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Abstract 

Background 

For most organisms, even if their genome sequence is available, little functional information 

about individual genes or proteins exists. Several annotation pipelines have been developed 

for functional analysis based on sequence, ‘omics’, and literature data. However, researchers 

encounter little guidance on how well they perform. Here, we used the recently sequenced 

potato genome as a case study. The potato genome was selected since its genome is newly 

sequenced and it is a non-model plant even if there is relatively ample information on 

individual potato genes, and multiple gene expression profiles are available. 

Results 

We show that the automatic gene annotations of potato have low accuracy when compared to 

a “gold standard” based on experimentally validated potato genes. Furthermore, we evaluate 

six state-of-the-art annotation pipelines and show that their predictions are markedly 

dissimilar (Jaccard similarity coefficient of 0.27 between pipelines on average). To overcome 

this discrepancy, we introduce a simple GO structure-based algorithm that reconciles the 

predictions of the different pipelines. We show that the integrated annotation covers more 

genes, increases by over 50% the number of highly co-expressed GO processes, and obtains 

much higher agreement with the gold standard. 

Conclusions 

We find that different annotation pipelines produce different results, and show how to 

integrate them into a unified annotation that is of higher quality than each single pipeline. We 

offer an improved functional annotation of both PGSC and ITAG potato gene models, as well 

as tools that can be applied to additional pipelines and improve annotation in other 

organisms. This will greatly aid future functional analysis of ‘-omics’ datasets from potato 

and other organisms with newly sequenced genomes. The new potato annotations are 

available with this paper. 
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Background 

Potato (Solanum tuberosum) is the 3rd largest food crop in terms of human consumption [1]. 

It is therefore important for our food security, and understanding its genome is called for. 

Examples of major challenges in potato research are its sensitivity to drought stress and its 

lack of resistance to certain diseases, e.g., the oomycete Phytopthora infestans, which caused 

the Irish famine in the 1840’s. Farmers need to use large amounts of fungicides to protect 

their potato crops, thereby increasing the cost of cultivation and threatening the environment. 

For example, the global cost of protection and yield loss due to P. infestans has been 

estimated at €4800 M annually [2]. 

Recently, the potato genome (Solanum tuberosum group Phureja) was sequenced by the 

Potato Genome Sequencing Consortium (PGSC). The PGSC analysis of the genome reported 

gene models for 39,031 representative transcripts, and 56,218 including splicing variants [3]. 

In a later effort, the International Tomato Annotation Group (ITAG) produced new gene 

models by jointly analyzing the tomato and potato genomes [4]. These new gene models 

covered 34,727 and 35,004 predicted protein-coding genes for the tomato and the potato 

genomes, respectively. Unfortunately, few experimentally validated genes (e.g., by 

fluorescent-tagged proteins, or gene knock-outs) are available in newly sequenced genomes 

in which, unlike established model organisms, few genes have verified functions such as the 

case is for potato. Comprehensive and accurate functional annotation of the genes in such 

recently sequenced genomes is a prerequisite to efficient exploitation of these genomic data. 

A key tool for functional annotation is the Gene Ontology (GO), which provides a structured 

set of defined terms representing gene properties [5]. The structure of gene ontology is 

composed of three major domains: cellular component (CC), the parts of a cell or its 

extracellular environment; molecular function (MF), the elemental activities of a gene 

product at the molecular level; and biological process (BP), which describes a set of 

functionally related molecular events. Thus, the complete GO structure provides a unified 

vocabulary of biological terms, which can also be used to evaluate biological similarity of 

different terms [6]. Annotating a gene means placing it within some or all of the three gene 

ontology domains. 

Recent advances in plant science are marked by the rapidly increasing availability and quality 

of high-throughput sequencing data. The most basic usage of these data is gene function 

prediction, wherein GO plays a pivotal part. There are several computational suites like 

EXPANDER [7], MapMan [8], Mercator [9] and AmiGO [10] that enable biologists to run 

GO enrichment analyses in several plant model systems. This is usually done by first 

identifying a group of genes that behave similarly in a given expression dataset, seeking 

ontology terms highly enriched in the group, and associating the highly enriched functions 

with unannotated genes that belong to the same group. This process is sometimes called 

“guilt by association”. Automated gene function annotation is also relevant for well-

investigated plant model organisms, such as Arabidopsis thaliana, tomato, Brachypodium 

and rice, wherein ~40% of the genes still do not have any known function [11]. 

In order to assign functional annotation to sequenced plant transcripts, researchers can use 

several sequence-based annotation pipelines. For a comprehensive summary of methods and 

principles behind automated functional annotation see [12]. Some recent efforts have been 

made to characterize the annotation quality of plant genomes. For example, Jaramillo-



Garzón, et al. [13] used sequence features and showed high predictability of MF and CC 

terms and lower predictability of BP terms. However, the analysis was limited to a small 

subset of the GO terms (GO-Slim). Ramsak, et al. [8] presented GOMapMan, a tool for 

visualization and analysis of gene annotation in plants. In potato, information from 

orthologous gene families across 26 sequenced plant genomes was analyzed in order to 

increase the number of potato genes associated with GO terms [14]. Still, a robust, automated 

approach to evaluate and compare genome-wide annotation pipelines is direly needed. 

A typical genome-wide functional annotation of newly sequenced organisms starts by using a 

single ‘default’ pipeline. Here, we analyzed the two sets of potato gene models, from the 

ITAG and PGSC. We compared six annotation pipelines: Trinotate HMM, Trinotate BLAST 

[15], OrthoMCL-UniProt [16], BLAST2GO [17], Phytozome [18] and InterPro2GO provided 

in BioMart [19] (Figure 1). These pipelines were chosen because they seek to provide a 

comprehensive annotation of the whole genome. Some of these pipelines are based solely on 

sequence similarity (BLAST), others rely on specific domains and some are based on 

clustering of groups of orthologous gene families. As we shall show, one clear conclusion of 

this work is that functional annotations of genomes should rely on more than one annotation 

pipeline. 

Figure 1 Overview of pipeline comparison, validation of accuracy and integration 

processes. (A) The PGSC and ITAG gene models were used as input for the six pipelines 

assessed. (B) The annotation from each pipeline was transformed into gene ID – GO term 

associations. (C) Annotations were compared by the number of annotated gene models, the 

number of GO terms associated per gene model, and GO similarity. (D) The quality and 

comprehensiveness of the annotation of each pipeline were calculated by comparing their 

predictions to experimentally validated annotation (gold standard). In addition, gene co-

expression data were used to test if genes predicted to share the same GO processes are 

significantly co-expressed. (E) An integrated annotation using the ensemble of results of all 

pipelines was created and validated using the same criteria in D. Results of the ensemble 

annotations were compared to those of the individual pipelines. 

By examining the GO terms generated by these pipelines, we demonstrate that they predict 

very dissimilar annotations (e.g., on average, less than 30% of the genes annotated by two 

pipelines are assigned with the same function). To evaluate the performance of the pipelines 

we first created a set of potato genes (hereafter referred to as “gold standard”), with known 

functional characterization, including genes from the well characterized biosynthetic 

Carotenoids pathway. We show that pipelines may have rather low accuracy compared to the 

gold standard. Since the size of the gold standard is rather modest (116 PGSC genes ids), we 

used an additional validation scheme based on gene expression data. Under the premise that 

genes participating in the same biological process should have more similar expression 

pattern than expected by chance, we evaluated the predictions of each pipeline based on its 

intra-process gene co-expression level. We show that while all pipelines provide much higher 

intra-process co-expression than expected by chance, there are large differences among the 

methods. We introduce a simple method to combine the results of the different pipelines into 

a single integrated annotation. Compared to the single pipelines, it improved gene coverage, 

prediction precision, and the overall co-expression of predicted GO processes. In addition to 

improved annotation of potato genes, our analysis provides generic tools that can be applied 

to improve the annotation of other newly sequenced plants. 



Results and discussion 

A compendium of the state-of-the-art annotation tools 

In this study, we tested automatic annotation pipelines on the potato genome. We used six 

state-of-the-art tools for GO gene function prediction: (1) Trinotate HMM, (2) Trinotate 

BLAST [15], (3) OrthoMCL-UniProt [16], (4) BLAST2GO [17], (5) Phytozome [18], and (6) 

InterPro2GO [19]. See Materials and Methods and Additional file 1: Methods S1-4 for 

details. We note that every program has its own set of parameters and fitting the best 

parameter combination for a particular dataset is a substantial effort. The common practice in 

this area is to use published tools with the default parameter values (see e.g. [20,21]. If 

necessary, we then mapped its predicted functions to GO terms using automated mapping 

files such as Pfam2GO, and the genes and transcripts to protein identifiers. Thus, in our 

analysis a gene corresponds to either a transcript or a protein that appeared in the output of 

the pipelines. Next, the output of each pipeline was summarized as a set of predicted gene-

GO term pairs. For each gene we then retained only the most “specific” GO terms. That is, in 

case a gene is associated with two GO terms A and B, but B is a generalization of A (i.e. an 

ancestor of A in the GO hierarchy), we excluded B. We call this step ancestor removal. Note 

that after filtering, many genes were still associated with more than one GO term, since a 

gene can have several associated annotations none of which is an ancestor of another. For the 

output of all pipelines, see Additional file 2: Table S1, Additional file 3: Table S2, Additional 

file 4: Table S3, Additional file 5: Table S4, Additional file 6: Table S5 and Additional file 7: 

Table S6 for PGSC, and Additional file 8: Table S7, Additional file 9: Table S8, Additional 

file 10: Table S9, Additional file 11: Table S10, Additional file 12: Table S11 and Additional 

file 13: Table S12 for ITAG. Although Gene Ontology has its limitations as it is biased 

towards what is already known, it is still a universal key tool for functional annotation 

inferring functionality based on sequence identity, domains and structure, and literature 

studies. 

Disparity among pipelines 

The output from each pipeline can be represented as a triplet (P, G, GO) where P is the set of 

all predicted gene-GO term pairs (after ancestor removal), G is the set of genes covered by P, 

and GO is the set of GO terms covered by P. We measured the pairwise similarity between 

the triplets obtained from the six pipelines used in the study. Three different ways were used 

to compare the output of two pipelines A = (PA, GA, GOA) and B = (PB, GB, GOB). First, we 

measured the overlap between the predictions of the pipelines PA and PB. This was done by 

calculating the ratio between the size of the intersection of PA and PB and the size of the 

union of PA and PB. This measure is called the Jaccard score [22,23]. Second, we measured 

the similarity between the covered gene sets GA and GB of the pipelines by calculating their 

Jaccard scores. These two scores are complementary: the first measures the overall similarity 

between A and B, whereas the second measures the tendency of A and B to cover the same 

genes. However, these scores ignore the GO structure and thus they are oblivious to the 

functional similarity among different GO terms. Therefore, we also used a similarity score 

based on the semantic similarity of GO terms [24]. Given a specific GO type GT (BP or MF), 

for each gene we measured the semantic similarity between its GO terms in A and its GO 

terms in B. We then took the average over all genes as the similarity of A and B in GT (see 

Methods for details). As this score uses the structure of the GO hierarchy, we call it structure-

based. 



An example of the structure-free similarity of the predictions is shown in Figure 2A. The 

figure shows the pairwise Jaccard score between the PGSC MF predictions of the pipelines. 

Overall the similarity is low, averaging 0.27. Nevertheless, local patterns can be observed. 

For example, InterPro2GO, Trinotate HMM, and Phytozome were more similar (average 

0.46). Figure 2B shows the Jaccard similarity between the PGSC genes annotated by the 

different pipelines. The mean similarity was a higher 0.54, which is still quite low. This 

indicates that different pipelines tend to cover different genes and, even when covering the 

same genes, they often associate distinct annotations to them. Even when re-computing the 

structure-free similarity restricted only for the genes shared by each pair of pipelines 

(considering both MF and BP predictions), the average score was only 0.27. 

Figure 2 Comparison of annotations of the PGSC genes by different pipelines. Each 

similarity matrix shows all pairwise similarities between the pipelines. (A) Structure-free 

Jaccard similarity of the MF predictions of the pipelines. (B) Jaccard similarity of the gene 

sets covered by each pipeline. (C) Structure-based similarity between the GO MF predictions 

of the pipelines. Unlike (A), the calculation here used the GO hierarchy to quantify the 

similarity of the predictions (see Materials and Methods). (D) Structure-based similarity 

between the GO BP predictions of the pipelines. 

The structure-based MF and BP similarity of PGSC genes is summarized in Figure 2C and 

2D. Similar matrices on ITAG data are shown in Additional file 1: Figure S1. Again, 

pipelines tend to be very different, with average similarity of 0.29 in BP and 0.42 in MF. The 

scores are higher than for the structure-free approach because the structure-based approach 

assigns higher scores when predictions are different but biologically similar. Also, like in the 

structure-free scores in Figure 2A, InterPro2GO, Trinotate HMM, and Phytozome formed a 

cluster both in BP and in MF. Taken together, the discrepancies among pipelines show that 

pipelines differ in the sets of genes they cover, and the annotation of the same genes in 

different pipelines can be quite dissimilar. 

Ensemble of pipelines 

The marked disparity in gene annotation by different pipelines calls for an integration of the 

different predictions in order to provide a unified potato gene annotation. We developed a 

simple ensemble algorithm inspired by previous studies [25]. Our algorithm takes as input the 

predictions of all pipelines and for each gene merges its predictions into a vector of scores 

denoted as the gene’s combined profile (Figure 3). Briefly, we first calculate the pipeline-

specific gene profiles. For a specific pipeline that predicted the pair (G, t), where G is a gene 

and t is a GO term, the t-th position of the profile is 1 if G is associated with t or at least one 

of its descendants, and otherwise it is 0 (top right in Figure 3). The combined profile of each 

gene G is the sum of its pipeline-specific profiles (Figure 3 right). The value in the combined 

profile of a gene shows how many pipelines agree with each gene-GO term association. 

Given a threshold k, for each gene we report all GO terms with a combined score ≥ k. This 

process produces a list of GO terms for each gene. We call this variant Ensemble-k. Finally, 

we apply the ancestor removal filter described above. Thus, each value of k produces a 

different variant of the ensemble algorithm. Figure 3 shows a toy example of Ensemble-1 and 

2. For clarity, in the next sections we use the name annotation method for both pipelines and 

variants of the ensemble algorithm. We also tested a more involved supervised ensemble 

method, which in addition ranks the pipelines by their average F-measure against a gold 

standard (see below), but this did not improve the results (see Additional file 1: Method S6). 



Figure 3 A simple example of the ensemble algorithm. The input (top left) is a set of GO 

terms, the GO graph, and association between genes and GO terms. The example shows the 

ensemble process of a single gene G. First, the pipeline-specific gene profiles are calculated 

(top right). A GO term is assigned a value ‘1’ in the profile if G is associated with it or with 

at least one of its descendants and ‘0’ otherwise. Second, the combined profile of G is the 

sum of its pipeline-specific profiles. The scores in the combined profile show how many 

pipelines agree with each of G’s GO term association. Given a threshold k, the GO terms 

with a combined score lower than k are removed to provide a final list of GO terms 

associated with G (bottom). Each different value of k constitutes a different variant of the 

algorithm. 

We compared the annotation methods in terms of gene coverage and the average number of 

GO terms per gene, which we denote as NGPG. Ideally, gene coverage should be as high as 

possible, while NGPG should be low [26]. The results are shown in Figure 4A and 4B. One 

can observe marked differences between the different pipelines, and between ITAG and 

PGSC gene models. For example, based on PGSC data, InterPro2GO and OrthoMCL-

UniProt have the highest gene coverage (29,445 and 26,371, respectively), and NGPG score 

(7 and 7.1, respectively). However, based on ITAG data, OrthoMCL-UniProt’s results were 

similar to those for PGSC, while for InterPro2GO the number of genes dropped under 20,000 

and the NGPG score increased to 8.1 (Figure 4B). 

Figure 4 Gene coverage and mean number of GO terms per gene (NGPG). For each 

annotation method (i.e., a pipeline and a variant of the ensemble algorithm) the gene 

coverage (A) and NGPG (B) are shown both for PGSC and ITAG gene models. 

Figure 4A and 4B also show the gene coverage and the NGPG of the ensemble algorithm. As 

expected, using either Ensemble-1 or 2 increased the gene coverage compared to the single 

pipelines using both ITAG and PGSC gene models. For example, based on PGSC the number 

of covered gene models (including splicing variants) was 41,668 (k = 1) and 29,495 (k = 2). 

Larger k values led to a sharp decrease in gene coverage, such that even single pipelines 

covered more genes. Using Ensemble-1, the NGPG score was similar to the highest score 

obtained by a single pipeline, reaching a score of 6.70 on PGSC data, and 8.15 on ITAG data. 

Ensemble-2 led to a sharp decrease in NGPG: 4.39 on PGSC, and 4.68 on ITAG. 

In summary, our results show that the ensemble algorithm increases the gene coverage 

considerably without increasing the NGPG score. Ensemble-1 increased gene coverage by 

more than 5000 genes on both ITAG and PGSC data, while keeping the NGPG score similar 

to that of the highest single pipelines. Ensemble-2 increased the gene coverage only 

moderately compared to the single pipelines but the NGPG score declined sharply compared 

to all pipelines (except Phytozome, but the latter has low gene coverage), hence providing 

much more focused annotations. In the next sections we demonstrate that the aforementioned 

improvements were not achieved at the expense of precision. 

Validation using the potato gold standard 

To evaluate predictions of the different annotation methods we compiled a gold standard of 

838 and 724 gene-GO term pairs based on PGSC and ITAG data, respectively, using manual 

annotation by experts (see Materials and Methods and Additional file 14: Table S13, 

Additional file 15: Table S14 and Additional file 16: Table S15). The number of genes 

included in the gold standard (43 with literature references, which are mapped to 116 PGSC 



gene ids, see Additional file 14: Table S13), is small, but in an organism such as potato it still 

contains the majority of genes with experimental evidence. We evaluated the annotation 

methods by calculating their GO-based precision and recall. Use of the GO structure to 

calculate scores for gold standard validation has been previously suggested by [27]. The GO-

based recall of a gene measures the extent to which its terms according to the gold standard 

are covered by its predicted GO terms. The GO-based precision of a gene measures the extent 

its predicted GO terms match the gold standard terms. For each pipeline we calculated the 

average precision and average recall (over the genes) and report the F-measure, which is the 

harmonic mean of the precision and the recall [28]. See Materials and Methods for a full 

description of these calculations. 

The results of the validation based on PGSC and ITAG data are illustrated in Figures 5 and 

Additional file 1: Figure S2, respectively. Figure 5A shows the F-measure for BP GO terms. 

Ensemble-1 and 2 reached F-measures of 0.8 and 0.77, respectively, while the top performing 

pipeline was InterPro2GO with only 0.61. Figure 5B shows the F-measure on the MF gold 

standard. Ensemble-1 and 2 reached F-measures of 0.84 and 0.83, respectively, whereas the 

top performing pipeline was InterPro2GO with an F-measure of only 0.71. Thus, the results 

are in agreement with the BP validation: Ensemble-1 and 2 performed best and improved 

upon the single pipelines. Taken together, our results indicate that Ensemble-1 and 2 provide 

a significant improvement in comparison to single pipelines. 

Figure 5 Validation of annotations based on gold standard. For each annotation method 

(i.e., a pipeline and a variant of the ensemble algorithm) the F-measure of the gold standard 

validation is shown on PGSC gene models, see Materials and Methods for a full description 

of the scores. A score of 1 means perfect agreement between an annotation method and the 

gold standard. A score close to zero means poor concordance with the gold standard. (A) F-

measure of the BP annotations. (B) F-measure of the MF annotations. The results show that 

both in BP and MF the ensemble algorithm improves the results considerably when used with 

k is 1 or 2. 

Validation using gene expression data 

An obvious disadvantage of any gold standard is that it is limited to experimentally validated 

genes and subject to the opinion of experts. Consequently, we added an additional validation 

based on gene co-expression analysis, where we measured the ability of pipelines to predict 

the same GO-term to highly co-expressed genes. Our co-expression analysis is based on the 

gene expression of 12,956 genes in 326 expression profiles from over 20 microarray studies. 

We used the Pearson correlation coefficient to measure co-expression between genes. 

We used the gene pairwise co-expression scores to validate predicted GO BP terms. In order 

to reduce noise, we ignored terms with >500 genes, or with fewer than five genes. Given a set 

of genes predicted to be associated with the same GO term according to a specific annotation 

method, we tested if the level of co-expression among its genes is higher than expected by 

chance (see Materials and Methods for details). Thus, for each term in a specific annotation 

method we calculated a single p-value. To summarize these values when comparing methods 

we calculated two scores: (1) the number of GO terms with p <0.001, and (2) the percentage 

of GO terms with p <0.001 (out of all predicted terms with at least three genes). The former is 

a measure of coverage of significant GO terms, whereas the latter is a measure of quality of 

the predicted GO BP terms. Similarly to the gold standard, this analysis simply aimed to 



compare pipelines. Future work can use similar approaches to select highly co-expressed GO 

terms from different pipelines for subsequent analyses. 

The results of the gene co-expression validation based on PGSC data are shown in Figure 6. 

See Additional file 1: Figure S3 for results of ITAG. The top two pipelines in terms of the 

number of significant GO terms were InterPro2GO (n = 411) and BLAST2GO (n = 345). The 

top two pipelines in terms of the percentage of significant GO terms were InterPro2GO 

(35%) and Phytozome (30%). The ensemble algorithm markedly improved the number of 

significant GO terms: Ensemble-1 achieved 718, and Ensemble-2 achieved 650. However, 

the ensemble methods did not improve upon the single pipelines in terms of the percentage of 

significant GO terms: Ensemble-1 and 2 achieved 22% and 27%, respectively. Nevertheless, 

the score of Ensemble-2 was better than all pipelines except for InterPro2GO and Phytozome. 

Thus, the ensemble approach provided an improvement of at least 1.5-fold in the number of 

significant GO terms, at the expense of a drop of 8% in the percentage of significant GO 

terms compared to the best pipeline. Note that the co-expression and the GO analyses are 

complementary, since the gold standard genes do not manifest unusually high co-expression 

(see Additional file 1: Methods S7). 

Figure 6 Validation of annotations based on co-expression. Given a set of PGSC genes 

linked to a biological process by a specific annotation method (i.e., the pipelines or a variant 

of the ensemble algorithm) the average co-expression of the genes was compared to that of 

random gene sets. For each annotation method the number of GO terms with p <0.001 (A), 

and the percentage of GO terms with p <0.001 (B) are shown. Ensemble-2 has a lower 

percentage of significant GO terms compared to the best single pipeline (BioMart), but it has 

>1.5 fold more significant GO terms. 

Merging the different merits using a rank-based comparison 

Our analysis shows that the ensemble approach is beneficial according to most criteria. 

However, since we used multiple ways to score the methods, it is hard to decide which k 

value is best and which pipelines are better. To provide a clear unified view we used a non-

parametric rank-based consolidation of the different scores [29]. In the previous sections, for 

each annotation method we calculated two F-measure scores in the gold standard analysis and 

two scores in the gene co-expression analysis. In addition, we compared the annotation 

methods by their gene coverage and NGPG. Note that when ranking methods by their NGPG 

score, lower scores are better. In contrast, when ranking methods by their gene coverage, 

higher scores are better. To consolidate these different scores, we used six rankings: by gene 

coverage and the NGPG score, by the two F-measures of the gold standard validation and by 

the two scores of the gene co-expression validation. We reversed the scores when necessary 

so that rank 1 was the best for each method, averaged the rankings and ranked the methods by 

their average rank. We call this score rank-merge. 

Figure 7 displays the rank-merge results on PGSC (A) and ITAG (B) data. The top three 

methods are colored black. In both cases the top method was Ensemble-2, with an average 

rank of 1.66 in PGSC and 1.16 in ITAG. Among the different pipelines evaluated, Phytozome 

obtained the top score for PGSC data with an average rank of 3.66 while BLAST2GO 

obtained top score for ITAG data with an average rank of 3.50. Note that Ensemble-1, 2, and 

3 were ranked consistently high in both tests. See also Additional file 17: Table S16 for 

PGSC and Additional file 18: Table S17 for ITAG. Thus, we conclude that the ensemble 

approach, especially with k = 2, is beneficial and can assist in integration of different gene 



function prediction pipelines. See Additional file 1: Method S5 for details on reproducing the 

results and applying the pipeline to new genomes. 

Figure 7 Rank-based consolidation of the different figures of merit. A non-parametric 

rank-based consolidation of the different scores of the annotation methods was used for a 

unified comparison. First, six rankings were calculated: by gene coverage, by NGPG, by the 

two F-measures of the gold standard validation, and by the two gene co-expression 

validations scores (i.e., the number and the percent of significant GO terms). To merge the 

different rankings we used the average rank. The results show that both for PGSC (panel A) 

and for ITAG (panel B), Ensemble-2 has the best average rank. 

Note that using k = 1 is equivalent to assigning to each gene all its annotations from all 

pipelines (and their ancestors) and then performing ancestor removal. While this method is 

the most intuitive ensemble, we show here that varying the k parameter can improve the 

annotation of genomes. 

A seemingly natural test case for our approach is to evaluate it in predicting function of 

Arabidopsis genes. However, it is not clear how this can be done in a rigorous and unbiased 

manner. Tools for functional annotation of genes in newly sequenced plants are heavily 

dependent on sequence similarity to genes in model species such as Arabidopsis. In order to 

test such tools in predicting Arabidopsis gene functions, one has to exclude all the 

annotations directly – or indirectly – derived from Arabidopsis. Doing so would entail tracing 

indirect annotation sources, which often are not recorded in the pipelines. Instead, we used 

the newly sequenced potato genome along with experimentally verified gene functions and 

rich gene expression data in our evaluation. 

Conclusion 

For recently sequenced, non-model organisms, automatic functional annotation of genes, 

which also mainly relies on sequence-based prediction, often suffers from low gene coverage 

and poor specificity. We confirmed that this is the case for the potato genome by analyzing 

six state of the art annotation pipelines. 

We observed that the predictions of different pipelines for functional annotations of genes are 

markedly different, in spite of the fact that all pipelines are based on sequence analysis. We 

showed that combining predictions from several pipelines increases both the coverage and the 

accuracy of gene ontology predictions. The simple ensemble approach used here could be 

applied easily to other sequenced genomes and improve functional annotation by taking 

advantage of different GO prediction tools. However, a comparison of the consistency among 

pipelines is not enough when the goal is to either select the best pipeline or to integrate the 

different predictions. The pipelines should also be evaluated based on the precision of their 

predictions. The most intuitive way is to compare the pipelines to a set of known annotations. 

However, in newly sequenced organisms such as potato, known annotations are scarce in the 

main public databases. To overcome this, we compiled a gold standard of experimentally-

validated gene-GO associations. Although this gold standard is relatively small, we have 

found it useful for comparing pipelines. Furthermore, to overcome the limited number of 

genes in the gold standard, we used a second validation method based on gene co-expression 

testing the ability of pipelines to predict co-expression of genes associated to the same GO-

term. 



Finally, we introduced an integrated annotation of the different pipelines that outperformed 

the single pipelines both in the gold standard validation and in the co-expression validation. 

Our integration approach depends on selecting a parameter k that corresponds to the 

stringency by which we filter out gene-GO associations. That is, when associating a gene to a 

GO term, at least k pipelines must agree with this association. Thus, we have implicitly 

assumed that each of the pipelines we used has meaningful predictions. Moreover, all 

pipelines have the same weight in the integration process. Future analyses can seek methods 

that give more weight to better pipelines, or add an initial step that filters out pipelines of 

exceptionally low prediction quality. The new functional annotations of the potato genome as 

well as for the probes on the JHI Solanum tuberosum microarray are available with this paper 

(Additional file 17: Table S16, Additional file 18: Table S17 and Additional file 19: Table 

S18). We also provide tools as open source R code for implementing the methodology with 

additional pipelines and for other sequenced organisms. 

Methods 

Executing the functional annotation pipelines 

We defined a pipeline as an automated process that predicts association between genes and 

functions. The input to a pipeline can be DNA sequence, protein sequence, or protein 

domains. The output of a pipeline is a set of pairs in the form of (gene ID, GO term ID). We 

ran all pipelines for the ITAG (potato.Sotub.proteins.itag.v1.fasta) and PGSC 

(PGSC_DM_v3.4_pep_representative.fasta) gene models separately, using default settings as 

follows: 

The OrthoMCL-UniProt pipeline 

We ran the OrthoMCL [16] pipeline in two steps: 

1. Building the clusters of homologs: We retrieved from Phytozome (v9.1) 16 plant 

proteomes, covering the whole plant phylogeny. Together with the proteomes predicted 

from the potato PGSC and ITAG gene models, we aligned the proteomes against each 

other using blastp [30]; (parameters: −e-value: 1e-05 -outfmt 6). We then used OrthoMCL 

v2 to build clusters of homologous proteins. 

2. Annotating GO terms: To annotate every protein sequence of the 18 complete plant 

proteomes with GO terms we ran a blast search against the entire UniProt database 

(version 2013_08) [31] with an e-value cut-off of 1e-10. For every protein sequence we 

kept a ranked list of the ten best hits (i.e. hits with the lowest e-value). We associated the 

first hit in the list that had GO annotation in UniProt. An OrthoMCL cluster then inherits 

all GO terms associated with its proteins, and each PGSC (and ITAG) protein inherits the 

GO terms of its cluster. 

For complete protocol details refer to the Additional file 1: Method S2. 

The BLAST2GO pipeline 

Using the BLAST2GO interface [17], we blasted the PGSC and ITAG protein sequences 

against the NCBI NR database (blastp parameters: −e-value: 1e-05 -max_target_seqs 20 -

outfmt 5). We then loaded the blastp output files into Blast2GO (v2.6.6, with default 



parameters) and assigned GO terms to the PGSC and ITAG sequences according to its 

output. 

The trinotate pipeline 

In the Trinotate suite [15] we used default settings for the NCBI-BLAST (SwissProt), 

HMMER [32], and Pfam [33]. For complete protocol details refer to the Additional file 1: 

Method S3. 

The phytozome pipeline 

We downloaded the potato annotation from Phytozome v9.1 

[http://www.phytozome.net/potato.php; 18] (http://www.phytozome.net/potato.php). The 

gene annotation is Solanum tuberosum Group Phureja DM1-3 516R44 (CIP801092) Genome 

Annotation v3.4 mapped to pseudomolecule sequence 

(PGSC_DM_v3_2.1.10_pseudomolecules.fa). 

InterPro2GO data from BioMart 

We downloaded the potato data from (http://central.biomart.org/). GO terms in BioMart are 

derived from the semi-automated InterPro2GO [19]. 

Formatting pipelines 

In order to compare pipelines, we mapped their predicted annotation to a set of common 

Gene Ontology (GO) terms. If the original pipeline output was not in GO term IDs it was 

mapped to GO IDs using the gene ontology consortium mapping files for GO terms. We 

applied this procedure to the pipelines Trinotate, InterPro2GO, BLAST2GO, Phytozome, and 

in mapping of orthologous and paralogous gene families in 18 sequenced plant species by 

OrthoMCL clustering. 

Composing the potato ‘gold standard’ 

A ‘gold standard’ set of potato genes was constructed based on literature evidence from 

functional gene studies by wet-lab experiments in potato reported in PlantCyc 

[http://pmn.plantcyc.org/PLANT/organism-summary] and a few additional studies on potato 

[34-37]. In total a list of 43 potato genes/proteins was created (Additional file 14: Table S13). 

These protein names were searched for their corresponding identifiers published by the PGSC 

[3], resulting in 116 unique PGSC gene identifiers. 

The aforementioned list of genes matched 1658 GO terms from all six tested pipelines. Each 

gene-GO term association was then manually scored with the help of literature searches in an 

unbiased manner, where the experts assigning scores to GO-associations did not know from 

which pipeline the annotation originated. Every GO term in the set was scored as ‘1’ (low 

evidence), ‘2’ (neutral or unknown) and ‘3’ (high evidence). In the final analysis only 

association scores of 3 were used for the gold standard, producing 838 annotations 

(Additional file 15: Table S14). To perform analyses on both gene models, PGSC genes were 

mapped to ITAG genes using BLAST (identity >95%, length >100 amino acids). This 

produced an ITAG gold standard with 724 annotations (Additional file 16: Table S15). 



Comparing pipelines and gold-standard evaluation 

Mathematical notations 

In the Results section we sketched the calculations for comparing pipelines and evaluating 

pipelines against the gold standard. Here, we provide a full description of these calculations. 

For this purpose we start here with more detailed definitions. 

Let G be the set of all genes in the tested organism and let T be the set of all GO terms. The 

output of a pipeline P is a set of pairs P = {p1, …, pk} where each annotation pair pi = (gi,ti) is 

an association between a gene gi (in G) and a GO term ti (in GO). Let BP(P) be the subset of 

P resulted from taking all pairs in P in which the term t is a biological process. Similarly, 

define MF(P) for molecular function, and CC(P) for cellular component. Below we define 

functions of pipelines. Note that by definition each of BP(P), MF(P), and CC(P) is a set of 

pairs. Thus, in the definitions below P is either the original output of a pipeline or the result 

of applying BP, MF, or CC on it. 

We define Genes(P) as the set of genes covered by P and Terms(P) as the set of GO terms 

covered by P. We define Genes(P,t) as the set of genes associated with a GO term t according 

to P, and Terms(P,g) as the set of GO terms associated with a gene g according to P. Finally, 

we denote Sem(ti,tj) as the semantic similarity between two GO terms ti and tj. Semantic 

similarity here is a measure that quantifies the closeness of two terms in the GO graph. There 

are several ways to calculate semantic similarity among GO terms. In this study we used 

Wang’s method [6,24]. 

Jaccard coefficient between two pipelines 

The Jaccard coefficient is a generic measure of similarity between two sets. It is defined as 

the ratio between the size of the intersection of the sets and the size of the union of the sets. 

For example, given two pipelines P1 and P2, denote intersect(P1,P2) as the set of annotation 

pairs that are both in P1 and in P2, and let union(P1,P2) be the set of annotation pairs that are 

either in P1 or in P2. The Jaccard coefficient Jpipeline(P1,P2) is the ratio between the number of 

annotation pairs in intersect(P1,P2) and the number of annotation pairs in union(P1,P2). In 

addition, we calculate the Jaccard coefficient JGenes(P1,P2) between the gene sets Genes(P1) 

and Genes(P2) to measure the tendency of two pipelines to annotate the same genes. 

Structure-based similarity between two pipelines 

The Jaccard measure above is oblivious to the functional similarity among GO terms. Thus, 

we used semantic similarity as a means to define a structure-based similarity between two 

pipelines P1 and P2. We start by defining the similarity between the set of annotations of a 

single gene. Given a gene g our goal is to measure the semantic similarity between 

Terms(P1,g) and Terms(P2,g). As a first step we define the similarity between a single GO 

term t and a set of GO terms T’ as: 
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This score is high only if T’ contains t or similar GO terms. Next, we use this score to 

calculate the similarity between Terms(P1,g) and Terms(P2,g) using the running-max-average 

[6]: 

1 2
2 1, ,

1 2

2 1

'( ,  ( , ))    '( ,  , )
( , , )      

, | , |

i j
i jt Terms P g t Terms P g

Sim t Terms P g Sim t Terms P g
rmaxa P P g

Terms P g Terms P g
 
 

This score will be high only if Terms(P1,g) covers the biological functionalities of 

Terms(P2,g) and vice versa. Finally, the overall similarity between P1 and P2 is the average 

gene-wise similarity: 
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GO-based precision and recall 

The calculations above measure similarity among pipelines. Here we define a way to measure 

the precision and recall of a pipeline P compared to a gold standard GS. Similarly to P, GS is 

a set of annotation pairs {gs1, …, gsk} where each pair gsi = (gi,ti) is an association between a 

gene gi (in G) and a GO term ti (in T). We first define the precision of a single gene g. The 

GO-based precision of pipeline P for gene g measures the extent by which Terms(P,g) is 

covered by Terms(GS,g): 

,
' ,  ,  

, ,  
,

i
it Terms P g

Sim t Terms GS g
prec P GS g

Terms P g
 

 

The precision of P is defined as the average precision of the genes in Genes(G): 
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The GO-based recall of pipeline P for gene g measures the extent by which Terms(P,g) 

covers Terms(GS,g): 
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The recall of P is defined as the average recall of the genes in Genes (G): 
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Microarray data preprocessing and normalization 

We have integrated potato gene expression data from over 20 studies based on the Agilent 

JHI Solanum tuberosum 60 k v1 microarray (ArrayExpress ID: E-MTAB-1655) processed at 

the James Hutton Institute using standard Agilent recommended methodologies [38]. The 

studies included 326 conditions derived from the following treatments: moderate heat-stress 

[38], short- and long-day growth regimes [39], bruising, phosphorous growth regimes, 

acidity, Phytopthora infestans infection [40], and phosphite [41], BABA [14], ABA, 

brassinosteroid, SA treatment. Varietal differences and tuber, stem and leaf tissues were 

included. 

We applied quantile normalization using the Limma package [42] and subtracted the 

background intensity from the foreground intensity for each spot using the ‘normexp’ method 

[43]. Our normalized expression matrix contained 52,998 probes. In order to reduce statistical 

noise and to focus on genes with high variation we removed both probes with consistently 

low expression values across the samples and probes with low variance. Thresholds for probe 

removal were adjusted as proposed in [44], see Additional file 1: Method S4 for more details. 

14,000 probes remained in the data. These probes were mapped to 12,956 genes, 

approximately the same amount of genes analyzed in Tzfadia, et al. [44]. 

Evaluating co-expression of predicted GO processes 

Given a gene set U associated with a specific GO term, and a gene expression matrix X with 

genes as rows, we first calculate the Pearson correlation between all pair of genes in U using 

their expression profiles in X. To evaluate if the correlations in U tend to be higher than 

expected by chance we sample random gene pairs in X and calculate their correlation to get a 

distribution of random correlation scores. We used the Kolmogorov-Smirnov test to compare 

the real correlations scores of U to the random correlation scores. To improve robustness, we 

repeated this process 50 times for each gene set U and used the mean p-value over all repeats. 

Abbreviations 

GO, gene ontology; PGSC, potato genome sequencing consortium; ITAG, international 

tomato annotation group; CC, cellular component; MF, molecular function; BP, biological 

process; NGPG, number of GO terms per gene. 
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