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A biological pathway is the set of molecular entities involved in a given bio-
logical process and the interrelations among them. Even though biological
pathways have been studied extensively, discovering missing genes in path-
ways remains a fundamental challenge. Here, we present an easy-to-use tool
that allows users to run MORPH (MOdule-guided Ranking of candidate PatH-
way genes), an algorithm for revealing missing genes in biological pathways,
and demonstrate its capabilities. MORPH supports the analysis in tomato,
Arabidopsis and the two new species: rice and the newly sequenced potato
genome. The new tool, called MORPH-R, is available both as a web server (at
http://bioinformatics.psb.ugent.be/webtools/morph/) and as standalone soft-
ware that can be used locally. In the standalone version, the user can apply

the tool to new organisms using any proprietary and public data sources.

Introduction

A biological pathway can be summarized as a set of
molecular entities involved in a single biological process
and the interactions among those entities. Understand-
ing how pathways work and identifying the participating
genes in a pathway of interest are crucial for under-
standing biology, organizing biological knowledge and
enhancing biotechnological development. While current
knowledge about some biological pathways is substan-
tial and useful for systems-level analyses, not all the
genes that participate or affect such pathways are known.
Therefore, closing gaps in our current knowledge about
biological pathways is a fundamental challenge.

We previously developed the MORPH (MOdule-
guided Ranking of candidate PatHway genes) algorithm
for revealing missing genes in biological pathways and
demonstrated its robustness in tomato and Arabidopsis

(Tzfadia etal. 2012). The MORPH algorithm is based
on two main learning tasks. First, of a large variety of
possible data sources [e.g. gene expression matrices,
protein—protein interactions (PPl) and clustering solu-
tions], it learns which datasets are more informative for
the pathway of interest. Second, using the selected data,
it ranks genes by their association with the pathway of
interest.

Here, we present MORPH-R, an easy-to-use R
package that allows users to run MORPH conve-
niently on their own PC or on a web server. The
web server and the standalone software are available
at  http://bioinformatics.psb.ugent.be/webtools/morph/.
The MORPH-R package currently supports tomato,
potato, rice and Arabidopsis. Users that want to analyze
additional datasets, possibly of new organisms, can
use the standalone tool. We demonstrate the power of

Abbreviations — GO, gene ontology; GUI, graphical user interface; JA, jasmonic acid; LOOCV, leave-one-out cross-validation;
MD, metabolic dependency; MORPH, MOdule-guided Ranking of candidate PatHway genes; PPI, protein—protein interaction.
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MORPH-R on pathways of the newly sequenced potato
genome. The analysis covers 694 Gene Ontology (GO)
categories, retrieved from BioMart (Kasprzyk 2011) and
96 metabolic pathways retrieved from MapMan (Thimm
etal. 2004, Urbanczyk-Wochniak etal. 2006). We
show that MORPH-R reaches high performance using
the potato data and also identifies novel candidate genes.

Materials and methods
Scoring the accuracy of a ranking algorithm

To evaluate an algorithm that ranks genes by their
likelihood to be related to a given pathway, we use
leave-one-out cross-validation (LOOCV) (Kharchenko
et al. 2004). That is, we repeatedly remove a gene from
the pathway, run the algorithm on the remaining pathway
genes as input and ask what the ranking of the excluded
gene is (in perfect ranking, the excluded gene is always at
the top of the ranking). The LOOCV process results in a
single score called area under the curve of the self-ranked
genes (AUSR) between 1 and 0, where 1 is a perfect score
and scores close to 0 indicate a random ranking of the
candidate genes (see Kharchenko et al. 2006 for details).

How MORPH works

We briefly describe here how MORPH ranks candidate
genes for participating in or affecting a pathway of inter-
est. Our goal here is to provide the biological intuition
behind the algorithm (for full details, see Tzfadia et al.
2012).

MORPH combines the power of cluster analysis with
available large-scale data. First, any large-scale data can
be used to partition the genes from that organism into
coherent clusters that are expected to share similar bio-
logical function. For example, gene expression datasets
can be used to detect co-expressed gene clusters. PPI
networks can be used to detect protein complexes and
pathways, and metabolic dependency (MD) interactions
can be used to detect gene groups that participate in the
same metabolic processes. For each supported species,
MORPH’s internal database contains a set of clustering
solutions derived from such large-scale datasets. Given
a particular clustering solution and a set of genes from a
pathway of interest, we are only interested in the clusters
that contain the pathway genes. A candidate gene is
scored by its co-expression level with the known path-
way genes present in its cluster. These scores are used
to rank the candidate genes. The process thus depends
on the particular clustering solution and on the gene
expression matrix used. A combination of clustering
solution and gene expression matrix is called a learning
configuration.

MORPH selects among the different learning
configurations in order to optimize the inference
for the target pathway. For example, when learning
photosynthesis-related pathways, we expect a learning
configuration that is based on clustering of metabolic
information and gene expression data of experiments
using leaves to perform better than learning configura-
tions that use a signaling network and gene expression
from experiments using seeds. To cope with this,
MORPH uses an internal LOOCV process to select
the best learning configuration (e.g. the one with the
highest AUSR score). Hence, the output of MORPH is
the selected learning configuration, and the candidate
gene ranking based on it.

How to run MORPH-R with default data

The new MORPH-R tool enables users to run MORPH
via a simple graphical user interface (GUI) and evaluates
biological pathways in four plants: tomato, potato, rice
and Arabidopsis. Here, we describe how to use the GUI.
For documentation and usage of the R functions, see
Appendix ST, section 4. The input is the organism name
and a list of genes known to participate in the target
pathway (see Appendix S1, section 2 for the allowed
types of gene identifiers). This list can be uploaded either
manually in the text box or as a text file. Then, running
MORPH is done by pressing the ‘Submit’ button (Fig. 1).

MORPH-R’s internal database, which is provided with
the standalone version, contains a large collection of
gene expression profiles. The database supports analysis
for four species by default — Arabidopsis, tomato, potato
and rice. For Arabidopsis, it contains 216 expression
profiles divided into four data sets: (1) seedling (64
profiles), (2) tissues: a collection of different tissues (99
profiles), (3) DST: a union of the seedlings and tissues
datasets and (4) seed: seed tissues at different develop-
mental stages (53 profiles). The tomato gene expression
repository contains 53 microarray expression profiles
reflecting responses to specific stimuli, developmental
stages, and selected mutants, divided into two data sets:
root and leaf (21 profiles), and fruit (32 profiles). In
addition, for tomato and Arabidopsis, a PPl network and
an MD network are available (reference to the sources
of dataset and network are available in Tzfadia etal.
2012). The potato gene expression repository summa-
rizes over 20 studies and contains 326 profiles. These
data are partitioned into four datasets: (1) All tissues (326
profiles), (2) root (24 profiles), (3) tuber (60 profiles)
and (4) leaf (242 profiles). Potato interaction networks
were predicted using sequence homology analysis
(See Tzfadia et al. 2012 for details). The rice data now
included in MORPH have eight microarray data sets (see
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New Query

If you use Morph, please cite us at Plant Cell

Download standalone Morph R package with
documentation (.zip)

MOdule guided Ranking of candidate PatHway genes

A biological pathway is the set of molecular entities involved in a

Plant of interest

given biological process, and the interrelations among them. Even

though biological pathways have been studied extensively,
discovering missing genes in pathways remains a fundamental

# Arabidopsis

challenge. Here, we present an easy-to-use tool that allows users

to run MORPH, an algorithm for revealing missing genes in

Potato - ITAG “&

Potato - PGSC “&
Tomato .
Rice

Genes of interest

biological pathways. The new tool is available both as this web site
and as standalone software, called MORPH-R, that can be used
locally. In the standalone version, the user can apply the tool to
new organisms using any proprietary and public data sources.

Enter your genes of interest (pathway genes) below, separated by whitespace or commas. (You can leave this

field empty to submit the example shown):

Or upload a genes of interest file (same format as above):

Choose File No file chosen
Output options

Max candidate genes to display 30

Run Morph

Fig. 1. The main screen. The input specified by the user is the organism to analyze and a group of gene IDs of a specific pathway of interest. To
activate the program click the ‘Run Morph’ button. Once MORPH-R is done running, the results are printed on the screen to right (see Fig. 2). This
page will appear on the web-server and on the user’s default web browser upon execution of the standalone tool.

Table S9) (92 profiles), collected from the Gene Expres-
sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/), and
one RNAseq data set (16 profiles) collected from
the Rice Genome Annotation portal (http://rice.
plantbiology.msu.edu/expression.shtml). In  addition
to gene expression, partitioning of genes into groups,
the rice protein interaction network (Bian et al. 2012),
was used to generate clustering solutions.

For each organism, a set of clustering solutions was
generated by analyzing the gene expression datasets
and the interaction networks (PPIs and MDs). To cluster
an expression dataset, we used the CLICK (Sharan and
Shamir 2000) and SOM (Tamayo et al. 1999) algorithms,
which are available within the EXPANDER suite (Ulitsky
etal. 2010). We used MATISSE for combined analysis
of gene expression data and the networks (Ulitsky and
Shamir 2007). We used MCL (Enright etal. 2002) to
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cluster interaction networks. Using combinations of
the gene expression datasets described above, and
clustering solutions, 12—32 learning configurations are
defined for each organism (the exact number of configu-
rations depend on the number of datasets and networks
available for each organism).

The output of MORPH-R contains three main parts
shown in different tabs. The first tab contains the AUSR
score of the pathway and a ranking of candidate genes
(Fig. 2). We observed empirically that scores greater
than 0.7 denote that on the pathway of interest MORPH
performs significantly better than expected by chance
(Tzfadia et al. 2012). All genes that were not clustered
with any pathway gene are placed at the bottom of the
ranking. All the other genes are sorted in descending
order according to their z-scores (Tzfadia et al. 2012).
The z-score of a gene indicates how strong a candidate
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Results
Best AUSR 0.92
Gene expression  Seedlings

Clustering Metabolic matisse

at5g17230 atdg14210 at1g10830 at3g04870 at1g06820 at3g10230 at5g57030
at4g25700 at5g52570 at1g31800 at3g53130 ats5g67030 at1g08550

Genes present

Candidates
Rank Gene ID Score Annotation
1 at4g37760 2.60  squalene epoxidase 3
2 at3g63520 2.57  carotenoid cleavage dioxygenase 1
tocopherol cyclase, chloroplast / vitamin E deficient 1 (VTE1) / sucrose export
3 agi2T70 246 ofochive 1 (SXD1)
4 at1g17050 2.37  solanesyl diphosphate synthase 2
5 al2g26800 2.37 grlg:::nse superfamily protein. Aldolase superfamily protein. Aldolase superfamily
6 at2g41680 2.35 NADPH-dependent thioredoxin reductase C
ATP binding valine-tRNA ligases aminoacyl-tRNA ligases nucleotide binding
7 at5g16715 2.26 ATP binding aminoacyl-tRNA ligases
8 at3g48730 2.23  glutamate-1-semialdehyde 2,1-aminomutase 2
Sucrose-6F-phosphate phosphohydrolase family protein. Sucrose-6F-
9 at2g35840 2.22  phosphate phosphohydrolase family protein. Sucrose-6F-phosphate
phosphohydrolase family protein
10 at1g36160 2.20  acetyl-CoA carboxylase 1. acetyl-CoA carboxylase 1
1" atsg17050 2.19 UDP-glucosyl transferase 78D2
Haloacid dehalogenase-like hydrolase (HAD) superfamily protein. Haloacid
L 14911570 216 dehalogenase-like hydrolase (HAD) superfamily protein
13 t4g27 213  pfkB-like carbohydrate kinase family protein
alpha/beta-Hydrolases superfamily protein. alpha/beta-Hydrolases superfamily
14 t5g38520 2.12 4
protein
15 at1g19920 210  Pseudouridine synthase/archaeosine transglycosylase-like family protein
16 at5g19850 2.07  alpha/beta-Hydrolases superfamily protein
17 at1g56500 2.04  haloacid dehalogenase-like hydrolase family protein
18 at3g51820 2.03  UbiA prenyltransferase family protein
GroES-like zinc-binding dehydrogenase family protein. GroES-like zinc-binding
18 at1g22430 2.02 dehydrogenase family protein
20 at1g31190 2.00 myo-inositol monophosphatase like 1

21 5013930 199 _ Chal ; - :

Fig. 2. A table of ranked candidate genes, the main output of MORPH-R. The AUSR score of the pathway is shown at the top of the table. This
score ranges between 1 and 0, where 1 is a perfect score and scores close to 0 denote a random ranking of the candidate genes. The table lists the
candidate genes for the input pathway, ordered by their z-scores in descending order.

is when compared to all other candidates. The other ~ Adding new data sets and new species

tabs present the selected learning configuration, and the
number of pathway genes that were used in the analysis,
and are present in MORPH-R’s internal database and
additional list reports the genes that are missing from the
analysis.

When using the standalone version of MORPH-R, the
internal database can be easily modified by adding
or excluding gene expression datasets, networks or
clustering solutions. In addition, it can be customized
for running on new data from any organism once gene
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Fig. 3. Performance on potato functional groups. AUSR scores for MapMan pathways and three GO categories: cellular components, molecular
functions and biological processes. For each group size, individual marks are results for real groups. The boxplots represent the distribution of AUSR
scores of random gene sets (100 repeats). Boxes contain the 25-75 percentile of the distribution.

expression data and clustering solutions are given.
MORPH-R contains a suite of R functions that allow
computational biologists to pre-process and cluster their
datasets (See Appendix ST, sections 3 and 4).

Potato microarray data preprocessing
and normalization

We have integrated potato gene expression data from
over 20 studies based on the Agilent JHI Solanum tubero-
sum 60 k v1 microarray (ArrayExpress ID: E-MTAB-1655)
processed at the James Hutton Institute using standard
Agilent recommended methodologies (Hancock et al.
2014). The studies included 326 conditions derived from
the following treatments: moderate heat-stress (Hancock
et al. 2014), short- and long-day growth regimes (Morris
etal. 2014), bruising (unpublished data), phosphorous
growth regimes (unpublished data), acidity, Phytopthora
infestans infection (Ali et al. 2014) and B-aminobutyric
acid (BABA) (Bengtsson et al. 2014), phosphite, abscisic
acid (ABA), brassinosteroid and salicylic acid (SA) treat-
ments (unpublished data). Different potato accessions
and tissues (tuber, stem and leaf) were included.

We applied quantile normalization using the Limma
package (Smyth 2005) and subtracted the background
intensity from the foreground intensity for each spot
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using the normexp method (Ritchie etal. 2007). The
normalized expression matrix contained 52 998 probes.
In order to reduce statistical noise and to focus on genes
with high variation we removed both probes with con-
sistently low expression values across the samples and
probes with low variance. Thresholds for probe removal
were adjusted as proposed in (Tzfadia etal. 2012),
which left 14 000 probes. These probes were mapped to
12956 genes, approximately the same number of genes
analyzed in Tzfadia et al. (2012).

Results

We illustrate the potential of MORPH-R by applying
the tool to 698 potato GO categories, retrieved from
BioMart (Kasprzyk 2011) and 96 potato metabolic path-
ways retrieved from MapMan (Thimm etal. 2004,
Urbanczyk-Wochniak etal. 2006). The output of
MORPH-R for each pathway or GO term is the AUSR
score and the list of ranked candidate genes. In addition,
we ran MORPH on random gene sets of sizes 10-30,
with 100 repeats for each size. The maximum AUSR
over these random groups of genes was 0.35 (Fig. 3). For
a complete list of GO categories and MapMan pathways
and their AUSR scores, see Tables S1-54.



Table 1. MapMan pathways and GO term categories with high AUSR
scores from the potato data profiles. The group size is the number of the
input genes that were covered in MORPH-R’s internal potato data.

AUSR Group size
MapMan pathways
PS light reaction photosystem II. 0.99 29
LHC-II
PS light reaction photosystem I. PSI 0.90 15
polypeptide subunits
Stress abiotic touch/wounding 0.80 1
PS light reaction cyclic electron 0.73 16
flow-chlororespiration
DNA synthesis/chromatin structure 0.62 53
histone
Hormone metabolism auxin 0.54 79
induced-regulated-responsive-
activated
Stress abiotic heat 0.50 105
GO: molecular functions
Phosphofructokinase activity 0.92 12
Diacylglycerol O-acyltransferase 0.91 1
activity
GO: cellular components
6-phosphofructokinase complex 0.95 10
Photosystem | reaction center 0.89 10
GO: biological process
Regulation of peptidase activity 0.85 18
Negative regulation of peptidase 0.85 18
activity
Folic acid-containing compound 0.84 1

biosynthetic process

Some of the MapMan pathways and GO term cat-
egories obtained exceptional AUSR scores (Table 1).
For example, three large MapMan pathways (>50
genes) obtained very high AUSR scores, which is
unusual for pathways of such size (Tzfadia et al. 2012):
DNA synthesis/chromatin structure (MapMan 28.1.3,
53 genes) AUSR=0.62; hormone metabolism auxin
induced-regulated-responsive-activated ~ (17.2.3, 79
genes) AUSR =0.54; and stress abiotic heat (20.2.1; 105
genes) AUSR=0.50.

Potato GO example: folate biosynthesis

One of the best scoring GO terms was folate biosynthesis
(GO: 0009396; AUSR 0.84). In spite of its importance
to humans who are dependent on folates from plant
and microbial sources, little is known on regulation of
folate content and biosynthesis in plants. In tomato, a
two-gene strategy overexpressing GTP cyclohydrolase
1 and aminodeoxychorismate synthase gave a 25-fold
increase in folate content (Diaz de la Garza et al. 2007).
However, a similar approach in potato was not success-
ful (Blancquaert etal. 2013), which calls for a better

understanding of the folate pathway in order to find an
engineering strategy for potato and other crops.

A rather low number of genes were associated with
folic acid-containing compound biosynthetic process by
MORPH-R (11 genes were used as input and MORPH-R
suggested 21 new candidate genes; see Tables S5 and
S6 for the candidate genes and the list of pathway
genes). As could be expected, an additional isoform
of an aminodeoxychorismate lyase was among them.
These enzymes have been shown to be part of folate
biosynthesis where one family member catalyzes the last
step of the p-aminobenzoate branch (Basset et al. 2004).
One of the embryogenesis-related genes associated with
the pathway according to MORPH-R was SufD. This
prediction is in line with previous findings showing
that folate biosynthesis is essential for embryogenesis in
Arabidopsis (Ishikawa et al. 2003).

Although well studied in animal systems, gene
products important for the transportation of folates
between cellular compartments and organs remain
largely unknown in plants. This is true although it is
evident that biosynthesis and storage require movement
over plastid, mitochondria and vacuolar membranes
(Hanson and Gregory 2011). A few transport proteins
were linked to folate biosynthesis, e.g. an organic cation
transporter. However, neither these proteins nor their
homologs have been studied in detail in potato or
Arabidopsis. Our examples show how MORPH-R can
point out novel gene targets that might affect folate
biosynthesis.

Potato MapMan term example: wound response

We focused on the MapMan pathway abiotic stress
touch/wounding (20.2.4). The AUSR score was 0.8,
and MORPH-R suggested 172 genes. Wounding gives
rise to a broad set of responses in plants, and it is
important to identify genes involved in wound response
because they can confer resistance to a broad set of
stresses, both abiotic and biotic. Not surprisingly, jas-
monic acid (JA)-dependent elements such as ornithine
N-delta-acetyltransferase, which forms the defense
metabolite N-delta-acetylornithine (Adio etal. 2011),
were found among the genes associated by MORPH-R
with wound response (see Tables S7 and S8 for the
candidate genes and the list of pathway genes). JA is
central in wounding response and JA-lle accumulates in
leaves within minutes after damage (Glauser et al. 2008).
Another example is the RS5 stachyose synthase gene
(ranked 16th) which is nearly identical to the Arabidopsis
raffinose synthase (At5g40390), recently suggested to be
alone responsible for abiotic-induced raffinose biosyn-
thesis in Arabidopsis leaves (Egert et al. 2013). Raffinose
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production is increased by numerous abiotic stresses
and thought to be involved in protection in oxidative
stress (Nishizawa et al. 2008), and over-expression of the
stachyose synthase could potentially increase quenching
capacity.

Discussion

Even in well studies model systems as Arabidopsis and
rice, we still know little about functional annotation of
genes. For example, in approximately 40% of Arabidop-
sis and 1% of rice (Oryza sativa), protein-coding genes
have been functionally annotated (Rhee and Mutwil
2014). Moreover, the number of functionally annotated
genes based on experimental validation in non-model
species is scarce. Therefore, gene discovery is still a
major challenge in the plant biology research. Several
computational approaches to protein function annota-
tion exist, although most are not dedicated to plants,
or they are restricted to model plant species only. In
this report, we described MORPH-R, an easy-to-use R
package that allows users to run MORPH conveniently
on their own PC or via a web portal. MORPH-R takes
a set of genes that are known to participate in the tar-
get pathway as input. Then, it uses a large compendium
of data sources (gene expression datasets and inter-
action networks) to identify and rank new candidate
genes.

Because the interactions among pathway genes and
products might manifest in a particular data source but
not in others, MORPH-R learns which data sources are
most informative for each input pathway. It then uses
the selected data sources for ranking candidate genes.
The package presented here contains both a GUI that can
be used without any programming skills and easy-to-use
R functions, which allow computationally oriented users
more flexibility and additional functionality. The web
server provides data and direct analysis capabilities for
four major plants: Arabidopsis, potato, tomato and rice,
which adds two new organisms. In addition, incorporat-
ing new data sources for the supported organisms and
adding new species to MORPH can be done easily by
utilizing the R scripts provided in the standalone version
of the software.

The yardstick for evaluating the quality of MORPH
predictions is the AUSR score. We demonstrated the
high performance of MORPH-R on potato pathways and
showed that many of them achieved significant scores
(Fig. 3). We studied the results of two pathways in detail,
folate biosynthesis and wound response, and found new
candidate genes involved in these processes. The can-
didates can be categorized into three main groups:
additional isoforms of known pathway-genes, such as
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the aminodeoxychorismate lyase associated with folate
biosynthesis; genes whose functionality is supported by
literature evidence in another species, such as the RS5
stachyose synthase gene, which was studied in associ-
ation to wounding in Arabidopsis but not in potato; or
genes of unknown function.

In order to make MORPH more broadly useful as
a gene discovery framework for plant researchers, we
re-implemented the original MORPH algorithm in R and
C++. The new version is more modular and thus enables
adding new organisms and/or new data sources eas-
ily by the user. For the purpose of this report, we used
these capabilities to add potato and rice data as addi-
tional default species. Those, alongside Arabidopsis and
tomato, are available both in the web server and in
the standalone version. Moreover, we provide the code
of MORPH (R and C++ versions), so users with some
experience in command line software execution can run
MORPH in ‘batch mode’. The new version is also two
orders of magnitude faster than the original one. Conse-
quently, a batch mode user can obtain scores and novel
predictions for hundreds of biological pathways (origi-
nating from MapMan or GO) in just a couple of hours.
When the AUSR score of a pathway is high, MORPH-R
suggests novel candidate genes that may belong to the
pathway. A systematic application of MORPH-R can be
used to build and extend biological pathways and regu-
latory networks.
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