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Abstract
As the use of large-scale data-driven analysis becomes increasingly common, the need for

robust methods for interpreting a large number of results increases. To date, neuroimaging

attempts to interpret large-scale activity or connectivity results often turn to existing neural

mapping based on previous literature. In case of a large number of results, manual selection

or percent of overlap with existing maps is frequently used to facilitate interpretation, often

without a clear statistical justification. Such methodology holds the risk of reporting false

positive results and overlooking additional results. Here, we propose using enrichment anal-
ysis for improving the interpretation of large-scale neuroimaging results. We focus on two

possible cases: position group analysis, where the identified results are a set of neural posi-

tions; and connection group analysis, where the identified results are a set of neural posi-

tion-pairs (i.e. neural connections). We explore different models for detecting significant

overrepresentation of known functional brain annotations using simulated and real data.

We implemented our methods in a tool called RichMind, which provides both statistical sig-

nificance reports and brain visualization. We demonstrate the abilities of RichMind by revis-

iting two previous fMRI studies. In both studies RichMind automatically highlighted most of

the findings that were reported in the original studies as well as several additional findings

that were overlooked. Hence, RichMind is a valuable new tool for rigorous inference from

neuroimaging results.

Introduction
To date, functional interpretation of large-scale neuroimaging findings is often done by associ-
ating the identified regions to known classes (e.g., anatomic structures or functional networks).
This process of using previous knowledge to ascribe functional meaning to findings is com-
monly based on a subjective visual inspection or on percent of overlap with existing maps [1–
5]. Such methodology, which is not based on statistical justification, holds the risk of reporting
false positive results and overlooking additional results. For example, Nummenmaa et al.
(2012) analyzed fMRI signals recorded from 16 healthy participants, while viewing film clips
depicting unpleasant, neutral, and pleasant emotions. They identified cerebral regions where
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inter-subject correlations (ISC) were significantly correlated with subjective reports of valence
and arousal provided by the participants. In order to interpret the findings, the authors subjec-
tively associated the identified regions to known functional networks. They reported that arousal
was mostly associated with ISC in regions of the sensori-motor network (SMN), visual network
(VN) and dorsal attention network (DAN) while valence was negatively associated with ISC in
regions of the default mode network (DMN) as well as regions known to be involved in emo-
tional processing [2]. However, as in many neuroimaging studies, no quantitative statistical mea-
sure was presented to support this association of findings to functional networks. An even more
complex case is the case where the identified findings are a collection of neural position pairs (i.e.
connections). When this collection is very large, as may occur in data-driven studies [6–8], inter-
pretation becomes challenging. In some cases, this challenge is faced by filtering the results either
by manual selection or by repeating the analysis using a stricter statistical threshold. For example
Wang et. al. (2013) reported a set of 363 functional connections that differed between a group of
amnestic mild cognitive impairment (aMCI) patients and healthy controls. These connections
were identified using the network-based statistic approach [9] with a predefined 1024 functional
parcellation [1, 10]. In order to avoid the complexity of interpreting such a large set of connec-
tions, the network-based statistic analysis was repeated using a stricter statistical threshold, pro-
ducing a set of 87 connections that was subsequently interpreted.

An alternative approach to interpreting such a large set of findings is to test whether the
results contain significantly more elements with a specific class than expected by chance. For
instance, one can examine whether an identified set of weakened connections in terms of
DMN-SMN connectivity, and explore whether aMCI is associated with a significantly large
number of weakened connections linking the DMN with the SMN. If the answer is positive, we
say that the corresponding class (i.e. DMN-SMN) is enriched in the identified collection. Such
enrichment (or over-representation) can be assigned with a statistical significance value under
an appropriate null hypothesis [11].

In this study we propose using enrichment analysis to facilitate and improve the interpretation
process of large-scale results obtained from fMRI studies. Notably, the term enrichment analysis
in this case refers to the analysis of significance of class overrepresentation within sets (i.e. over-
lap) [11–13], and not to the analysis of significance of class distribution across a ranked set [14].
We address two cases: In the first case the identified results are a set of neural positions. For
example, these positions could be a set of voxels that demonstrate increased activation under a
specific condition. In this case, we call the enrichment analysis position group analysis. In the sec-
ond case, the identified results are a set of neural position pairs (i.e. neural connections). For
example, they can be pairs of neural positions demonstrating increased functional connectivity
under a specific experimental condition [6–8]. In this case, we call the enrichment analysis con-
nection group analysis. In both cases, in addition to the study results we are given an annotation
of the brain that maps neural positions to classes representing known neural functions (e.g. [15–
17]), or anatomic structures (e.g. [18–20]). We examined different models for detecting signifi-
cant overrepresentation of known functional brain annotation using simulated and real data.

We implemented our methods in RichMind, an open-source Matlab-based computational
tool that provides both statistical significance reports based on our suggested enrichment anal-
ysis methods, as well as brain visualizations. We demonstrate the abilities of RichMind by rean-
alyzing two previous fMRI studies: the first of subjects viewing emotion-inducing film clips [2],
and the second of subjects suffering from aMCI [1]. We show that by using enrichment analy-
sis, we were able to provide statistical validation to most of the conclusions drawn in the origi-
nal studies, while revealing additional statistically significant results. In addition we show how
enrichment analysis allows interpreting a large set of results without having to apply additional
filters, as often applied in studies, thus, allowing more accurate interpretation of the results.
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Methods

Neural annotation
A neural annotation is a mapping of neural positions to known classes. The annotation is
based on previous knowledge, and can contain anatomic structure (E.g. Anatomic atlas labeling
[21]), known functional mapping (E.g. functional networks identified in previous studies [15,
22]), previously known pathology association, etc.

In the current study we used two sets of annotations that are based on functional neural
mapping. The first was used in [2] and it consists of 6 functional networks, and the second
annotation was used in [1] and it consists of 5 functional brain networks. In our simulation, we
used a made-up dummy annotation.

The Hypergeometric test
In this study, we use the hypergeometric (HG) test to calculate the significance of the overlap
of two sets. The test is demonstrated in Fig 1. We are given a set S ofM items, which we call the
background set, and two subsets A� S and B� S, of sizes N and K, respectively. (For example,
S can be the set of brain positions considered, A is the set of positions identified in the experi-
ment, and B is a particular subset of the positions annotated with a known structure or func-
tion, e.g. the cerebellum.) Let x be the size of the intersection between A and B. Is that
intersection size meaningful or random? Here, our null hypothesis is that the N items in A
were sampled randomly and independently from S without replacement. Therefore, the signifi-
cance of the observed value x is the probability of having x or more elements in the intersection,
which can be calculated using the HG cumulative distribution function, given in Eq 1. Notably,
the Hypergeometric test is equivalent to a one-tailed Fisher’s exact test. Equation variables are
listed in Fig 1.

p ¼ F xjM;K;Nð Þ ¼PminðN;KÞ
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Fig 1. A demonstration of HG test setting: given a background set S, which contains M elements (starts), a specific annotation set B with K
elements, and a randomly sampled set A with N elements, HG test estimates the probability of having x or more elements of B in A.

doi:10.1371/journal.pone.0159643.g001
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Position group enrichment analysis using the HG test
Here, the study identified a group of neural positions (e.g., voxels or parcels) Ap out of a back-
ground set S. We wish to consider the significance of the overlap of Ap with another subset of
neural positions B from S, which constitutes a known annotation class (e.g., an anatomically
defined brain region or a set of regions that share a specific function or form a particular net-
work). Our goal is to decide whether the number x of positions that are both in group Ap and
class B is larger than expected by chance.

Connections group enrichment analysis
Here the study identified a group of connections (i.e. pairs of neural positions) Ac = {(x1,
y1),. . .,(xn,yn)}, where each xi and each yi represents a neural position (e.g. voxel or parcel).
This set can also be viewed as the set of edges in a graph G(S, Ac), where S is the set of neural
positions. In addition we are given two disjoint subsets of S, C and D, each of which constitutes
a known annotation class (e.g. C is the precuneus and D is the basal ganglia). Our goal is to
decide whether the number of connections between C and D that are also in Ac, denoted as a
(Ac,C,D), is larger than expected by chance. In this work, we test two approaches for this task:
(1) a parametric approach that uses the HG test; and (2) a non-parametric test based on per-
mutations. While the first test is relatively simple and easy to compute, it ignores the degree
distribution in the graph represented by the neural connections. This is addressed by the sec-
ond test, which uses permutations to create a large set of random graphs with the same node
degrees. These two tests have been validated on simulated data (See S1, S2 and S3 Figs), and the
difference between them is illustrated in S1 and S4 Figs. In the next two sections we use the
same notation as above.

Parametric connection group analysis using the HG test
Here, we use the HG test with the following parameters. N is the number of pairs in Ac. M (i.e.,
the background set size) is the number of all possible neural pairs: M = |S|(|S|-1)/2. K = |C|�|D|
is the number of possible pairs between C and D. Finally, x is the observed number of pairs
between C and D—a(E,C,D). The underlying null hypothesis of this test is that the graph G
was randomly selected from the set of all graphs with the same number of edges N over the
same set of nodes.

Non-parametric degree-preserving analysis
The HG approach for connection groups does not account for the degree distribution in the
graph G. The importance of this distribution has been previously observed in brain networks
[23, 24]. We therefore propose an additional non-parametric test. Here, our null hypothesis is
that the graph G was randomly selected from the set S of all graphs with the same node
degrees. In other words, S is the set of graphs with node set S such that each node has the same
number of neighbors as in G.

We calculate the p-value empirically by drawing graphs from S using a heuristic rewiring
step: remove two disjoint edges in the current graph and replace them by two others so that
node degrees remain unchanged. A long chain of such steps leads to a near-random sampling
from S [25]. The method has been successfully used in multiple bioinformatics applications
[26, 27]. Given a set of graphs generated using this process we calculate for each one the num-
ber of observed edges between C and D. This step produces a vector of scores a = a1,. . .,am (by
default we generate m = 1000 randomized graphs). The final empirical p-value is the fraction
of scores in a greater than or equal to a(E,C,D). We call this process degree preserving
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permutation (DPP), as the edges in each random graph generated form a permutation of the
original edges that also preserves the degree constraints.

The DPP and the HG tests use different null models and hence can differ in their sensitivity
depending on the data. The HG test assumes that all possible graphs with N edges are equally
likely to be selected, and the DPP test assumes that only graphs with N edges and with the
same number of neighbors for each node are equally likely to be selected. As a result, the for-
mer is more sensitive when the number of identified connections between C and D is relatively
high compared to M, while the latter is more sensitive when the identified connections between
C and D is relatively high compared to the number of identified connections involving C or D.
See S1 Text and S1 and S4 Figs for an example and simulations that demonstrate the
difference.

Multiple testing correction
Since enrichment is tested for each combination of an identified collection and a class, the out-
put contains multiple p-values. Therefore, we correct for multiple testing at a false discovery
rate (FDR) of 0.05 using the procedure suggested by Benjamini and Hochberg (BH) [28]. The
FDR approach controls for the rate of false discovery, and is considered to be more powerful
than methods that control for the family-wise error rate such as Bonferroni approach [28–30].
The FDR-adjusted p-value of each enrichment is called its q-value [31].

Results
We implemented the two statistical tests for enrichment in results of fMRI studies in a Matlab-
based tool called RichMind. Below, we first give a brief explanation on the input and output of
the tool. Next, we show two case studies in which we apply RichMind to real fMRI data.

RichMind–a toolbox for analysis of enrichment of fMRI results
RichMind receives as input a collection of items identified in a neuroimaging study. These can
be either (1) one or more sets of neural positions for position group analysis, or (2) a set of neu-
ral position-pairs for connection group analysis. Each set of positions in (1) can be input using
(a) a 3D NIFTI file, containing at each position a numerical group identifier (the number of
the set to which that position belongs), (b) a tabular text file, in which each line contains a
numerical position identifier followed by a numerical group identifier, or (c) a Matlab data file,
in which each line contains a numerical position identifier followed by a numerical group iden-
tifier. Sets of position-pairs in (2) can be input using similar formats as (b) or (c) with three col-
umns, where the first two columns contain position identifiers and the third column contains
the group identifier. In addition to the groups file, the collection of all positions considered in
the experiment is required. This collection is used to define the background set, and should
preferably include all positions used in the initial analysis that yielded the interest groups. The
file can be a 3D NIFTI file, a tabular text file or a Matlab file. In both cases each line should con-
tain the MNI coordinates of a single position, and the line number is used as the position iden-
tifier in (1) and (2).

RichMind uses an established neural annotation, attributing neural positions to meaningful
terms. These classes reflect prior knowledge of brain function or anatomic structure, so they
can be anatomic labels, functions, pathology association, etc. By default, RichMind uses the
functional neural mapping provided in [15] as the annotation. Alternatively, it provides an
option to use the anatomic mapping provided in [32], or any other mapping provided by the
user. In each type of analysis RichMind calculates the p-values for over-representation of the
classes (see Methods for details). When using the DPP test, if k is the number of graphs
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sampled, then the minimum empirical p-value that can be obtained is 1/k. Thus, a larger k
increases the maximum significance achievable, but also the test runtime. For example, in case
study 2, running DPP with 1000 graphs gave a maximum significance of 10−3 and took 212 sec-
onds on a quad core Pentium i7 processor, with 8Gb RAM. Since many groups are tested, the
use of nominal p-values is inadequate and correction for multiple testing is needed. Hence, all
p-values are corrected for multiple testing using the false discovery rate (FDR) method [28]
and q-values are reported. Alternatively, the user can choose the more stringent Bonferroni
correction.

Finally, RichMind reports a list with all significant enrichments (0.05 FDR by default), and
also produces bar plots that display the p-value and an additional measure of enrichment level
called the “frequency ratio” result (see Figs 2A and 3A for examples). The frequency ratio is the
ratio between fraction of class members in the tested set and in the background set. This mea-
sure evaluates how frequent is the class representation in the set vs. the background. High
ratios indicate over-representation, but do not have direct statistical significance as p-values,
and should be used cautiously when comparing results that involve classes of very different
sizes. On the other hand, when class or sets are too small to provide significant p-values, high
ratios can call attention to particular results. Ratios should be used cautiously when comparing
results that involve classes of very different sizes. For each reported result, brain 2D and 3D
views overlaying the neural positions (or connections) are available by clicking on the result
(see Figs 2B and 3B for examples). In addition, one can export these overlay graphs into files
that can be loaded to the BrainNet viewer [33] (see Figs 2B and 3B for examples).

Case Study 1: Inter-subject correlation identified while watching emotion
inducing film clips
Here we revisited findings reported by Nummenmaa et al. (2012), who identified ISC maps
that were correlated with self-reported valence and arousal scores. ISCs were based on fMRI
data recorded from 16 healthy participants, while viewing film clips depicting unpleasant, neu-
tral, and pleasant emotions. ISCs were derived by calculating, for each voxel, the Pearson corre-
lation coefficient of the BOLD time series recorded in each pair of subjects. This was done both
for the entire time frame and for sliding windows of 17 time points. Ongoing measures of self-
reported valence and arousal provided by participants were used as regressors in a general lin-
ear model (GLM), to identify significantly associated ISCs. Results were interpreted by the
authors in the context of six functional networks extracted using seed-based functional connec-
tivity analysis on the same data–the VN, SMN, AN, DMN, DAN and the executive control net-
work (ECN). The authors reported that arousal was mostly associated with ISC in the SMN,
VN and DAN while valence was negatively associated with ISC in the DMN as well as in
regions involved in emotional processing, such as midbrain, thalamus, ventral striatum, insula,
and anterior cingulate cortex [2]. No quantitative statistical measure was presented to support
this interpretation.

We ran RichMind position group analysis on two sets of cerebral regions: one where ISC
was inversely associated with self-reported valence, and another where ISC was positively asso-
ciated with self-reported arousal. All gray matter voxels were used as background for enrich-
ment test. The mapping of voxels to the six functional networks was taken from the original
paper. The results are presented in Table 1 and Fig 2. RichMind identified arousal associated
ISC to be enriched with regions involved in AN (q = 1.28E-10), SMN (q = 1.85E-10), DAN
(q = 9.28E-09), and VN (q = 9.26E-11), and valence associated ISCs to be enriched with DMN
(q = 9.26E-11), SMN (<1.4E-37) and ECN (q = 6.59E-09). These results recapitulate the results
of the original paper. However, they add additional findings of AN enrichment within arousal
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Fig 2. RichMind results visualization for case study 1: (a) Bar plots displaying the p-values and frequency ratios of enrichment analysis results. Each
bar is colored according to the enriched class. (b) 2D and high-resolution 3D brain visualization, which shows, for each enriched class, all neural positions
that are both in the SOI and in the class. Positions are colored according to the corresponding classes. High resolution 3D images were generated using
BrainNet viewer [33].

doi:10.1371/journal.pone.0159643.g002
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Fig 3. RichMind results visualization for case study 2: (a) Bar plots displaying the p-values and frequency ratios of enrichment analysis
results. Each bar is composed of two rectangles colored by the two classes that constitute the enriched class. (b) 2D and high-resolution 3D brain
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associated ISCs, and ECN and SMN enrichment within valence associated ISCs. These findings
reinforce the claim made in the original study, by which high arousal serves to direct individu-
als’ attention to features of the environment. Identifying ECN and SMN enrichment within
valence associated ISCs, is in line with the authors’ suggestion by which negative valence syn-
chronizes brain circuitries, supporting emotional sensations across individuals.

Case Study 2: fMRI functional connectivity differences identified in cases
of amnestic mild cognitive impairment
Wang et al. (2013) analyzed resting state fMRI data recorded from 37 subjects with aMCI, and
47 healthy controls. The analysis produced functional connections that differed between the
groups. These connections were identified using the network-based statistic approach [9] on a
predefined functional parcellation containing 1024 parcels [1, 10]. The approach identified
connected components (CCs) that are composed of FCs for which the inter-group difference
exceeded a pre-defined threshold. Component significance was estimated using a permutation
test. This analysis detected a single CC of 363 reduced FCs when using a p-value threshold of
5�10−4. We call this set CC363. In addition, two CCs of 65 and 22 reduced FCs were discovered
using a p-value threshold of 10−4, denoted as CC65 and CC22, respectively.

In the original study, due to the large number of connections in CC363, only CC65 and
CC22 were further interpreted. This was done in the context of a modular architecture derived
from the control group, which includes five modules corresponding to the VN, the SMN, the
DMN, the AN and the ventral attention network (VAN). CC65 was reported as comprised
mainly of inter-module connections (46/65, 70.8%), which linked regions in the SMNmodule,
the VN module, and the AN module. CC22 was reported to contain predominantly intra-mod-
ule connections (15/22, 68.2%) within the DMNmodule [1].

We used RichMind to analyze CC363. All 1024 parcels were used to generate the back-
ground for the enrichment analyses. A mapping of nodes to functional modules was taken
from the original paper. The results are presented in Table 2 and Fig 3. The HG-based analysis
identified CC363 as enriched with inter-modular FCs that link regions of the SMNmodule, the
VN module, and the AN module (q(SMN-VN) = 0.011, q(SMN-AN) = 6.54E-08; q(AN-VN) = 1.2E-
09), and with intra-modular connections within the DMNmodule (q = 0.003). These results
reproduce the main conclusions of the original study, but were obtained on the larger CC,
which was not discussed in the original study due to its size. In addition, the test revealed
enrichment in connections within the VN module (q = 0.00014), which was not reported in

visualization, showing, for each enriched class, all neural connections that are both in CC363 and in the class. Parcels are colored according to
the corresponding classes. High resolution 3D images were generated using BrainNet viewer [33].

doi:10.1371/journal.pone.0159643.g003

Table 1. RichMind results for case study 1. DAN = dorsal attention network, AN = auditory network, SMN = sensori-motor network, VN = visual network,
DMN = default-mode network, ECN = executive control network.

Set Enriched class HG-based q-values Frequency Ratio # Voxels

Arousal ISCs DAN 9.28E-09 2.9 4560

Arousal ISCs AN 1.28E-10 1.6 2358

Arousal ISCs SMN 1.85E-10 1.4 5018

Arousal ISCs VN 9.26E-11 6.9 2901

Valence ICSs DMN 9.26E-11 3.5 1357

Valence ICSs ECN 6.59E-09 4.3 2684

Valence ICSs SMN <1.4E-37 1.3 2056

doi:10.1371/journal.pone.0159643.t001
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the original study. The degree preserving permutation test did not identify FC enrichment
within the VN nor did it identify FC enrichment between the SMN and the VN. However, it
recovered the other three inter-module links (see Table 2). Notably, the differences between
HG and DPP in this case are primarily for connections that involve the VN. This is probably
due to the relatively low degree of VN nodes in the CC363 component graph. While HG is not
sensitive to the degree of nodes in each class, DPP does consider this information, and favors
higher density links between classes (See also S4 Fig and S1 Text).

Repeating case analyses with an external annotation
The above analyses were conducted using the same annotations that were used by the authors
of the original papers for interpretation. In both cases, these were functional brain networks
that were extracted from the same experiment. However, to validate the results of a new experi-
ment, it is preferable that enrichment analysis is conducted using an independent annotation.
Another advantage of using such an external annotation is that it allows the results to be com-
parable across studies. Accordingly, we repeated both case analyses using an annotation
reported in [19], which includes a partition of the cortex into seven functional brain networks.
This annotation was selected because it is based on a thorough analysis of a very large cohort of
1000 subjects. When we repeated the analysis of RichMind using this annotation two of the 5
results in our previous analysis of case study 2 were identified (VN-SMN and VN-VN connec-
tivity). In case study 1, the results remained similar to those obtained in our previous analysis,
see supporting S1 Table and S2 Table. However, slight differences were identified. For example,
valence associated ISC was enriched with SMN using the original annotation but not the exter-
nal one. This difference results from discrepancies in the mapping of voxels to networks.

Discussion
In this work we describe RichMind, a Matlab-based, easy-to-use computational tool that tests
for enrichment of known classes in large-scale neural results. It provides both statistical reports
and brain visualizations of the identified enrichments. Statistical reports are based on the prob-
ability of getting the observed representation of each annotation in the tested set by chance.

We applied RichMind to two case studies, and in both of them RichMind reinforced the
main claims made in the original papers, while adding new findings. In case study 1, the
involvement of the ACC in the valence-associated ISCs seems to contribute most to the identi-
fied ECN enrichment within that group (Fig 2B, shown in black), in accordance with the state-
ment in the original study. However, regions of the SMN were reported in the original study
only in association with arousal ISCs and not with valence ISCs. Using RichMind we reveal
SMN enrichment within valence associated ISCs, a finding with extremely low q-value,
indicating that it is highly significant. Notably, this enrichment was not identified using the
external annotation that was based on [15], due to differences between the mappings. This

Table 2. RichMind results for case study 2; Class abbreviations: VN = visual network, AN = auditory network, SMN = sensori-motor network,
DMN = default-mode network.

Enriched inter-class connection HG q-value DPP q-value Frequency ratio # Connections

VN-AN 6.8E-10 0.0325 2.8 72

SMN-AN 3.9E-08 0.00075 2.33 54

VN-VN 8.4E-05 0.79 1.9 41

DMN-DMN 0.0019 <0.00075 1.66 49

SMN-VN 0.0066 0.79 1.4 55

doi:10.1371/journal.pone.0159643.t002
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inconsistency demonstrates the need for an established functional mapping of the brain that is
acknowledged in the field as “common ground”.

While enrichment analysis is standard in genomic and genetic studies [11, 12, 34], few pre-
vious fMRI studies addressed the issue of large-scale interpretation by calculating the relative
frequency of specific classes. For example, in case study 2, Wang et al. [1] used maps of known
functional brain networks extracted from the set of healthy controls through modularity analy-
sis, and then calculated the percent of the results that link each pair of networks [1]. However,
such approach does not take into consideration the spatial coverage of each class, which has a
major effect on the frequency of its representation in the results. Furthermore, it does not pro-
vide statistical significance of the reported findings.

Unlike the simple case where results contain sets of neural positions, when examining sets
of neural connections, the null hypothesis of random independent sampling, which underlies
the hyper-geometric test, may not be suitable. This is due to a non-uniform distribution of the
degrees in the brain network [23, 24]. Instead, empirical p-values can be calculated using a per-
mutation test, in which the random background model preserves the degrees of the nodes in
the graph. Such degree-preserving permutation test has been previously used for analyzing
enrichment within protein-protein interaction networks [26, 27]. In our tests, when comparing
HG to the degree preserving permutation test, we observed that the latter was often much
more stringent and produced less results.

Shortcomings and future plans
Using a data-driven approach, which considers all possible classes, while correcting for multi-
ple tests, is very strict, and thus may increase the rate of false negative findings. In addition, the
analysis is conducted under the assumption of specific null models, which, in some cases, may
not hold. Other null models can be added to RichMind in the future based on user requests.
Another possible future direction for improved large-scale analysis is ranking-based tests,
which proved successful in many genomic applications [14].

The use of enrichment analysis is always based on some previously established mapping
that is used as an annotation. The selection of a specific annotation system may have a crucial
effect on the results of the analysis. For this reason, it would be ideal to use an established func-
tional mapping of the brain that is accepted in the field as “common ground”. Such annotation
systems exists in other fields for this type of analysis, e.g. the Gene Ontology initiative [35] or
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [36], which are used as stan-
dard gene annotations in computational genomics analysis. However, due to the lack of such a
common ground in neuroscience, we adopted a functional annotation that was based on a pre-
viously published study, conducted on the 1000 connectomes data, and an anatomic annota-
tion of lobe-laterality information that was based on the TD atlas. We believe that established
mapping systems will be available in the near future, and will encourage and improve the use
of enrichment analysis in the field. Alternatively, an annotation can be defined based on an
independent analysis in order to allow comparing finding across studies or datasets.

Lastly, although RichMind was designed to address the issue of rigorous inference from
large-scale findings of a single study, the use of enrichment analysis may potentially be
extended into a framework for cross-study meta-analytic inference, as has been demonstrated
for genetic data [33]. Such an extension is a possible direction for future work in the field.

Availability and requirements
RichMind runs on Matlab (version R2011a or later). The software, simulation data and sample
data for case study 2 are freely available for download at http://acgt.cs.tau.ac.il/RichMind. The
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dataset of case study 1 is available from the authors (lauri.nummenmaa@aalto.fi). A technical
user manual is available at http://acgt.cs.tau.ac.il/RichMind/help.html.

Supporting Information
S1 Dataset. Dataset for case study 2.
(TAR)

S1 Fig. An illustration of the difference between the two significance scores in connection group
analysis. Each of the graphs contains 20 nodes, of which three are labeled “green” and three are labeled
“red”. The number of connections between green nodes and red nodes is 7 in both cases. However, the
number of connections and consequently the degree of the nodes varies greatly between the two cases.
Graph (a) was found to be enriched with red-green connections using HG-test (FDR q = 4.4�10–
5) but not using DPP (FDR q = 0.22). On the other hand, graph (b) was found to be enriched
with red-green connections using DPP (FDR q<0.001) but not using HG test (FDR q = 0.34).
(TIF)

S2 Fig. Degree distributions on real and simulated networks. The histograms show the
degree distribution of the network CC363 analyzed in the study (a), and of instances of scale-
free networks of same size randomly generated using power law with exp = 2 (b) and exp = 3
(c).
(TIF)

S3 Fig. Simulation results. Graphs with 244 nodes and 363 edges were randomly generated
using a power law wiring scheme with exp = 2 (in a,c) and exp = 3 (in b,d), and then complete
5x5 subgraphs were implanted and their edges were randomly removed according to noise
level q. The–log of mean p-value over 1000 runs is plotted against level of introduced noise (q
parameter). Error bars correspond to one show standard deviation. P-values were estimated by
RichMind for the “real” implanted 5X5 bicluster A-B (blue) and for “dummy” 5X5 bicluster
A’-B’ (red), using HG test (in a,b) and DPP with 1000 randomized graphs (in c,d).
(TIF)

S4 Fig. HG vs. DPP test. Graphs with 244 nodes and 1000 edges were randomly generated
using a power law scheme with exp = 2, and then complete bipartite 5x5 subgraphs were planted
in them and some of their edges were randomly and independently removed according to noise
level q. The–log of mean p-value over 1000 runs is plotted against level of introduced noise (q
parameter). Error bars correspond to one show standard deviation. P-values were estimated by
RichMind for the “real” implanted 5X5 bicluster A-B (blue) and for “dummy” 5X5 bicluster A’-
B’ (red), with A’ and B’ selected to contain high degree nodes. HG test results are shown in a.
DPP test results are shown in b. Each DPP test was run with 1000 randomized graphs.
(TIF)

S1 Table. RichMind results for case study 1 using 7 functional brain network reported in
[15] as annotations; Class abbreviations: VN = visual network, SMN = sensori-motor net-
work, DMN = default-mode network, FPCN = fronto-parietal control network
(PDF)

S2 Table. RichMind results for case study 2 using 7 functional brain network reported in
[15] as annotations; Class abbreviations: VN = visual network, SMN = sensori-motor net-
work, DAN = dorsal attention network, VAN = ventral attention network, DMN = default-
mode network
(PDF)
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S1 Text. Method validation supplementary section.
(DOCX)
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