOXs¢

Supplementary Figure S6. Networks of molecular modifications in colorectal cancer. The
network shows genes that were found specifically differential in the disease or in one of its
ancestor DO terms, and for which either a targeting drug exists or the gene was found to be
associated with the disease in COSMIC. Black edges are PPIs, and gray edges are Gls. Each
node shows four features of a gene: (1) differential pattern compared to negatives, (2)
differential pattern compared to BGCs, (3) whether a targeting drug exists, and (4) if the gene
was associated to lung cancer according to COSMIC. Nodes without a purple background are
genes that are not associated with any pathway in KEGG, Reactome, NCI, or Biocarta. Out of
the original network of 454 genes, the figure focuses on 27 extremely up-regulated genes
(PN-ROC > 0.8).
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