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1. ABSTRACT   

Background 

In the past decade and a half, the neuroscience community has learned that 

during rest, ongoing energy consuming activity takes place in the brain. When 

focusing on low frequencies, this activity is highly correlated within known 

functional networks. Although these correlated fluctuations are generally 

maintained over time, they were shown to vary with changes in cognitive and 

emotional states, and were suggested to hold information on individual history 

of interaction with the world as well as a priori cognitive and emotional biases.  

 

Exploration of variability in resting-state (rs) neural functional connectivity (FC) 

through functional magnetic resonance imaging (fMRI) has been traditionally 

performed using hypothesis-driven analysis while focusing on one or a few pre-

defined seed regions.  This approach can reveal only a fraction of the actual 

phenomenon as it relies on prior knowledge of the putative functional network 

structure. An alternative approach is to conduct a whole-brain voxel-wise 

analysis, which is computationally expensive and sensitive to noise. A possible 

compromise is to define a set of regions of interest (ROIs) that provide good 

coverage of the brain. Such dimensionality reduction allows conducting whole-

brain rsFC analysis while treating the data as a collection of independent 

connections and performing statistical analyses of each connection separately. 

Alternatively, multivariate techniques evaluate the relationship between the 

entire connectome matrices and their associated phenotypic variables in a 

single statistical test. While powerful, such analysis does not reveal information 

on the involvement of individual connections. 

Despite the methodological progress in studying variability in rsFC patters, to 

date findings that are obtained from large-scale rsFC analysis are mostly 

interpreted by a qualitative comparison to known neural maps which are is 

based on existing literature.  Such methodology does not use statistical tools 

for interpretation, and holds the risk of reporting false positive results and 

missing important findings. In order to perform this interpretation rigorously one 
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must address it statistically. A natural way to do this is by testing whether a link 

between two  known brain regions or functional networks is significantly more 

prevalent in the results than would be expected by chance (i.e. enriched). 

Analysis of enrichment has long been used in the field of Bioinformatics, and is 

the acceptable way for characterizing large sets of genes that emerge from data 

driven genomic analysis. 

This work uses rsfMRI to examine the way in which different types of 

emotionally challenging experiences affect patterns of neural coactivation in 

subsequent resting periods. This is done using several approaches for large-

scale rsFC analysis in combination with enrichment analysis as an established 

manner for interpretation. Assuming that rsFC holds information on individual 

tendencies as well as on prior experience, we examined inter-individual 

differences in these patterns and their relation to various behavioral measures 

of emotional reactivity and regulation. We hypothesized that emotionally 

challenging experiences will induce large scale changes in patterns of fMRI 

rsFC. We further expected these changes to be associated with subjective 

measures of emotional experience. 

Objectives:  

1) Develop improved means for characterizing and interpreting large-scale 

changes in FC patterns of rsfMRI data.  

2) Data-driven investigation of rsFC modulations following several different 

types of “emotional challenge”.   

3) Identify inter-individual differences in rsFC modulations that correspond 

to inter-individual differences in measures of affective experience. 

 

Methods 

To evaluate enrichment within sets of neural positions we adopted the statistical 

hyper-geometric test. We used the same test to evaluate enrichment within sets 

of neural connections, however for this case we added an additional non-

parametric permutation test, which accounts for uneven levels of FC in different 

brain areas. Both tests were integrated into the RichMind Matlab package. 

Given a collection of findings (neural positions or connections), and a known 

neural mapping, RichMind tests for enrichment in the input, and provides both 

statistical reports and brain visualization of the identified enrichments. The 
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software was validated on two previously published studies, the first conducted 

on healthy participants viewing emotion-inducing film clips, and the second on 

participants with amnestic mild cognitive impairment. 

Next, we analyzed data recorded before and after three different emotionally–

challenging paradigms: a social-stress induction task, an anger-provoking inter-

personal conflict task (the ultimatum game; UG) and a night without sleep (i.e. 

sleep deprivation; SD). In all three cases a pre-defined functional parcellation 

was applied on the data before analysis for dimensionality reduction. We used 

a univariate analysis approach to identify rsFC changes. In the sleep 

deprivation study we used a combination of univariate analysis with multivariate 

approaches of leave-one-out cross validation (LOOCV) and modularity 

analysis, due to the small sample size. Large-scale findings were characterized 

using enrichment analysis. Emotional experience was measured using a 

number of self-reported questionnaires, and in some cases also using a 

physiological measure of heart-rate and heart-rate variability.  

Main results 

Following the Trier social stress test we identified a large-scale rsFC change 

across the brain, which included strengthening of thalamo-cortical connectivity 

alongside a weakening of cross-hemispheral parieto-temporal connectivity. 

These alterations were associated with change in subjective stress reports. 

Integrating report-based information on stress sustainment 20 minutes post 

induction revealed a single significant rsFC change between the right 

basolateral amygdala (BLA) and the precuneus, which inversely predicted the 

level of subjective recovery. A parcel centered in the right amygdala 

demonstrated differential rsFC also following the inter-personal conflict task. 

Specifically, it showed increased rsFC with a single parcel centered in the right 

inferior frontal gyrus. Baseline levels of overall rsFC of that parcel were 

positively correlated with subsequent subject gain in UG as well as reported 

anger following the game. 

Following SD we identified a large-scale pattern of decreased thalamo-cortical 

rsFC and increased rsFC of the left frontal inferior operculum with a distributed 

set of cortical regions. The increased rsFC pattern was marginally associated 

with change in negative mood. Furthermore, the extent of rsFC change across 
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all differential connections was positively associated with trait-anxiety 

measured at the beginning of the experiment. LOOCV analysis revealed that 

this distributed pattern distinguishes between SD and baseline states with an 

accuracy level of 94.1%. Modularity analysis that was applied on the group-

level average rsFC matrices, combined with enrichment analysis, revealed a 

pattern of network reorganization involving regions of the default-mode network 

(DMN), the Limbic network and the fronto-parietal control network. This change 

was associated with the change in reported mood.  

 

 Conclusions 

The novel use of enrichment analysis, introduced here for studying changes in 

rsFC, allowed improved insight on experience-related neural modulations in 

cases where the induced effect is large and distributed. This type of 

improvement was observed when analyzing rsFC modulations induced by 

acute social stress as well as following SD. The changes that were identified 

following each of the tasks were different by nature, however, it can be said that 

they share a common mechanism in which inter-individual differences and past 

experiences affect the connectivity between the limbic system and the DMN, 

which, in turn, affects the subjective emotional experience. 

From a methodological perspective, we believe that data-driven rsFC analysis 

combined with enrichment analysis comprises a productive tool with a 

diagnostic potential for investigating alterations in neural connectivity.   
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2. INTRODUCTION  

2.1 THE RESTING BRAIN  

 

“Tis the great art of life to manage well the restless mind.” 

John Armstrong , The Art of Preserving Health, 1744 

Although  most  cognitive  neuroscience  research  has  traditionally  focused  

on  mapping  the  details  of  task-induced activation  patterns,  in  recent  years  

it  has  become   it  became  clear  that  even  in  the  absence  of a  task  –  

that  is,  in  what  appears  to  be  a  state  of  rest  , ongoing activity takes place 

in the brain (Harmelech and Malach 2013, Kelly and Castellanos 2014). This 

activity has been shown to be a compulsive user of energy and resources 

(Raichle and Mintun 2006, Raichle 2010). In  blood  oxygen-level-dependent 

(BOLD) functional  MRI  (fMRI),  these   fluctuations appear  to  span  the  entire  

cortex  and  are  of  similar amplitude  to  those  produced  during  task  

performance  (Nir, Hasson et al. 2006). These  patterns  have  also  been  

documented  in  human  single  unit  and  local  field  potential  (LFP) recordings  

(He, Snyder et al. 2008, Nir, Mukamel et al. 2008, Manning, Jacobs et al. 2009, 

Keller, Bickel et al. 2013, Foster, Rangarajan et al. 2015),  revealing  that  their  

dynamics  is  far  slower  than typical  task  activations (Nir, Mukamel et al. 

2008). When focusing on low frequencies, this activity demonstrates high 

correlations within known functional networks (Biswal, Zerrin Yetkin et al. 1995), 

correlations that extend beyond primary sensory and motor systems to circuits 

supporting higher order cognitive and social function (Greicius, Krasnow et al. 

2003, Beckmann, DeLuca et al. 2005, Fox, Snyder et al. 2005). This 

correspondence between task-evoked and resting-state architectures suggests 
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that correlated activity at rest serves to maintain the integrity of neuronal 

networks, supporting cognition and action, even in the absence of processing 

demands. Patterns of resting-state functional connectivity (rsFC) are 

understood to constitute a trace of task-evoked coactivation among regions 

within an individual. By consequence, the complete set of resting state networks 

(RSNs) within an individual, also termed the functional connectome, can be 

seen to comprise of both universal and unique aspects (Biswal, Mennes et al. 

2010, Kelly and Castellanos 2014).  The universal aspects comprises of the set 

of phylogenetically determined functional networks that, in the absence of 

developmental aberration, emerge in all individuals (Buckner and Krienen 

2013), and are evident in observations of precursory RSNs in infants and young 

children (Gao, Zhu et al. 2009, Dinstein, Pierce et al. 2011, Fransson, Åden et 

al. 2011), of homologous RSNs in other species (Vincent, Patel et al. 2007, 

Margulies, Vincent et al. 2009, Hutchison, Gallivan et al. 2012, Lu, Zou et al. 

2012), in the reproducibility of RSNs  across hundreds of studies and samples 

(e.g., (Biswal, Mennes et al. 2010)), and in the moderate-to-high test-retest 

reliability of RSNs  over both short and long intervals (Shehzad, Kelly et al. 

2009, Thomason, Dennis et al. 2011). The unique aspects of the functional 

connectome, on the other hand, appear to reflect the individual history of 

interaction each person has with the world, which sculpts patterns of evoked 

coactivation and thus fine-tunes the intrinsic brain architecture (Harmelech and 

Malach 2013). This aspect is demonstrated by studies linking differences in 

rsFC to genetic variation (Glahn, Winkler et al. 2010, Liu, Song et al. 2010, 

Wiggins, Bedoyan et al. 2012, Tunbridge, Farrell et al. 2013), environmental 

influences such as early life stress (Burghy, Stodola et al. 2012, Herringa, Birn 
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et al. 2013), and interindividual differences in a variety of behavioral 

characteristics including task performance, social competence, and personality 

(Hampson, Driesen et al. 2006, Tambini, Ketz et al. 2010, Adelstein, Shehzad 

et al. 2011). Together, these traces of previous coactivation patterns provide a 

predictive neural context, a preparatory state that anticipates future patterns of 

evoked coactivation (Fox and Raichle 2007, Deco and Corbetta 2011, Raichle 

2011, Engel, Gerloff et al. 2013). That is, these spontaneous fluctuations 

capitalize on the individual’s history of interactions with the world, i.e. past 

experience, to optimize the brain’s readiness to respond to similar inputs in the 

future (Kelly and Castellanos 2014).   

 

2.2  EXPERIENCE RELATED FINGERPRINT IN RESTING STATE FMRI 

 

Assuming that an individual's past experience has an effect on personal biases 

and tendencies, the notion that rsFC patterns reflect these biases, is supported  

by the vast body of research showing traces of task-evoked coactivation 

patterns in successive resting state periods. This has been demonstrated for 

cognitive and motor tasks  (Waites, Stanislavsky et al. 2005, Lewis, Baldassarre 

et al. 2009, Vahdat, Darainy et al. 2011, Wang, Liu et al. 2012, Harmelech, 

Preminger et al. 2013, Guidotti, Del Gratta et al. 2015) as well as for tasks that 

present an emotional challenge (Van Marle, Hermans et al. 2010, Eryilmaz, 

Van De Ville et al. 2011, Riedl, Valet et al. 2011, Veer, Oei et al. 2011, 

Vaisvaser, Lin et al. 2013). For example: Lewis et al. (2009) trained participants 

on performing a difficult perceptual target detection task for several days, 

leading to significantly improved performance. Comparing rs-fMRI data 
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acquired before and after training revealed that after training, negative rsFC 

between the trained portion of visual cortex and regions of the dorsal attention 

network (DAN), was strengthened, while negative correlations with the default 

mode network (DMN) were weakened. The former change was also associated 

with behavioral evidence of learning. The authors interpret the redistribution of 

rsFC observed to reflect the active decoupling of DAN and visual areas that 

occurs with the development of expertise on and automation of the trained task 

(Lewis, Baldassarre et al. 2009). In another study Eryilmaz et al. investigated 

the effect of emotionally joyful and fearful video clips on subsequent rsfMRI 

patterns in 15 healthy participants. They reported a strong enhancement of 

rsFC between ACC and insula as well as an increased level of activity in these 

regions following emotional context alongside a reduction in ventro-medial 

prefrontal cortex and amygdala rsFC that was selective to fearful context 

(Eryilmaz, Van De Ville et al. 2011).  

  

2.3 NEURAL TRACES OF INTER- INDIVIDUAL DIFFERENCES IN HANDLING 

EMOTIONALLY-CHALLENGING EXPERIENCES  

 

Emotion is a dynamic, complex psycho-physiological experience of an 

individual's state of mind as interacting with internal and external influences. As 

emotion is an inseparable part of human experience, its proper regulation has 

been acknowledged as a key function that is required for adapting to socially 

accepted norms as well as for maintaining well-being, and its dysregulation 

could lead to various forms of psychopathology (Cicchetti, Ackerman et al. 

1995, John and Gross 2004).  
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In spite of the fact that emotional experiences are common to all humans, high 

inter-individual variability exists in the process that takes place between the 

occurrence of an  event and the emotional response, as has been 

demonstrated with subjective (behavioral) as well as neurophysiological 

measures (Admon, Lubin et al. 2009, Admon, Leykin et al. 2013, Lin, Vaisvaser 

et al. 2015). These differences result from the fact that events impinge on 

different personality traits and concerns (Silvia, Henson et al. 2009, Smith and 

Kirby 2009), as well as different appraisal propensities in different individuals 

(Frijda 2009, Van Mechelen and Hennes 2009). For example, inter-individual 

differences have been demonstrated in stress vulnerability and tendency to 

develop post-traumatic stress disorder (PTSD) (McEwen 2004, Yehuda and 

LeDoux 2007). This variability has been associated with the tendency to attend 

to a threatening stimuli (Bar-Haim, Lamy et al. 2007), trait anxiety (McFarlane 

1990)  and neural activity in limbic regions and prefrontal cortex (Admon, Lubin 

et al. 2009, Admon, Milad et al. 2013). Another example is the individual 

tendency to use specific regulation strategies such as reappraisal or 

suppression. The frequent explicit use of reappraisal has been associated with 

lower levels of negative affect, greater interpersonal functioning, and greater 

psychological and physical well-being (Gross and John 2003). Moreover 

Greater use of reappraisal in everyday life has been associated to decreased 

amygdala activity and increased prefrontal and parietal activity during the 

processing of negative emotional facial expressions (Drabant, McRae et al. 

2009).  



17 

 

In spite of the above, the question remains, to what extent are inter-individual 

differences in emotion generation, processing and regulation evident in the 

variability of rsFC patterns.   

 
2.4  METHODS FOR STUDYING VARIABILITY IN RESTING STATE 

FUNCTIONAL CONNECTIVITY  

 

  Several approaches have been used to study changes in FC patterns. Analytic 

hypothesis-driven routines like seed based analysis (Biswal, Zerrin Yetkin et al. 

1995) have been used in numerous studies investigating cognitive functions 

(Rissman, Gazzaley et al. 2004, Uddin, Clare Kelly et al. 2009, Mennes, Kelly 

et al. 2010). However, this approach is limited to revealing only a fraction of the 

actual phenomenon as it relies on prior knowledge of the putative functional 

network structure. An alternative approach is to conduct a whole-brain voxel-

wise analysis, but such an approach is computationally expensive, sensitive to 

noise, and difficult to interpret. Furthermore, there is high redundancy in the 

representation of the data at the voxel scale, which makes it possible to 

significantly reduce the dimensionality of the fMRI data (Craddock, James et al. 

2012). This can be done by defining a set of regions of interest (ROIs) that 

provide good coverage of the brain.  The definition of ROIs is crucial both for 

the estimation of connectomes and for group comparison (Wang, Wang et al. 

2009, Varoquaux and Craddock 2013). Several strategies exist for defining 

suitable ROIs. One popular approach is to use anatomic definitions (Shehzad, 

Kelly et al. 2009, Wang, Wang et al. 2009, Zeng, Shen et al. 2012) however, 

while the regions defined by these atlases are anatomically or cyto-

architectonically homogeneous, they do not necessarily have homogeneous 

activity patterns. For example, it has been shown that adjacent regions of the 
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anterior cingulate cortex (ACC) have drastically different structural and FC 

patterns (Margulies, Kelly et al. 2007, Beckmann, Johansen-Berg et al. 2009), 

even though the ACC is typically represented as a single ROI in brain atlases 

(Talairach and Tournoux 1988). Another approach is to define a whole-brain 

functional parcellation using the fMRI signals, which results in more 

homogeneous regions that better represent connectivity present at the voxel 

level than anatomically-defined atlases such as the anatomic atlas labeling 

(AAL) or Harvard-Oxford (Craddock, James et al. 2012). This has been done 

using various clustering methods (Beckmann and Smith 2004, Thirion, Flandin 

et al. 2006, Bellec, Rosa-Neto et al. 2010, Craddock, James et al. 2012), and 

has been shown to identify well-known functional structures from rest data 

(Varoquaux and Craddock 2013). Notably, the most appropriate number of 

regions (i.e. resolution) for whole-brain connectivity analysis should be carefully 

considered. On one hand a sufficiently large number of regions is needed to 

ensure functional homogeneity within regions and adequate representation of 

FC information in the data. On the other hand too many regions reduce the 

power of statistical inference and increase computational complexity 

(Varoquaux and Craddock 2013). In order to estimate an optimal number of 

regions cross-validation methods can be employed (Blumensath, Behrens et 

al. 2012, Craddock, James et al. 2012). For example, Craddock et. al. (2012) 

used a spatially constrained spectral clustering algorithm on rsfMRI data 

recorded from 41 healthy subjects. Resulting parcellations, comprised of 200, 

500 and 1000 parcels, were evaluated and compared against anatomic atlases 

and random parcellations on an independent dataset. Evaluation was based on 

homogeneity, the ability to reproduce connectivity information present at the 
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voxel scale, and the ability to obtain the same parcellations from independent 

data. The authors report that ROIs generated from their clustering approach 

outperformed anatomic atlas-based ROIs as well as random parcellations in all 

measures (Craddock, James et al. 2012). This reported ability to obtain a very 

similar parcellation from independent data allows such a parcellation to be used 

as a pre-defined template in other studies rather than repeat the parcellation 

process for each study.  Thus, in all data driven analysis performed throughout 

this work, we defined ROIs using the parcellation templates generated in the 

above study. The choice of the template resolution depended on the number of 

subjects, to allow sufficient statistical power for data driven analysis. 

After defining ROIs and extracting the BOLD signal for each ROI, a similarity 

measure (usually Pearson correlation coefficient) can be used to estimate the 

level of rsFC for each pair of ROIs, producing a whole-brain rsFC matrix. The 

simplest approach to compare such whole-brain rsFC matrices is to treat them 

as a collection of independent connections and perform statistical analyses of 

each connection separately, without accounting for interactions or relationships 

between them (Varoquaux and Craddock 2013). Such analysis results in a set 

of p-values (one for each connection), which can be obtained using t-tests, F-

tests, regression, etc. that indicate the extent of identified difference for each 

connection. Such results are relatively easy to interpret. However, this 

approach involves many statistical tests, which require correction for multiple 

comparisons to adequately control for the number of false positives. Standard 

correction techniques such as false discovery rate (Genovese, Lazar et al. 

2002) that do not model the dependencies between edges may result in overly 

liberal or conservative corrections (Efron 2008, Craddock, Jbabdi et al. 2013).  
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Alternatively, multivariate techniques evaluate the relationship between the 

entire connectome matrices and their associated phenotypic variables with a 

single statistical test (Craddock, Holtzheimer et al. 2009, Dosenbach, Nardos 

et al. 2010). Although powerful, such analysis does not reveal information on 

the involvement of individual connections; extracting such information requires 

a return to connection-specific tests, which necessitate multiple-comparison 

correction (Craddock, Holtzheimer et al. 2009, Craddock, Jbabdi et al. 2013) .   

Regardless of the exact method used, data-driven analysis of variability in rsFC 

often produces large sets of neural positions or position pairs (i.e. functional 

connections). The interpretation of such sets is usually done by comparing them 

against an existing neural mapping based on previous literature. In some cases, 

where the number of results is large, they are filtered either by manual selection 

or by repeating the analysis with a stricter statistical threshold, to facilitate 

interpretation. As the interpretation is often done without a clear statistical 

justification, such methodology holds the risk of reporting false positive results 

and missing additional results. Thus, a more rigorous method of interpretation 

is required to allow improved inference of data-driven results. 

 

 

 

 

3. RESEARCH OBJECTIVES  

  

In this work we address two gaps that exist in the current literature. The first is 

a methodological gap:  the lack of rigorous means for interpreting large-scale 
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changes in rsFC. The second is the following question: to what extent are inter-

individual differences in affective experience evident in the variability of rsFC 

patterns?  Accordingly, we define the following objectives: 

 

Objective 1: Develop improved means for characterizing large-scale 

changes in connectivity patterns of task-free (resting state) fMRI data: 

Such means should facilitate the interpretation of large sets of modified 

functional connections and/or functional modules under previously established 

neural mapping schemes, and provide these sets with statistical significance. 

The approach will be validated on previously published large-scale neural 

results.  

We hypothesize that this approach will allow interpreting large-scale results that 

were not interpreted in the original studies. We further hypothesize that it will 

statistically collaborate most of the claims made in the original studies, and 

possibly add additional insight.   

Objective 2: Data-driven investigation of changes induced in resting-state 

fMRI patterns following different types of emotional challenges.  

This will be done by investigation of existing rsfMRI data, recorded from three 

different groups of participants in three independent experiments. Analysis will 

involve a hypothesis-free parcellation-based whole-brain exploration, with no a-

priori assumptions regarding the identity of the networks and the inference of 

their behavioral relevance to the specific emotional experience. We expect to 

find a unique effect of rsFC change across participants, following each 

challenge. We further expect some of these effects to be of large-scale, in 
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accordance with previous literature, and thus require special means for 

interpretation. 

 

Objective 3: Identify inter-individual differences in rsFC modulations 

that correspond to inter-individual differences in affective behavioural 

measures  

Inter-individual differences in the identified changes in rsfMRI patterns will be 

compared against several behavioral and physiological measures which have 

been validated as indicators of emotional experience. We hypothesize that 

some of the modulations identified across participants (i.e. objective 2) will be 

sensitive to inter-individual differences in affective behavioral measures.  

 

 

 

 

 

 

 

 

 

 

 

4. GENERAL METHODS AND MATERIALS  



23 

 

This section describes materials and methods that were applied for most or all 

of the studies included in this work. Specific adaptations made in certain cases 

are described in the specific context of each study in the next sections. 

 

4.1  FUNCTIONAL MRI 

4.1.1 Background  - fMRI is a noninvasive neuroimaging method that is 

typically utilized to provide the blood-oxygen-level-dependent (BOLD) signal. 

This signal has been shown to reflect hemodynamic responses coupled with 

stimulus-induced neuronal activity, and thus it comprises an indirect index of 

such local activity. While neuronal activity affects the factors of blood volume 

and blood oxygenation (Fox, Raichle et al. 1988, Attwell, Buchan et al. 2010), 

it is mainly the coupled increased blood flow that enhances the BOLD signal. 

Following glutamate release during neural activation, neurons and astrocytes 

send molecular messengers inducing nitric oxide, prostaglandins to smooth 

muscles of the adjacent blood vessels. These messengers cause the dilation 

of the vessels and thus increase the blood flow (Attwell, Buchan et al. 2010).  

The enhanced flow locally increases the ratio between red blood cells 

containing oxidized hemoglobin and those that have deactivated form of 

hemoglobin. Deoxidized hemoglobin has stronger magnetic influence on its 

surrounding than oxidized hemoglobin and it produces measurable 

inhomogeneity in the magnetic field. Its displacement by the increasing blood 

flow about two seconds after the onset of the stimulus-induced neuronal activity 

therefore increases inhomogeneity and therefore causes a rise in the BOLD 

signal96. Finally, it should be noted that comparative studies of fMRI and 
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intracranial recording indicate that BOLD mainly reflects local field potential, 

which is influenced by synaptic input to the local neurons (post-synaptic activity) 

and internal neural processing rather the by regional output.  

 

4.1.2 fMRI acquisition  - All of the MRI scans included in this work were 

performed in a 3 Tesla, General Electric scanner, Horizon echo speed scanner 

with an 8-channel head coil and a resonant gradient echoplanar imaging 

system (GE, Milwaukee, WI, USA) located at the Wohl Institute for Advanced 

Imaging at the Tel-Aviv Sourasky Medical Center.  

4.1.3 fMRI preprocessing and parcellation  

 Preprocessing was performed using SPM software 

(http://www.fil.ion.ucl.ac.uk/spm). Head motions were detected and corrected 

using trilinear and sinc interpolations respectively, applying rigid body 

transformations with 3 translation and 3 rotation parameters. The criterion for 

data exclusion due to exaggerated head motions was deviations higher than 

2.5 mm from the reference point.  . Spatial smoothing with a 6 mm FWHM kernel 

was applied. Anatomical SPGR data were standardized to 1x1x1 mm and 

transformed into MNI space. SPGR images were then manually co-registered 

with the corresponding functional maps.  Before further analysis, low frequency 

fluctuations (0.01–0.08Hz) in blood oxygenation level-dependent (BOLD) 

signals were filtered out using DPARSF toolbox 102. 

In all studies we used whole-brain functional parcellations reported in 

(Craddock, James et al. 2012), which was generated by applying a correlation-

based clustering procedure on rsfMRI data recorded from 41 healthy subjects, 
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and partitions the brain volume into either 200 or 517 parcels. Parcels were 

masked to include gray matter voxels only using the WFU Pick Atlas Tool 

(Maldjian, Laurienti et al. 2003, Stamatakis, Adapa et al. 2010) and parcels that 

had less than 5 voxels in common with the gray matter mask were excluded, 

leaving 182 and 463 parcels respectively. For each scan, average BOLD value 

across all gray matter voxels was calculated within each parcel at each time 

point. These time series were used as the parcel’s signal.  

4.1.4 Cross correlation functional connectivi ty analysis 

In all studies, the level of rsFC between every two parcels was estimated 

separately for each subject and scan by calculating the Pearson correlation 

coefficient between the corresponding BOLD signals. The Pearson correlation 

coefficient is given by: 

(4-1) 𝒓𝒙,𝒚 = 𝒄𝒐𝒓𝒓(𝑿, 𝒀) = 𝑬 [(𝑿 − �̅�)(𝒀 − �̅�)] 𝝈𝒙⁄ 𝝈𝒚 

  

Before making statistic inference of these correlation values they were Fisher 

transformed to better fit a normal distribution, which is assumed in the 

parametric statistical student t-test. The Fisher transformation is given by: 

(4-2)  𝑭𝒊𝒔𝒉𝒆𝒓(𝒄𝒐𝒓𝒓(𝑿, 𝒀)) = 𝒂𝒓𝒄𝒕𝒂𝒏[𝒄𝒐𝒓𝒓(𝑿, 𝒀)] 

 

All p-values obtained in rsFC analysis were controlled for a false discovery rate 

(FDR) of 0.05 using the procedure suggested by Benjamini and Hochberg 

(Benjamini and Hochberg 1995). 

4.2  BEHAVIORAL MEASURES OF AFFECTIVE RESPONSE  
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Several behavioral and physiological measures were used in this work as indices of 

affective response. Of these, the State-Trait Anxiety Inventory (STAI) (Spielberger 

2010) was collected and used in all three experiments. The other measures are 

described in the specific materials and methods sections of each experiment. 

STAI is a 40-item gold standard questionnaire for assessing anxiety. State 

Anxiety reflects subjective feelings of tension, nervousness, and arousal, and 

fluctuates in intensity over time as a function of perceived threat. Items are rated 

on a 4 -point frequency scale from 1 (not at all) to 4 (very much). Trait anxiety 

relates to stable individual differences in anxiety proneness, i.e. the tendency 

one has in perceiving stressful situations as dangerous and threatening (and 

thus reflects the disposition to respond to such situations with increased state 

anxiety). Items are rated on a 4 -point frequency scale from 1 (almost never) to 

4 (almost always). The psychometric properties of these scales are well 

established (Spielberger and Sydeman 1994, Spielberger, Sydeman et al. 

1999).  

4.3 Comparing neural measures against behavioral and other  

physiological measures 

 

In all studies, identified neural changes were compared against behavioral 

measures as well as physiological measures using Spearman’s rank correlation 

coefficient, which is a nonparametric measure of statistical dependence, and 

thus makes no assumptions on the nature of the measured variables 106. 

Spearman’s rank correlation coefficient is given by: 

(4-3)   𝒓𝑿𝒀 = 𝑬 [(𝒓𝒂𝒏𝒌(𝑿) − 𝒓𝒂𝒏𝒌(𝑿)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝒓𝒂𝒏𝒌(𝒀) − 𝒓𝒂𝒏𝒌(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] 𝝈𝒓𝒂𝒏𝒌(𝑿)⁄ 𝝈𝒓𝒂𝒏𝒌(𝒀) 
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5. IMPROVING INTERPRETATION OF LARGE-SCALE 

CHANGES IN RESTING STATE NETWORKS   

 

In this chapter, we address the methodological gap that was introduced in 

chapter 2.4 (i.e. objective 1), namely, the lack of means for rigorous 

interpretation of large-scale changes in patterns of rsFC.  
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A paper describing this section was written and is currently under review 

 

5.1  BACKGROUND  
  

As described in chapter 3, various methods exist for data-driven investigation 

of variability in rsfMRI patterns. Many of these methods identify large sets of 

neural positions (i.e. voxels or parcels) demonstrating an activity pattern of 

interest (e.g. increased/decreased nodal degree following a specific task). To 

date, functional interpretation of such large-scale neuroimaging findings is often 

done by associating the identified regions to known classes (e.g., anatomic 

structures or functional networks). This process of using previous knowledge to 

ascribe functional meaning to findings is commonly based on a subjective visual 

inspection or on percent of overlap with existing maps (Nummenmaa, Glerean 

et al. 2012, Jola, McAleer et al. 2013, Wang, Zuo et al. 2013, Lahnakoski, 

Glerean et al. 2014, Ames, Honey et al. 2015). Such methodology, which is not 

based on statistical justification, holds the risk of reporting false positive results 

and overlooking additional results.  For example, Nummenmaa et al. (2012) 

analyzed fMRI signals recorded from 16 healthy participants, while viewing film 

clips depicting unpleasant, neutral, and pleasant emotions. They identified 

cerebral regions where inter-subject correlations (ISC) were significantly 

correlated with subjective reports of valence and arousal provided by the 

participants. In order to interpret the findings, the authors subjectively 

associated the identified regions to known functional networks. They reported 

that arousal was mostly associated with ISC in regions of the sensori-motor 

network (SMN), visual network (VN) and dorsal attention network (DAN) while 

valence was negatively associated with ISC in regions of the default mode 
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network (DMN) as well as regions known to be involved in emotional processing 

(Nummenmaa, Glerean et al. 2012). However, as in many neuroimaging 

studies, no quantitative statistical measure was presented to support this 

association of findings to functional networks. An even more complex case is 

the case where the identified findings are a collection of neural position pairs 

(i.e. connections). When this collection is very large, as may occur in data-

driven studies (Finn, Shen et al. 2014, Sripada, Kessler et al. 2014, Tyszka, 

Kennedy et al. 2014), interpretation becomes challenging. In some cases, this 

challenge is faced by filtering the results either by manual selection or by 

repeating the analysis using a stricter statistical threshold. For example Wang 

et. al. (2013) reported a set of 363 functional connections (FCs) that differed 

between a group of amnestic mild cognitive impairment (aMCI) patients and 

healthy controls. These connections were identified using the network-based 

statistic approach (Zalesky, Fornito et al. 2010) using a predefined 1024 

functional parcellation (Craddock, James et al. 2012, Wang, Zuo et al. 2013). 

Results significance was estimated using a permutation test. However, due to 

the complexity of interpreting such a large set of connections, analysis was 

repeated using a stricter statistical threshold.  

 An alternative approach to interpreting such a large set of findings is to test 

whether the results contain significantly more elements with a specific class 

than expected by chance. For instance, one can examine whether an identified 

set of weakened connections in terms of DMN-SMN connectivity, and explore 

whether aMCI is associated with a significantly large number of weakened 

connections linking the DMN with the SMN. If the answer is positive, we say 

that the corresponding class (i.e. DMN-SMN) is enriched in the identified 
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collection. Such enrichment (or over-representation) can be assigned with a 

statistical significance value under an appropriate null hypothesis 

(Rahnenführer, Domingues et al. 2004, Glaab, Baudot et al. 2012). 

In this study we propose using enrichment analysis to facilitate and improve the 

interpretation process of large-scale fMRI studies. We focus on two possible 

cases. In the first, position-group analysis, the identified collection is a set of 

neural positions (e.g. following inter-subject correlation analysis). In the second, 

connection group analysis, the identified collection is a set of neural position 

pairs that represent connections between brain regions (e.g. following a data-

driven functional connectivity analysis). We examined different models for 

detecting significant overrepresentation of known functional brain annotation 

using simulated and real data. 

We implemented our methods in RichMind, a computational tool that provides 

both statistical significance reports based on our suggested enrichment 

analysis methods, as well as brain visualizations. We demonstrate the abilities 

of RichMind by reanalyzing two previous fMRI studies: the first of subjects 

viewing emotion-inducing film clips (Nummenmaa, Glerean et al. 2012), and 

the second of subjects suffering from aMCI (Wang, Zuo et al. 2013).  We show 

that by using enrichment analysis, we were able to provide statistical validation 

to most of the conclusions drawn in the original studies, while revealing 

additional statistically significant results. In addition we show how enrichment 

analysis allows interpreting a large set of results without having to apply 

additional filters, as often applied in studies, thus,  allowing more accurate  

interpretation of the results. 

5.2  METHODS 
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Neural annotation 

A neural annotation is a mapping of neural positions to known classes. The 

annotation is based on previous knowledge, and can contain anatomic structure 

(E.g. Anatomic atlas labeling (Tzourio-Mazoyer, Landeau et al. 2002)), known 

functional mapping (E.g. functional networks identified in previous studies 

(Greicius, Krasnow et al. 2003, Yeo, Krienen et al. 2011)), previously known 

pathology association, etc.  

In the current study we used two sets of annotations that are based on 

functional neural mapping. The first was used in (Nummenmaa, Glerean et al. 

2012) and it consists of 6 functional networks, and the second annotation was 

used in (Wang, Zuo et al. 2013) and it consists of 5 functional brain networks. 

In our simulation, we used a made-up dummy annotation. 

 

The Hypergeometric test 

In this study, we use the hypergeometric (HG) test calculate the significance of 

the overlap of two sets. Let’s assume that we have two sets A and B of sizes N 

and K respectively. Let x be the size of the intersection between the two sets. 

Let M be the total number of items in the background set from which the two 

sets were selected. Suppose that B is fixed. The null hypothesis of the HG test 

is that the N items in A were sampled randomly and independently from the 

population without replacement. Therefore, the significance of the intersection 

is the probability of having x or more elements in the intersection, which can be 

calculated using the hyper-geometric distribution as follows: 

5-1)   𝑝 = 𝐹(𝑥 ∨ 𝑀, 𝐾, 𝑁) = ∑
(

𝐾
𝑖

)(
𝑀−𝐾
𝑁−𝑖

)

(
𝑀
𝑁

)

𝑚𝑖𝑛(𝑁,𝐾)
𝑖=𝑥  
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Position group enrichment analysis using the HG test 

Here, we are given a group of neural positions Ap and a class B. We also know 

the background set of neural positions from which Ap and B were taken. When 

using the HG test N is the number of neural positions in Ap, M is the number of 

all neural positions in the background set and K is the number of neural 

positions in B. The number of positions that are both in Ap and B is x.  

Connections group enrichment analysis 

Here we are given a group of connections (i.e. pairs of neural positions) Ac = 

{(x1,y1),…,(xn,yn)}, where each xi and yi is a neural position. This set can also 

be viewed as a graph G(V,E), where V is the set of all neural positions, and 

E=Ac. In addition we are given two subsets of V, B and C. Our goal is to decide 

whether the number of observed edges between B and C in E, denoted as 

a(E,B,C), is larger than expected by chance. In this work, we test two 

approaches for this task: (1) a parametric approach that uses the HG test; and 

(2) a non-parametric test based on permutations. In the next two sections we 

use the same notation described above. 

Parametric connection group analysis using the HG test 

Here, we use the HG test with the following parameters. N is the number of 

pairs in Ac. M (i.e., the background set size) is the number of all possible neural 

pairs: |V|(|V|-1)/2. K=|B|*|C| is the number of possible pairs between B and C. 

Finally, x is the observed number of pairs between B and C - a(E,B,C). 

Non-parametric degree-preserving analysis 
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The HG approach for connection groups does not account for the degree 

distribution in the graph G.  The importance of this distribution has been 

previously observed in brain networks (Rubinov and Sporns 2010, Sporns 

2011). We therefore propose an additional non-parametric test. Here, our null 

hypothesis is that the graph G was randomly selected from the set of all graphs 

with the same node degrees - S. Formally, S={G'=(V,E') | |E'|=|E| and 

degG(v)=degG'(v) for all v in V}, where degG(v) is the number of pairs in E that 

contain v as one of the end points.   

We calculate the p-value empirically by drawing graphs from S using a heuristic 

rewiring step: remove two disjoint edges in the current graph and replace them 

by two others so that node degrees remain unchanged. A long chain of such 

steps leads to a near-random sampling from S (Milo, Kashtan et al. 2003). The 

method has been successfully used in multiple bioinformatics applications 

(Pradines, Farutin et al. 2005, Franceschini, Szklarczyk et al. 2013). Given a 

set of graphs generated using this process we calculate for each one the 

number of observed edges between B and C. This step produces a vector of 

scores a=a1,…,am (by default we generate m=1000 randomized graphs). The 

final empirical p-value is the fraction of scores in a greater than or equal to 

a(E,B,C).  

Multiple testing correction 

Since enrichment is tested for each combination of an identified collection and 

a class, the output contains multiple p-values. Therefore, we correct for multiple 

testing at a false discovery rate (FDR) of 0.05 using the procedure suggested 

by Benjamini and Hochberg (BH) (Benjamini and Hochberg 1995). 
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5.3  RESULTS 

In this study we propose using enrichment analysis to facilitate and improve the 

interpretation of results obtained from large-scale fMRI studies. We address 

two cases: In the first case the large-scale analysis produces a set of neural 

positions. For example, these positions could be a set of voxels that 

demonstrate increased activation under a specific condition. In this case, we 

call the enrichment analysis position-group analysis. In the second case, the 

identified results are a set of neural position pairs (i.e. neural connections). For 

example, they can be pairs of neural positions demonstrating increased 

functional connectivity under a specific experimental condition (Finn, Shen et 

al. 2014, Sripada, Kessler et al. 2014, Tyszka, Kennedy et al. 2014). In this 

case, we call the enrichment analysis connection-group analysis. In both cases, 

in addition to the study results we are given an annotation of the brain that maps 

neural positions to classes representing known neural functions (e.g. 

(Damoiseaux, Rombouts et al. 2006, Yeo, Krienen et al. 2011, Shirer, Ryali et 

al. 2012)), or anatomic structures (e.g. (Talairach and Tournoux 1988, 

Lancaster, Woldorff et al. 2000, Maldjian, Laurienti et al. 2003)). For position-

group analysis we use the hyper-geometric (HG) test, and for connection-group 

analyses we propose two different tests (See Methods for details). The first test 

is based on the HG score and is easy to compute. However, this test ignores 

the degree distribution in the graph represented by the neural connections. The 

second test uses permutations to create a large set of random graphs with the 

same node degrees. 
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Figure 5-1 shows a toy example that illustrates the difference between these 

tests. Graph A is very sparse, and the degree of “red” and “green” nodes is high 

relative to the rest of the graph. As a result, its HG p-value is significant, but its 

degree preserving permutation (DPP) p-value is not. In contrast, graph B is 

denser, and the degree of red and green nodes is relatively low, so its HG p-

value is not significant but its DPP p-value is.  

 

 

 

 

FIGURE 5-1: TWO EXAMPLES THAT DEMONSTRATE THE DIFFERENCE BETWEEN 

THE TWO APPROACHES TO CONNECTIVITY ENRICHMENT SIGNIFICANCE 

Each of the graphs contains 20 nodes, of which three are labeled “green” and three are labeled 
“red”. The number of connections between green nodes and red nodes is 6 in both cases, 
however, the number of connections and consequently the degree of the nodes varies greatly 
between the two cases. Graph A was found to be enriched with red-green connections using 
HG-test (FDR q=4.4*10-5) but not using DPP (FDR q=0.22). On the other hand, graph B was 
found to be enriched with red-green connections using DPP (FDR q<0.001) but not using HG 
test (FDR q=0.34). 

 

We implemented the two approaches in a matlab-based tool called RichMind. 

Below, we first give a brief explanation on the input and output of the tool. Next, 

we show two case studies in which we apply RichMind to real data from fMRI 

studies.  

 

RichMind – a toolbox for analysis of enrichment of fMRI results: 

A

) 

B

) 
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RichMind receives as input either (1) one or more sets of neural positions for 

position-group analysis, or (2) a set of neural position-pairs for connection-

group analysis. In addition, the collection of all positions considered in the 

experiment is required. RichMind uses an established neural annotation, 

attributing neural positions to meaningful terms. These classes reflect prior 

knowledge of brain function or anatomic structure, so they can be anatomic 

labels, functions, pathology association, etc. By default, RichMind uses as 

annotation the functional neural mapping provided in (Yeo, Krienen et al. 2011). 

Alternatively, it provides an option to use the anatomic mapping provided in 

(Fischl, Salat et al. 2002), or any other mapping provided by the user. In each 

type of analysis RichMind calculates the p-values for over-representation of the 

classes (see Methods for details). All p-values are corrected for multiple testing 

using the false discovery rate (FDR) q-value (Benjamini and Hochberg 1995). 

Alternatively, the user can choose the more stringent Bonferroni correction. 

Finally, RichMind reports a list with all significant enrichments (0.05 FDR by 

default), and also produces bar plots that display the p-value and an additional 

measure of enrichment level called the “frequency ratio”. The frequency ratio is 

the ratio between class representation within the tested set and its 

representation in the background set (see Figure 5-2 A for example). For each 

reported result, brain 2D and 3D views overlaying the neural positions (or 

connections) are available by clicking on the result (see Figures 5-2 B, and 5-3 

B for examples). In addition, one can export these overlay graphs into files that 

can be loaded to the BrainNet viewer (Xia, Wang et al. 2013) (see right hand 

panels in Figures 5-2 B and 5-3b for examples). 
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Case Study 1:  Inter-subject correlation identified while watching emotion 
inducing film clips  

Nummenmaa et al. (2012) analyzed fMRI signals recorded from 16 healthy 

participants, while viewing film clips depicting unpleasant, neutral, and pleasant 

emotions. They identified cerebral regions where inter-subject correlation (ISC) 

was reported to be significantly correlated with self-reported valence and 

arousal scores provided by the participants. ISCs were derived by calculating, 

for each voxel, the Pearson correlation coefficient of the BOLD time series 

recorded in each pair of subjects. This was done both for the entire time frame 

and for sliding windows of 17 time points. Ongoing measures of self-reported 

valence and arousal provided by participants were used as regressors in a 

general linear model (GLM), to identify significantly associated ISCs. Results 

were interpreted by the authors in the context of six functional networks 

extracted using seed-based FC analysis on the same data – the VN, SMN, AN, 

DMN, DAN and the executive control network (ECN). The authors reported that 

arousal was mostly associated with ISC in the SMN, VN and DAN while valence 

was negatively associated with ISC in the DMN as well as in regions involved 

in emotional processing, such as midbrain, thalamus, ventral striatum, insula, 

and anterior cingulate cortex (ACC) (Nummenmaa, Glerean et al. 2012). No 

quantitative statistical measure was presented to support this interpretation. 

We ran RichMind position group analysis on two sets of cerebral regions: one 

where ISC was inversely associated with self-reported valence, and another 

where ISC was positively associated with self-reported arousal. All gray matter 

voxels were used as background for enrichment test. The mapping of voxels to 

the six functional networks was taken from the original paper. The results are 

presented in Table 5-1 and Figure 5-2. RichMind identified arousal associated 
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ISC to be enriched with regions involved in AN (q=1.28E-10), SMN (q=1.85E-

10), DAN (q=9.28E-09), and VN (q=9.26E-11), and valence associated ISCs to 

be enriched with DMN (q=9.26E-11), SMN (<1.4E-37) and ECN (q=6.59E-09). 

These results recapitulate the results of the original paper. However, they add 

additional findings of AN enrichment within arousal associated ISCs, and ECN 

and SMN enrichment within valence associated ISCs. These finding reinforce 

the claim made in the original study, by which high arousal serves to direct 

individuals’ attention to features of the environment. Identifying ECN and SMN 

enrichment within valence associated ISCs, is in line with the authors’ 

suggestion by which negative valence synchronizes brain circuitries, supporting 

emotional sensations across individuals.  

 

 

 

TABLE 5-1 – RICHMIND RESULTS FOR CASE STUDY 1 

 DAN=dorsal attention network, AN=auditory network, SMN=sensori-motor network, 

VN=visual network, DMN=default-mode network, ECN=executive control network  

ISCs set 
Enriched 

attribute 

HG-based q-

values 

Frequency 

Ratio 
# Voxels 

Arousal  DAN 9.28E-09 2.9 4560 

Arousal  AN 1.28E-10 1.6 2358 

Arousal  SMN 1.85E-10 1.4 5018 

Arousal  VN 9.26E-11 6.9 2901 

Valence  DMN 9.26E-11 3.5 1357 

Valence  ECN 6.59E-09 4.3 2684 

Valence  SMN 0 1.3 2056 

 

 

 

 

A) 
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B) 

 

FIGURE 5-2: RICHMIND RESULTS VISUALIZATION FOR CASE STUDY 1 

 (A) Bar plots displaying the p-values and frequency ratios of enrichment analysis 
results. Each bar is colored according to the attribute which corresponds to the 
enriched attribute. (B) 2D and high-resolution 3D brain visualization, which shows, for 
each enriched attribute, all neural positions that are both in the SOI and in the attribute. 
Positions are colored according to the corresponding attributes. High resolution 3D 

images were generated using BrainNet viewer (Xia, Wang et al. 2013). 
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Case Study 2: fMRI FC differences identified in cases of amnestic mild 
cognitive impairment 

Wang et. al. (2013) analyzed resting state (rs) fMRI data recorded from 37 

subjects with aMCI, and 47 healthy controls. The analysis produced functional 

connections (FCs) that differed between the groups. These connections were 

identified using the network-based statistic approach (Zalesky, Fornito et al. 

2010) on a predefined functional parcellation containing 1024 parcels 

(Craddock, James et al. 2012, Wang, Zuo et al. 2013). The approach identified 

connected components (CCs) that are composed of FCs for which the inter-

group difference exceeded a pre-defined threshold. Component significance 

was estimated using a permutation test. This analysis detected a single CC of 

363 reduced FCs when using a p-value threshold of 5*10-4. We call this set 

CC363. In addition, two CCs of 65 and 22 reduced FCs were discovered using 

a p-value threshold of 10-4, denoted as CC65 and CC22, respectively.  

In the original study, due to the large number of connections in CC363, only 

CC65 and CC22 were further interpreted. This was done in the context of a 

modular architecture derived from the control group, which includes five 

modules corresponding to the VN, the SMN, the DMN, the ventral attention 

network (VAN) and the auditory network (AN). CC65 was reported as 

comprised mainly of inter-module connections (46/65, 70.8%), which linked 

regions in the SMN module, the VN module, and the AN module. CC22 was 

reported to contain predominantly intra-module connections (15/22, 68.2%) 

within the DMN module (Wang, Zuo et al. 2013). 

We used RichMind to analyze CC363. All 1024 parcels were used to generate 

the background for the enrichment analyses. A mapping of nodes to functional 
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modules was taken from the original paper. The results are presented in Table 

5-2 and Figure 5-3. The HG-based analysis identified CC363 as enriched with 

inter-modular FCs that link regions of the SMN module, the VN module, and the 

AN module (q(SMN-VN)= 0.011, q(SMN-AN)= 6.54E-08; q(AN-VN)=1.2E-09), and with 

intra-modular connections within the DMN module (q=0.003). These results 

reproduce the main conclusions of the original study, but were obtained on the 

larger CC, which was not discussed in the original study due to its size. In 

addition, the test revealed enrichment in connections within the VN module 

(q=0.00014), which was not reported in the original study. The degree 

preserving permutation test did not identify FC enrichment within the VN nor 

did it identify FC enrichment between the SMN and the VN. However, it 

recovered the other three inter-module links (see Table 5-2). 

TABLE 5-2: RICHMIND RESULTS FOR CASE STUDY 2  ; CLASS ABBREVIATIONS: VN=VISUAL 

NETWORK, AN=AUDITORY NETWORK, SMN=SENSORI-MOTOR NETWORK, DMN=DEFAULT-MODE 

NETWORK  

Enriched inter-class 

connection  

HG- based q-

value 

Permutation 

based q-

value 

Frequency 

ratio 

# 

Connections 

VN-AN 6.8E-10 0.0325 2.8 72 

SMN-AN 3.9E-08  0.00075 2.3 54 

VN-VN 8.4E-05 0.79 1.9 41 

DMN-DMN 0.0019 <0.00075 1.6 49 

SMN-VN 0.0066 0.79 1.4 55 
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FIGURE 5-3: RICHMIND RESULTS VISUALIZATION FOR CASE STUDY 2 

 (A) Bar plots displaying the p-values and frequency ratios of enrichment analysis results. Each bar is 

composed of two rectangles colored by the two classes that constitute the enriched class. (B) 2D and 

high-resolution 3D brain visualization, showing, for each enriched class, all neural connections that are 

both in CC363 and in the class. Parcels are colored according to the corresponding classes. High 

resolution 3D images were generated using BrainNet viewer (Xia, Wang et al. 2013). 

 

Repeating case analyses with an external annotation 

The above analyses were conducted using the same annotations that were 

used by the authors of the original papers for interpretation. In both cases, these 
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were functional brain networks that were extracted from the same experiment. 

However, to validate the results of a new experiment, it is preferable that 

enrichment analysis is conducted using an independent annotation. Another 

advantage of using such an external annotation is that it allows the results to 

be comparable across studies. Accordingly, we repeated both case analyses 

using an annotation reported in (Yeo, Krienen et al. 2011), which includes a 

partition of the cortex into seven functional brain networks. This annotation was 

selected because it is based on a thorough analysis of a very large cohort of 

1000 subjects. When we repeated the analysis of RichMind using this 

annotation two of the 5 results in our previous analysis of case study 2 were 

identified (VN-SMN and VN-VN connectivity). In case study 1, the results 

remained similar to those obtained in our previous analysis, however, slight 

differences were identified. For example, valence associated ISC was enriched 

with SMN using the original annotation but not the external one. This difference 

results from discrepancies in the mapping of voxels to network. 

 

 

5.4  D ISCUSSION   

In this work we describe RichMind, a Matlab-based, easy-to-use computational 

tool that tests for enrichment of known classes in large-scale neural results. It 

provides both statistical reports and brain visualizations of the identified 

enrichments. Statistical reports state the probability of getting the observed 

representation of each annotation in the tested set by chance. 

We applied RichMind totwo case studies, and in both of them RichMind 

reinforced the main claims made in the original papers, while adding new 
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findings. In case study 1, the involvement of the ACC in the valence-associated 

ISCs seems to contribute most to the identified ECN enrichment within that 

group (Figure 5-2B shown in black), in accordance with the statement in the 

original study. However, regions of the SMN were reported in the original study 

only in association with arousal ISCs and not with valence ISCs. Using 

RichMind we reveal SMN enrichment within valence associated ISCs, a finding 

with extremely low q-value, indicating that it is highly significant. Notably, this 

enrichment was not identified using the external annotation that was based on 

(Yeo, Krienen et al. 2011), due to differences between the mappings. This 

inconsistency demonstrates the need for an established functional mapping of 

the brain that is acknowledged in the field as “common ground”.    

While enrichment analysis is standard in genomic and genetic studies 

(Sherman and Lempicki 2009, Ulitsky, Maron-Katz et al. 2010),  few previous 

fMRI studies addressed the issue of large-scale interpretation by calculating the 

relative frequency of specific classes. For example, in case study 2 Wang et al. 

used maps of known functional brain networks extracted from the set of healthy 

controls through modularity analysis, and then calculated the percent of the 

results that link each pair of networks (Wang, Zuo et al. 2013). However, such 

an approach does not take into consideration the spatial coverage of each 

class, which has a major effect on the frequency of its representation in the 

results. Furthermore, it does not provide statistical significance of the reported 

findings. 

Unlike the simple case where results contain sets of neural positions, when 

examining sets of neural connections, the null hypothesis of random 

independent sampling, which underlies the hyper-geometric test, may not be 
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suitable. This is due to a non-uniform distribution of the degrees in the brain 

network (Rubinov and Sporns 2010, Sporns 2011). Instead, empirical p-values 

can be calculated using a permutation test, in which the random background 

model preserves the degrees of the nodes in the graph. Such degree-

preserving permutation test has been previously used for analyzing enrichment 

within protein-protein interaction networks (Pradines, Farutin et al. 2005, 

Franceschini, Szklarczyk et al. 2013). In our tests, when comparing HG to the 

degree preserving permutation test, we observed that the latter was often much 

more stringent and produced less results.  

Shortcomings and future plans: Using a data-driven approach, which 

considers all possible classes, while correcting for multiple tests, is very strict, 

and thus may increase the rate of false negative findings. In addition, the 

analysis is conducted under the assumption of specific null models, which, in 

some cases, may not hold. Other null models can be added to RichMind in the 

future based on user requests.   

The use of enrichment analysis is always based on some previously 

established mapping that is used as an annotation. For this purpose, it would 

be ideal to use an established functional mapping of the brain that is accepted 

in the field as “common ground”. Such annotation systems exists in other fields 

for this type of analysis, e.g. the Gene Ontology system (Consortium 2004) or 

the KEGG pathway database (Kanehisa and Goto 2000), which are used as 

standard gene annotations in computational genomics analysis. However, due 

to the lack of such a common ground in neuroscience, we adopted a functional 

annotation that was based on a previously published study, conducted on the 

1000 connectomes data, and an anatomic annotation of lobe-laterality 
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information that was based on the TD atlas. We believe that established 

mapping systems will be available in the near future, and will encourage and 

improve the use of enrichment analysis in the field.  

Availability: RichMind package and sample data is freely available for 

academic use at http://acgt.cs.tau.ac.il/RichMind. A technical user manual is 

available at http://acgt.cs.tau.ac.il/RichMind/help.html .  

In the coming chapters of this work, enrichment analysis was applied whenever 

there was a need to interpret large-scale changes in rsFC. This was done using 

the RichMind toolbox.  
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6. CHARACTERIZING CHANGES IN RESTING-STATE NETWORKS 

INDUCED BY A PSYCHOLOGICAL PERTURBATION  

 

6.1  BACKGROUND  

 

The dynamics of interpersonal interactions often evoke strong emotions, some 

perceived as positive and pleasant, while others as unpleasant or negative. Of 

the latter, social stress and anxiety are associated with appraisals of 

uncertainty, risk, and relative weakness  (Smith and Ellsworth 1985, Mackie, 

Devos et al. 2000, Lerner and Keltner 2001) and  are considered emotions that 

discourage confrontation (i.e. flight/avoidance) (Smith and Lazarus 1990, 

Blanchard and Blanchard 2003), whereas anger is associated with appraisals 

of certainty, low risk, and relative strength (Smith and Lazarus 1990, Blanchard 

and Blanchard 2003), and is more likely to motivate one to take action (i.e. fight 

/approach) (Berkowitz 1989, Berkowitz 1993, Lazarus 1994, Harmon-Jones 

and Sigelman 2001). This difference is further supported by evidence for two 

different biological profiles of stress hormonal response. The same study 

demonstrates how individual tendencies affect levels of reported anger and 

anxiety provoked by the same stressor (Moons, Eisenberger et al. 2010).  
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These two behavioral patterns of approach vs. avoidance were shown to be 

associated with differences in functional lateralization in the prefrontal cortex, 

as indicated by frontal asymmetry measured with electroencephalography 

(EEG) (Heller 1993, Davidson 2004, Harmon-Jones, Gable et al. 2010, 

Quaedflieg, Meyer et al. 2015). However, little is known on differences in 

patterns of neural network reorganization that underlie these two behaviors.    

In this section we present two case studies in which we explore changes in 

patterns of rsFC induced by established paradigms involving social interactions 

that were used to generate an emotional challenge: the first of acute social 

stress and the second of inter-personal social conflict that is known to provoke 

anger. In both cases the study was conducted on a cohort of healthy young 

male subjects. We assumed that both challenges would have a large-scale 

effect on patterns of neural FC, which would be evident in subsequent rsfMRI.  

We further expected that the identified changes in rsFC would differ between 

the two case studies due to the difference in type of challenge. 

 

 

 6.2  CASE STUDY 1:  CHARACTERIZING CHANGES IN RESTING-STATE 

NETW ORKS INDUCED BY ACUTE SOCIAL STRESS  
 

In this section we describe the data-driven investigation of rsFC changes 

identified following exposure to acute social stress. A paper describing the 

results was submitted to a journal, and is now under peer review.   

6.2.1  SPECIFIC BACKGROUND  

 

Acute stress calls for an adequate immediate response, followed by recovery 

processes and homeostasis restoration once the stressor has terminated 
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(Cannon 1929, De Kloet, Joëls et al. 2005, Hermans, Henckens et al. 2014). 

While the neural basis of the stress response at the time of induction has been 

widely investigated (Wang, Rao et al. 2005, Pruessner, Dedovic et al. 2008, 

Ulrich-Lai and Herman 2009), much less is known about the neural processes 

that underlie successive recovery in human subjects. Characterizing individual 

variability in recovery from stress is of particular interest since it has been 

associated with several stress-related psychopathologies, including Post 

Traumatic Stress Disorder (PTSD) and depression (McEwen 2003, Yehuda and 

LeDoux 2007).  

One approach to study post-processing of prior events, such as stress, is by 

inspecting the spontaneous neural activity that takes place during rest after the 

event occurred. This post-processing has been shown to support prior 

experience consolidation (Lewis, Baldassarre et al. 2009, Tambini, Ketz et al. 

2010, van Kesteren, Fernández et al. 2010), and thus, may play a central role 

in regaining mental and physiological homeostasis and is expected to involve 

large scale brain network reorganization (Eryilmaz, Van De Ville et al. 2011, 

Wang, Liu et al. 2012, Hermans, Henckens et al. 2014). Accordingly, using 

post-stress resting-state functional magnetic resonance imaging (rsfMRI) to 

investigate network reorganization following stress may provide a vital insight 

into the large-scale neural mechanism that underlies affective recovery from 

acute stress.   

Few previous fMRI studies investigated changes in resting-state functional 

connectivity (rsFC) following acute stress (Van Marle, Hermans et al. 2010, 

Veer, Oei et al. 2011, Vaisvaser, Lin et al. 2013). For example, van Marle et al. 

reported increased amygdala rsFC immediately following acute stress with 



50 

 

anterior cingulate cortex, anterior insula, and a dorso-rostral pontine region 

(Van Marle, Hermans et al. 2010). In another study Veer et al. reported 

increased amygdala rsFC with the posterior cingulate cortex, precuneus and 

medial prefrontal cortex an hour following stress, suggesting that these effects 

could be related to top-down control of the amygdala and consolidation of self-

relevant information following a stressful event  (Veer, Oei et al. 2011). Lastly, 

Vaisvaser et al. examined changes in rsFC patterns seeded at the posterior 

cingulate cortex (PCC) and hippocampus, both immediately after social stress 

induction and two hours later (Vaisvaser, Lin et al. 2013). Unlike the two 

aforementioned studies, here rsFC alterations were examined with respect to 

the pre-stress resting period. Immediately after stress induction several rsFC 

changes were reported including altered coupling within the default mode 

network (DMN) and between hippocampus and amygdala.  Intriguingly, two 

hours later all rsFCs returned to pre-stress levels with the exception of a 

sustained increase in rsFC found between the hippocampus and amygdala.  

Notably, these studies used a hypothesis-driven fMRI analysis approach, 

exploring connectivity changes involving one or few predefined seed regions. 

Alongside the clear statistical advantages of such a seed-based approach lies 

the disadvantage of revealing only that fraction of the actual phenomena that 

involves the preselected seed, and possibly missing other relevant findings, 

which can be identified using a data-driven approach. Such a data-driven 

approach was taken by Hermans et al. who used group independent 

component analysis (ICA) in combination with inter-subject correlation analysis 

to identify large-scale stress-related FC changes induced during exposure to 

fear-related movie clips. They reported an increase in interconnectivity within a 
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salience network, which positively correlated with the subjective stress 

response magnitude (Hermans, van Marle et al. 2011). This network included 

cortical (frontoinsular, dorsal anterior cingulate, inferotemporal, and 

temporoparietal) and subcortical (amygdala, thalamus, hypothalamus, and 

midbrain) regions. Accordingly,  it has been suggested that exposure  to  acute  

stress prompts  the recruitment  of  a  salience  network,  at the expense of  a 

fronto-parietal  executive control network involving  dorso- frontal and parietal 

areas, and that this resource allocation is reversed after stress subsides 

(Hermans, Henckens et al. 2014).  Nonetheless, large scale alterations after 

exposure to stress require further identification and deeper characterization.  

 

In this study we aimed to gain a broader perspective on rsFC modulations 

following acute social stress, and examine their correspondence to individual 

subjective experience. To this end we adopted a data-driven approach for 

analyzing rsfMRI data recorded from healthy male subjects before and after 

performing the arithmetic task from the well-established Tier Social Stress Test 

(Kirschbaum, Prüssner et al. 1995), adapted to the scanner (Wang, Rao et al. 

2005, Vaisvaser, Lin et al. 2013). In addition, in order to study the relation 

between stress-induced rsFC modulations and subjective experience of 

recovery, we divided our participants according to their reported stress 

sustainment. 

 Data analysis was conducted using a fine-grained predefined functional 

parcellation (Craddock, James et al. 2012) that allowed dimensionality 

reduction on one hand, while maintaining a relatively coherent per-parcel BOLD 
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signal on the other hand. The parcellation contained 517 parcels, of which 463 

survived after gray-matter masking. In this parcellation most anatomic 

structures are covered by more than one parcel. This redundancy in regional 

representation along with the expected large-scale effect of stress induction 

may lead to a large number of identified changes even after controlling for type-

I error. In such cases an additional means is required in order to pinpoint the 

most robust rsFC changes. To this end we applied enrichment analysis, which 

is described in section 5, and is commonly used in the field of Bioinformatics 

for interpreting a large number of noisy results (Sherman and Lempicki 2009, 

Ulitsky, Maron-Katz et al. 2010). In the current study enrichment analysis was 

conducted based on parcel anatomic positions, seeking pairs of lobes that were 

over-represented (i.e. significantly more prevalent than would be expected by 

chance) in the set of identified modulations. 

We hypothesized that using a whole-brain data-driven approach would reveal 

a large-scale effect of stress-induced rsFC modulations, which corresponds to 

changes in the subjective experience of stress. We expected some of these 

changes to involve rsFC that had been previously associated with stress 

reactivity, such as connections within the salience network and executive 

control network, as suggested in (Hermans, Henckens et al. 2014), and rsFC 

previously associated with post-stress processing, e.g. within the DMN or 

between the DMN and limbic regions (Veer, Oei et al. 2011, Vaisvaser, Lin et 

al. 2013).  Furthermore, we expected some of these stress-induced rsFC robust 

changes to be sensitive to inter-individual differences in subjective stress 

recovery measured 20 minutes after the stress eliciting experience. 
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6.2.2  SPECIFIC MATERIALS AND METHODS  

 

Participants  

We used fMRI data from a study conducted at our lab, on a cohort of 61 healthy 

male participants (age 19–22) (Vaisvaser, Lin et al. 2013). The data were 

previously analyzed using a different methodological approach of exploring 

changes in rsFC of a-priori preselected seed regions.  Participants had no 

reported history of psychiatric or neurological disorders, no current use of 

psychoactive drugs, no family history of major psychiatric disorders, and no 

previous exposure to abuse during childhood and/or potentially traumatic 

events before entering the study. In addition, all participants had normal or 

corrected-to-normal vision and provided written informed consent approved by 

Tel Aviv Sourasky Medical Center Ethics Committee and conformed to the 

Code of Ethics of the World Medical Association (Helsinki Declaration). Of the 

61, four individuals were excluded from the current analysis due to signal 

artifacts; therefore the final study group consisted of 57 participants. 

  

Experimental procedure 

Each participant underwent a 65 minutes MRI scan that consisted of 6 phases: 

acclimation and anatomical scan (15 minutes), a rest condition ("rest1", 5 

minutes), control task (6 min), a social stress task (6 minutes), a second rest 

condition ("rest2", 5 minutes) and another anatomical scan (15 minutes).  Acute 

stress was induced using a serial subtraction arithmetic task (Kirschbaum, 

Prüssner et al. 1995, Wang, Rao et al. 2005), fully described in (Vaisvaser, Lin 

et al. 2013).  Briefly, participants were instructed to continuously subtract 13 
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from 1022 for a period of 6 minutes, responding verbally, while monitored on-

line by an experimenter. The stress task was preceded by a non-stressful 

condition of backward counting for a period of 6 minutes, without external 

monitoring. The experimental timeline is shown in Figure 6-2 A. During the rest 

conditions participants were instructed to keep their eyes open and stare at a fixation 

point. Psychological effect of stress  (on a 9 point Likert scale) and salivary 

cortisol were evaluated at four time points: after the first rest scan (Stress 

Reprot_1;  SR1), after the control task (SR2), right after the stress task (SR3) and 

20 minutes after the stress task, following the second anatomical scan (SR4) 

(Figure 6-2 A). In addition, the STAI questionnaire described in section 4.2 was 

administered and Electrocardiography (ECG) was recorded continuously 

during scanning via a BrainAmp ExG MRI-compatible system at a sampling rate 

of 5000Hz, and used to extract heart-rate measure. 

 

Physiological data analysis 

Preprocessing of the ECG signal and RR interval analysis was performed 

similarly to (Raz, Winetraub et al. 2012). Briefly, gradient artifacts were 

removed using FASTR algorithm (Niazy, Beckmann et al. 2005), implemented 

in FMRIB plug-in for EEGLAB (Delorme and Makeig 2004). R peaks of ECG 

were detected using the FMRIB toolbox, and corrected for mis-detection 

(maximum correction rate over participants was 5.95%) and presence of 

ectopic beats. Finally, RR intervals were used to derive a beats-per minute HR 

index. Due to motion artifacts, 42 participants, for whom a reliable R peak signal 

could be detected in all conditions, were included in the final HR analysis.  The 
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Kubios software tool (Tarvainen, Niskanen et al. 2009) was used to extract the 

high frequency component of HRV from the ECG channel. 

 

fMRI data acquisition information 

Functional imaging was acquired with gradient echo-planar imaging (EPI) 

sequence of T2*-weighted images (TR/TE/flip angle: 3000/35/90; FOV: 20 × 20 

cm; matrix size: 96 × 96) in 39 axial slices (thickness: 3 mm; gap: 0 mm) 

covering the whole cerebrum.  

 

fMRI preprocessing and parcellation 

fMRI data preprocessing was performed with SPM5 (Wellcome Department of 

Imaging Neuroscience, London, UK).  The procedure is described in section 

4.1.3. 

We used the whole-brain functional parcellation reported in (Craddock, James 

et al. 2012), as described in section 4.1.3 to partition the brain into 463 parcels 

for which average BOLD values across all gray matter voxels were calculated 

at each time point. These time series were used as the parcel’s signal.  In order 

to reduce the effect of physiological artifacts and nuisance variables, the whole-

brain mean signal, six motion parameters, cerebrospinal fluid, and white matter 

signals were regressed out of these parcel signals. 

 

 Parcel-based univariate functional connectivity analysis 

The procedures of rsFC analysis and statistical characterization are illustrated 

in Figure 6-1.  We used a univariate analysis approach, in which a model is 
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fitted independently to each connection to assess evidence for experimental 

effects.  

Level of rsFC between every two parcels was estimated by calculating the 

Pearson correlation coefficient between the corresponding signals. This was 

done for each subject and each rest condition separately. Correlation values 

were next Fisher transformed to better fit a normal distribution. FC level 

estimates of "rest1" were then subtracted from the corresponding estimates in 

"rest2", resulting in a single FC change value (denoted ∆FC) for each pair of 

parcels and for each subject. To identify parcel-pairs that demonstrated 

significant rsFC change following the stress task, we applied a one-sample t-

test on the ∆FC values of each pair across all subjects.  

 

 

 

 Statistical characterization of identified connections using enrichment 

analysis 

In order to characterize the identified changes, we conducted enrichment 

analysis on the two sets of connections that were identified as differential: the 

Figure 6-1:  An illustration of data-driven univariate rsFC analysis. Following 

parcellation, cross-correlation matrices were calculated for each subject and resting-state 

session. A paired t-test was applied on the Fisher-transformed rsFC values to identify parcel-

pairs for which rsFC changed significantly. An FDR procedure was used to correct for 

multiple testing. Next, anatomy-based enrichment analysis was used to characterize the 

identified changes in rsFC. 
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set of weakened connections, and the set of strengthened connections.  This 

was done using the RichMind toolbox described in section 5.2. Each parcel was 

annotated according to the lobe and hemisphere in which it was located. Lobes 

were identified by mapping parcel spatial centers into the TD lobe map provided 

with the WFU Pick Atlas Tool (Maldjian, Laurienti et al. 2003, Stamatakis, 

Adapa et al. 2010), combined with laterality information, i.e., left(x<-6), midline 

(-6<x<6) or right (x>6).  This resulted in a unique mapping of each of the 463 

parcels to one of 18 possible annotations. Consequently each connection was 

given a pair of annotations according to the location of the two parcels 

comprising it. 

The Hyper-geometric cumulative distribution function (HG-CDF) was used to 

assess the enrichment levels of the lobe representation of identified 

connections (see section 5.4 for details).   The probabilities were corrected for 

multiple comparisons using Bonferroni correction.  

Since the null hypothesis that underlies the HG-CDF is that parcel-pairs were 

obtained randomly and independently. As an additional filtering, to rule out 

dependency biases in the enrichment results, we used a random permutation 

test (see section 5.4 for details).  

For each identified enrichment result, an additional measure called “enrichment 

factor” (EF) was calculated. For each pair of annotations (a1,a2) EF 

corresponds to the ratio between the relative frequency of a1-a2 links in the 

sample (e.g. parcel-pairs with increased rsFC) and their relative frequency in 

the background (i.e. all possible parcel-pairs). This descriptive measure was 
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not used to identify the results; rather it allowed additional assessment of the 

extent of each of the identified enrichment results.   

 

6.2.3  RESULTS  

 

Behavioral and physiological indications of stress  

As reported by Vaisvaser et al., both subjective reports and HR (beats per 

minute) measures showed a significant elevation in stress in measure SR3 as 

compared to the two previous measures (SR1 and SR2), and a decrease to 

initial levels during the second rest period. For salivary cortisol, a marginally 

significant main effect of time was reported, with a peak in cortisol level in the 

final sample (SR4) as compared to post “rest1” sample. 

Stress sustainment versus recovery group division:  The SR4-SR1 value 

distribution is shown in Figure 6-5 A. Out of 57 participants, 23 demonstrated 

elevated reported stress levels 20 minutes post stress induction (i.e. SR4-

SR1>0), and were thus assigned in the current study to the “sustained stress” 

group. The rest of the subjects (n=34) were assigned to the “recovered stress” 

group. For the “recovered stress” group a significant decline  in stress ratings 

was identified 20 minutes following stress-induction (SR4) relative to ratings 

immediately after stress induction (SR3, Tukey’s HSD p <0.0001). This decline 

was not evident in the "sustained stress" group (Figure6-2 B).   

Notably, no association was found between state and trait anxiety measured by 

STAI questionnaire at the beginning of the experiment and level of stress 

sustainment as measured by SR4-SR1 value (p>0.15) or increase of reported stress 

following the task as measure by SR3-SR1 value (p>0.5).  
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 Stress-induced rsFC alterations  

In order to identify post-stress rsFC changes we conducted a univariate 

statistical analysis on the Fisher-transformed cross-correlation matrices. This 

was done by subtracting the “rest1” matrix from the “rest2” matrix, and then 

applying a one-sample t-test on the resulting ∆FC values of each parcel pair.  

A significant rsFC change (FDR<0.05) was identified in 490 out of 106953 

possible parcel-pairs. Of these, 189 pairs demonstrated rsFC increase and 301 

demonstrated rsFC decrease. Pairs are presented as connections/edges on a 

3D brain image in Figure 6-3.   

Figure 6-2: Psychological response to stress on experimental timeline. 

Subjective ratings of stress (B) are presented in reference to the time course 

of the experiment (A). Time 0 indicates the start of the first rest condition. 

The orange columns represent control and stress tasks (6 min each), violet 

columns represent 'rest' conditions (fixation, open eyes, 5 min) and light 

gray columns represent anatomical scans (15 min each). Between scans 

(dark gray columns), behavioral rating of stress and salivary cortisol 

samples [SR(1–4)] were taken. ∗  p<0.005, ∗ ∗  p<0.001. 
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This large-scale effect required a second-level analysis in order to highlight the 

main findings.  To this end, we conducted enrichment analysis.   

Using the lobe and laterality annotation of each parcel, we searched for pairs 

of annotations that were significantly over-represented (i.e. “enriched”) in the 

set of connections identified as affected by the stress task across all subjects. 

Enrichment analysis was applied separately on the set parcel-pairs 

demonstrating rsFC increase (i.e. “strengthened set”) and on the set parcel-

Figure 6-3:: Significant rsFC changes following stress 

Using FDR of 0.05, 490 parcel-pairs demonstrated a significant ∆FC between “rest1” 

and “rest2”. Of these, 301 demonstrated rsFC decrease (A - shown in blue) and 189 

demonstrated rsFC increase (B - shown in red).  Visualization was generated using 

Brain Net Viewer (Xia, Wang et al. 2013). 
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pairs demonstrating rsFC decrease (i.e. “weakened set”). Results are 

summarized in Table 6-1 and illustrated in Figure 6.4-A. The strengthened set 

was found to be enriched with thalamo-frontal (right), thalamo-temporal 

(bilateral) and thalamo-parietal (right) connections, while the weakened set was 

found to be enriched with cross-hemispheral temporo-parietal connections, 

including regions of the inferior, middle and superior temporal gyri along with 

regions of the pre- and post central gyri and the superior and inferior parietal 

lobule. Table 6-2 contains information on enrichment-inducing pairs (i.e. parcel-

pairs that were both modulated by the task and link lobe pairs that were found 

to be enriched). 

 

 

 

 

 

 

TABLE 6-1 – LOBE-BASED ENRICHMENT ANALYSIS RESULTS 

Figure 6-4:  A graph representation of the enrichment analysis results 

 (A) Lobe distribution of connections that demonstrated significant ∆FC from "rest1" to "rest2". 

Each node corresponds to a lobe in the analysis. An edge indicates significant over-representation 

of the corresponding lobe pairs in the set of strengthened connections (red) and the set of weakened 

connections (blue). Edge width reflects the enrichment factor (EF) of the identified connections. 

(B) A scatter plot presenting the mean ∆FC across all parcel-pairs that were involved in the 

identified enrichments against the (SR3-SR1) change in subjective stress rating. Each spot shows 

the two values for one subject.  A significant correlation is identified (r=0.32, p<0.02). 
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Results of lobe-based enrichment analysis of significantly strengthened 
and weakened connections (p-value<=0.05, Bonferroni corrected). The 
enrichment factor is the ratio between the fraction of pairs with the 
specified lobe representation in the set of increased/decreased ∆FC 
pairs, and that fraction in the set of all possible connections. R=right, 
L=left. 
 

Lobes ∆FC #connections Corrected          

p-value 

% of 

connections 

Enrichment 

factor 

Temporal L; 

Thalamus 

↑ 17 1.13E-08 9% 60.1 

Temporal R; 

Thalamus 

↑ 7 2.46E-05 3.7% 20.2 

Parietal R; 

Thalamus 

↑ 10 4.51E-07 5.3% 47.2 

Frontal R; 

Thalamus 

↑ 12 6.94E-08 6.3% 28.3 

Temporal L; 

Parietal R 

↓ 30 5.76e-08 10% 8.88 

Temporal R; 

Parietal L 

↓ 27 6.04e-08 9% 7.83 

 

 

TABLE 6-2 – ENRICHMENT-INDUCING PARCEL PAIRS:   

A specification of all parcels-pairs that demonstrated differential rsFC 
following stress, and link enriched lobe pairs. Rows are sorted 
according to t-values.    

 

Parcel1 x y z Parcel2 x y z p-value Fdr q 
t-
value 

453_ 54 -9 -15 524_ -39 -
51 

54 2.28E-07 0.007 -
5.892 

93_ -45 -36 54 453_ 54 -9 -15 4.86E-07 0.007 -
5.688 

93_ -45 -36 54 188_ 63 -
18 

-12 7.78E-07 0.007 -
5.561 

196_ 51 -24 54 258_ -60 -9 -24 9.79E-07 0.007 -
5.499 

11_ 48 -27 42 102_ -54 -
33 

0 1.55E-06 0.01 -
5.374 

196_ 51 -24 54 399_ -60 -
12 

-15 3.13E-06 0.014 -
5.181 

11_ 48 -27 42 258_ -60 -9 -24 3.24E-06 0.014 -
5.171 

3_ 63 -12 -21 93_ -45 -
36 

54 6.17E-06 0.015 -
4.992 

102_ -54 -33 0 508_ 54 -
18 

45 7.02E-06 0.015 -
4.955 

3_ 63 -12 -21 549_ -60 -
15 

30 7.72E-06 0.016 -
4.929 

158_ -54 -24 -3 233_ 27 -
45 

66 1.08E-05 0.018 -
4.835 

79_ 39 -36 45 102_ -54 -
33 

0 1.17E-05 0.018 -
4.811 

158_ -54 -24 -3 345_ 63 -
12 

18 1.31E-05 0.019 -
4.781 

258_ -60 -9 -24 508_ 54 -
18 

45 1.49E-05 0.019 -
4.744 

151_ -12 -66 57 453_ 54 -9 -15 1.56E-05 0.019 -
4.731 

258_ -60 -9 -24 393_ 39 -
39 

57 1.90E-05 0.02 -
4.675 

37_ -42 -36 42 453_ 54 -9 -15 1.95E-05 0.02 -
4.667 

399_ -60 -12 -15 508_ 54 -
18 

45 2.09E-05 0.02 -
4.647 

3_ 63 -12 -21 180_ -54 -
27 

42 2.10E-05 0.02 -
4.645 

102_ -54 -33 0 345_ 63 -
12 

18 2.36E-05 0.021 -
4.612 
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393_ 39 -39 57 399_ -60 -
12 

-15 2.55E-05 0.022 -4.59 

102_ -54 -33 0 286_ 63 -
21 

30 2.66E-05 0.022 -
4.578 

192_ -54 -3 -18 508_ 54 -
18 

45 3.05E-05 0.024 -
4.538 

11_ 48 -27 42 158_ -54 -
24 

-3 3.18E-05 0.024 -
4.526 

102_ -54 -33 0 393_ 39 -
39 

57 4.12E-05 0.028 -
4.451 

11_ 48 -27 42 341_ -54 -
48 

6 4.63E-05 0.028 -
4.417 

140_ -57 -18 -24 196_ 51 -
24 

54 4.71E-05 0.028 -
4.412 

3_ 63 -12 -21 151_ -12 -
66 

57 4.87E-05 0.028 -
4.402 

11_ 48 -27 42 399_ -60 -
12 

-15 4.93E-05 0.028 -
4.399 

151_ -12 -66 57 496_ 36 -
39 

-21 5.87E-05 0.031 -
4.348 

265_ -54 -42 45 453_ 54 -9 -15 6.05E-05 0.031 -
4.339 

79_ 39 -36 45 258_ -60 -9 -24 6.66E-05 0.033 -4.31 

158_ -54 -24 -3 508_ 54 -
18 

45 6.67E-05 0.033 -4.31 

498_ 63 -3 -18 549_ -60 -
15 

30 6.76E-05 0.033 -
4.306 

188_ 63 -18 -12 219_ -57 -9 15 8.51E-05 0.036 -
4.238 

151_ -12 -66 57 326_ 27 -
39 

-18 8.52E-05 0.036 -
4.237 

192_ -54 -3 -18 196_ 51 -
24 

54 9.48E-05 0.037 -
4.206 

180_ -54 -27 42 316_ 54 -3 -27 9.49E-05 0.037 -
4.205 

93_ -45 -36 54 316_ 54 -3 -27 9.89E-05 0.037 -
4.193 

214_ -30 -42 63 264_ 63 -
15 

3 9.97E-05 0.038 -
4.191 

180_ -54 -27 42 453_ 54 -9 -15 0.000102 0.038 -
4.183 

56_ -57 -60 9 79_ 39 -
36 

45 0.000103 0.038 -4.18 

11_ 48 -27 42 192_ -54 -3 -18 0.000112 0.039 -
4.157 

3_ 63 -12 -21 37_ -42 -
36 

42 0.000124 0.04 -
4.125 

318_ -27 -57 57 453_ 54 -9 -15 0.000128 0.041 -
4.116 

93_ -45 -36 54 498_ 63 -3 -18 0.000132 0.041 -
4.106 

79_ 39 -36 45 325_ -51 6 -27 0.000134 0.041 -
4.101 

11_ 48 -27 42 145_ -63 -
27 

3 0.000137 0.041 -
4.096 

158_ -54 -24 -3 286_ 63 -
21 

30 0.00015 0.043 -
4.067 

219_ -57 -9 15 498_ 63 -3 -18 0.000156 0.043 -
4.056 

188_ 63 -18 -12 549_ -60 -
15 

30 0.00017 0.045 -4.03 

3_ 63 -12 -21 524_ -39 -
51 

54 0.000173 0.045 -
4.024 

303_ -66 -39 -3 393_ 39 -
39 

57 0.000178 0.045 -
4.017 

63_ -27 -72 36 288_ 54 9 -12 0.000191 0.047 -
3.995 

102_ -54 -33 0 233_ 27 -
45 

66 0.0002 0.048 -3.98 

180_ -54 -27 42 498_ 63 -3 -18 0.000215 0.049 -
3.959 

19_ -21 -78 42 288_ 54 9 -12 0.000217 0.049 -
3.955 

72_ -60 -12 3 242_ 6 -9 6 0.000228 0.05 3.941 

45_ 12 -63 21 420_ 3 -
18 

9 0.000224 0.05 3.945 

242_ 6 -9 6 550_ 63 -
27 

12 0.000223 0.05 3.947 

248_ 60 0 18 420_ 3 -
18 

9 0.00021 0.049 3.965 

24_ -6 -6 9 204_ 54 0 45 0.000204 0.048 3.974 

24_ -6 -6 9 173_ -66 -
39 

9 0.000201 0.048 3.979 

35_ -3 -3 3 248_ 60 0 18 0.0002 0.048 3.981 

196_ 51 -24 54 242_ 6 -9 6 0.000183 0.046 4.008 

11_ 48 -27 42 242_ 6 -9 6 0.000141 0.041 4.087 
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242_ 6 -9 6 345_ 63 -
12 

18 0.000138 0.041 4.094 

159_ 51 -30 21 242_ 6 -9 6 0.000127 0.041 4.117 

158_ -54 -24 -3 242_ 6 -9 6 0.000123 0.04 4.129 

24_ -6 -6 9 196_ 51 -
24 

54 0.000119 0.04 4.139 

102_ -54 -33 0 242_ 6 -9 6 0.000107 0.038 4.169 

35_ -3 -3 3 152_ 51 -9 36 0.000106 0.038 4.173 

264_ 63 -15 3 420_ 3 -
18 

9 8.79E-05 0.036 4.228 

89_ 54 -33 0 420_ 3 -
18 

9 8.48E-05 0.036 4.239 

229_ -48 -30 9 420_ 3 -
18 

9 8.48E-05 0.036 4.239 

28_ 54 6 33 242_ 6 -9 6 8.33E-05 0.035 4.244 

35_ -3 -3 3 508_ 54 -
18 

45 8.14E-05 0.035 4.251 

242_ 6 -9 6 264_ 63 -
15 

3 7.93E-05 0.035 4.259 

115_ 54 -15 15 242_ 6 -9 6 6.62E-05 0.033 4.312 

24_ -6 -6 9 501_ -45 -
60 

21 6.59E-05 0.033 4.314 

103_ 54 -24 -3 242_ 6 -9 6 5.72E-05 0.031 4.355 

35_ -3 -3 3 68_ 63 -6 30 5.50E-05 0.03 4.367 

145_ -63 -27 3 242_ 6 -9 6 5.35E-05 0.03 4.375 

152_ 51 -9 36 242_ 6 -9 6 4.52E-05 0.028 4.424 

24_ -6 -6 9 72_ -60 -
12 

3 3.07E-05 0.024 4.536 

242_ 6 -9 6 321_ 63 -
30 

0 2.35E-05 0.021 4.613 

102_ -54 -33 0 420_ 3 -
18 

9 2.00E-05 0.02 4.66 

24_ -6 -6 9 152_ 51 -9 36 1.90E-05 0.02 4.674 

24_ -6 -6 9 145_ -63 -
27 

3 1.69E-05 0.019 4.708 

103_ 54 -24 -3 420_ 3 -
18 

9 1.48E-05 0.019 4.746 

24_ -6 -6 9 102_ -54 -
33 

0 1.44E-05 0.019 4.753 

242_ 6 -9 6 413_ 60 -3 6 1.40E-05 0.019 4.761 

145_ -63 -27 3 420_ 3 -
18 

9 7.28E-06 0.015 4.946 

24_ -6 -6 9 229_ -48 -
30 

9 6.74E-06 0.015 4.967 

72_ -60 -12 3 420_ 3 -
18 

9 6.09E-06 0.015 4.995 

158_ -54 -24 -3 420_ 3 -
18 

9 5.82E-06 0.015 5.008 

24_ -6 -6 9 158_ -54 -
24 

-3 5.51E-06 0.015 5.023 

24_ -6 -6 9 68_ 63 -6 30 5.17E-06 0.015 5.041 

68_ 63 -6 30 242_ 6 -9 6 4.05E-06 0.014 5.109 

242_ 6 -9 6 508_ 54 -
18 

45 3.84E-06 0.014 5.124 

24_ -6 -6 9 508_ 54 -
18 

45 3.12E-06 0.014 5.181 

24_ -6 -6 9 269_ -60 -
48 

21 8.23E-07 0.007 5.546 

242_ 6 -9 6 248_ 60 0 18 2.27E-07 0.007 5.893 

 

 

Relation between stress-induced rsFC changes and subjective stress 

reports 
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 Examination of the relation between the mean ∆FC magnitude across all 103 

enrichment-inducing pairs and the reported change in stress immediately after 

induction (i.e. SR1 vs SR3) across all subjects, revealed a significant positive 

correlation (Spearman r=0.32, p<0.02; Figure 6-4 B). When conducting the 

same test separately for the 46 parcel-pairs involved in strengthened rsFC 

enrichment (the “strengthened subset”, Table 6-1)  and the 57 parcel-pairs 

involved in weakened rsFC enrichment (the “weakened subset”), a significant 

correlation was found for the strengthened subset (Spearman r=0.265, p<0.05),  

but not for the weakened subset (Spearman r = -0.21, p=0.115). Nevertheless, 

the mean ∆rsFC within the weakened subset was found to be significantly anti-

correlated with the mean ∆rsFC within the strengthened subset (Pearson r=-

0.47, p<0.0005). Notably, no association was found between the extent of ∆FC 

across all 103 enrichment-inducing pairs and STAI-trait or state measures 

(p>0.45). 

 

In order to identify functional connections for which the change induced by 

stress was associated with affective stress sustainment, we used the SR4-SR1 

stress-rating-based group partition (described above), and applied a two-

sample t-test on ∆FC values of enrichment-inducing parcel-pairs.  No significant 

inter-group difference was identified in ∆FC of any of the pairs separately (FDR 

q>0.99). Additionally, there was no significant difference in the mean ∆FC 

magnitude of all 103 enrichment-inducing pairs (p>0.6). Following this lack of 

association, we conducted a similar two-sample t-test on the entire set of 

106,953 parcel-pairs in the data. Once again, an FDR procedure was used to 

correct for multiple hypothesis testing. Only one parcel pair demonstrated a 
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significant inter-group difference in ∆FC between groups (with an FDR of 0.05). 

Parcels of the identified pair were anatomically mapped to the right basolateral 

amygdala (BLA) and to the precuneus, based on parcel spatial centers (x=6, 

y=-54, z=48 and x=27, y=-3, z=-21 respectively) (Figure 6-5 B).  

We further examined the relationship between this BLA-precuneus rsFC 

modulation and the longer term change in subjective stress ratings (SR4-SR1) 

across all subjects, and found a negative association between them (Spearman 

r=-0.526, p<0.00005, Figure 6-5 C). Additionally, a repeated measures ANOVA 

conducted on the corresponding Fisher-transformed rsFC values at both 

conditions ("rest1" and "rest2"), revealed an interaction between condition and 

group   [F(1,55)=32.6, p <0.001]. Finally, Tukey’s HSD post-hoc analyses 

revealed that only the "sustained stress" group showed a significant BLA-

precuneus rsFC decline following stress ("rest2") as compared to "rest1" 

(p<0.001). The means and standard deviation (in parenthesis) of "rest1" and 

"rest2" were -0.12 (0.24) and -0.18 (0.23) respectively, for all subjects, -0.024 

(0.23) and -0.289 (0.24) for the "sustained stress" group and -0.18 (0.22) and -

0.11 (0.2) for the “recovered stress” group. Results are shown in Figure6-5 D.  
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The change in rsFC between right BLA and precuneus was further found to be 

significantly correlated with change in the high frequency component of HRV 

across all 34 subjects for which a valid HR signal was extracted from both 

restring-state scans (Spearman r=0.4, p<0.02). However, no association was 

found between the extent of this change and STAI-trait or state measures 

(p>0.5). 

 

 

6.2.4  D ISCUSSION –  STUDY 1 

Figure 6-5: Results of inter-group rsFC change comparison. (A) Group partition 

marked on the distribution of change in subjective stress ratings. (B) A connection 

between the right BLA and the precuneus that was identified in the inter-group ∆FC 

analysis. (C) A scatter plot presenting the right amygdala - precuneus ∆FC against the 

(SR4-SR1) change in subjective stress rating. Each spot shows the two values for one 

subject and is colored by group assignment (green – “recovered stress”, purple – 

“sustained stress”).  A significant anti-correlation is identified (r=-0.562, p<0.00005) (D) 

right BLA-precuneus rsFC patterns of "sustained stress" group (purple) and “recovered 

stress” group (green). Bars indicate standard error. ∗ p<0.001, ∗∗ p<0.0005 
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In this work we conducted a data-driven investigation of stress-induced rsFC 

alterations and their correspondence to the subjective experience of stress, 

among a cohort of 57 healthy male participants. In line with our hypothesis, our 

analysis revealed a large-scale effect of rsFC modulations following acute 

social stress induction. Pinpointing the most significantly prevalent rsFC 

modulations, our enrichment analysis unraveled a pattern of decreased cross-

hemispheral temporo-parietal connectivity along with increased thalamo-

cortical (frontal, temporal and parietal lobes) connectivity. Importantly, as we 

predicted, these patterns of change in connectivity strength were associated 

with the change in subjective stress reports across subjects.  Specifically a 

larger mean increase in reported stress immediately after the task was 

associated with a larger absolute rsFC change across all parcel-pairs forming 

both the strengthened and the weakened enriched connectivity alterations.  

Network reorganization following acute stress 

Our work extends previous studies investigating post-stress rsFC modulations 

in a hypothesis-driven manner (Van Marle, Hermans et al. 2010, Veer, Oei et 

al. 2011, Vaisvaser, Lin et al. 2013), by providing a broader unbiased picture. 

Identifying the thalamus as a central node of stress-induced rsFC increase is 

consistent with its known role in arousal regulation (Schiff 2008) and in 

mediating the interaction of attention and arousal in humans humans (Portas, 

Rees et al. 1998). Notably, the thalamus was found to be involved in post-stress 

rsFC alteration in our previous seed-based study, increasing its connectivity 

with the PCC (Vaisvaser et al., 2013). Increased rsFC of the thalamus with 

several cortical regions including the Insula and IPL was also reported following 

fearful in comparison to neutral movies (Eryilmaz, Van De Ville et al. 2011).  
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 In addition, a larger increase in thalamo-cortical rsFC was associated with a 

larger decrease in temporo-parietal rsFC, suggesting that both patterns are part 

of a joint mechanism of dominance-shift induced by acute stress.  The identified 

pattern of stress-induced  rsFC weakening involved regions of the inferior, 

middle and superior temporal gyri along with regions of the pre- and post-

central gyri and the superior and inferior parietal lobule. Most of these regions 

were reported to exhibit reduced BOLD activation in a within-subject analysis 

comparing high-stress task to a control task using a similar experimental 

paradigm (Wang, Rao et al. 2005) and have been repeatedly reported to 

increase activity in attention-driven goal-directed tasks (Hopfinger, Buonocore 

et al. 2000, Culham and Kanwisher 2001, Behrmann, Geng et al. 2004, Culham 

and Valyear 2006, Raz and Buhle 2006). 

 These findings are in overall agreement with the recently suggested model by 

which exposure  to  acute  stress prompts  a  reallocation  of  resources  to  a  

salience  network, involving several subcortical regions including the thalamus, 

and several cortical regions in the frontal , temporal and parietal lobes,  at  the  

cost  of  an executive  control  network , involving dorsal  frontal  areas  and  

dorsal  posterior  parietal  areas (Hermans, Henckens et al. 2014).    

Post-stress rsFC modulations associated with inter-individual differences 
in subjective recovery 
 

In addition to the above large-scale pattern of rsFC alterations, which were 

evident across subjects, we were interested in neural modulations that underlie 

inter-individual differences in the sustainment versus recovery of the stress 

experience. We identified a single modulation of rsFC between the right BLA 

and the precuneus that differed between individuals with self-reported 
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“sustained stress” and individuals with “recovered stress”.  Importantly, this 

single statistically significant rsFC modulation was identified out of over 100,000 

possible parcel-pairs without making any a-priori assumptions. This modulation 

was further associated with change in heart rate variability (HRV ) measure 

from the first to the second resting state session. HRV  is an established 

measure of regulated emotional responding, and has been used for this 

purpose in multiple studies (reviewed in (Appelhans 2006)). The physiological 

basis of this measure is that high-frequency (0.15 to 0.4 Hz) component of the 

power spectrum of heart rate variability (HF-HR) is considered to represent an 

autonomic parasympathetic vagal influence on the sino-atrial node of the heart 

(Malik, Bigger et al. 1996).  The BLA had been acknowledged as an important 

locus for integrating the various hormonal and neurotransmitter systems that 

are involved in consolidation following exposure to acute stress (Roozendaal, 

McEwen et al. 2009). Moreover, previous evidence points to casual 

involvement of the right amygdala in generation of the subjective experience of 

fear and mark it as a potential therapeutic target in anxiety disorder (Fredrikson 

and Furmark 2003). The precuneus is a node of the DMN known to play a 

central role in a wide range of complex tasks, including self-referential 

processing and an experience of agency (Cavanna and Trimble 2006).  

Abnormal precuneus activity and connectivity patterns have been previously 

reported in PTSD patients (Bluhm, Williamson et al. 2009, Lanius, Bluhm et al. 

2010, Patel, Spreng et al. 2012, Sartory, Cwik et al. 2013, Yan, Brown et al. 

2013). Importantly, spontaneous BOLD activity in the BLA has been shown to 

be negatively associated with the activity in the posterior cingulate cortex and 

precuneus in healthy subjects (Roy, Shehzad et al. 2009, Zhang and Li 2012), 
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and abnormal patterns of precuneus-BLA rsFC have been previously reported 

in anxiety disorders (Bluhm, Williamson et al. 2009, Liao, Qiu et al. 2010, 

Pannekoek, Veer et al. 2013). In the current study we found a stress-induced 

enhancement of the BLA-precuneus anti-correlation in "rest2" as compared to 

"rest1" only in individuals who reported a sustained stress experience, i.e., the 

"sustained stress" group. Furthermore, when accounting for inter-individual 

differences, we found that the extent of this single modulation predicted the 

level of affective recovery reported 20 minutes later across all subjects, 

suggesting that it may underlie the individual tendency and dynamics of 

subjective stress recovery.  

In conclusion, using our robust data-driven approach we were able to 

characterize stress-induced large-scale rsFC modulations, that were further 

associated with subjective experience. In addition, our group-based analysis 

pinpointed stress-induced rsFC change between right BLA and precuneus as 

a neural predictor of affective recovery. This specific connection may serve as 

a potential biomarker and target for future treatment in stress-related disorders.  

6.3  CASE STUDY 2:  CHARACTERIZING CHANGES IN RESTING-STATE 

NETW ORKS FOLLOW ING AN ANGER INDUCING SOCIAL INTERACTION  

6.3.1  SPECIFIC BACKGROUND  

Anger is regarded as one of the most prototypical of all emotions (Fehr and 

Russell 1984, Scherer and Tannenbaum 1986, Shaver, Schwartz et al. 1987), 

and is reported by healthy people to be experienced on a daily basis (Averill 

1983, Kassinove, Sukhodolsky et al. 1997). It may be caused by a wide variety 

of triggers, and though it has negative consequences on health and well-being, 

it has a central role in motivating to take action and approach rather than avoid 
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a confrontation. Although anger is considered to be a survival response 

inherent in all living creatures, humans are normally equipped with the mental 

ability to control and regulate their anger, and adapt it to socially accepted 

norms. Anger is thus a complex multidimensional construct that poses 

theoretical and operational difficulties in defining it as a single psycho-biological 

phenomenon. 

Previous neuroimaging studies investigated anger-related patterns of neural 

activity, under a few types of anger-inducing paradigms. These include 

depicting angry faces as static stimuli (Blair, Morris et al. 1999, Kesler, 

Andersen et al. 2001, Whalen, Shin et al. 2001),  self-generation of anger by 

recollecting personal autobiographic angry experiences (Dougherty, Shin et al. 

1999, Kimbrell, George et al. 1999, Damasio, Grabowski et al. 2000, 

Fabiansson, Denson et al. 2012), and generating an interpersonal situation that 

evokes an angry experience within the fMRI setting (Denson, Pedersen et al. 

2009, Gilam, Lin et al. 2015). Of these, the latter approach accounts for the 

ecological and naturalistic dynamics of anger that are typically rooted in social 

interactions. An example to such an ecological approach is the Ultimatum 

Game (UG) (Güth, Schmittberger et al. 1982), which has been regarded as an 

interpersonal induction of angry experience (Güth, Schmittberger et al. 1982, 

Ochsner, Bunge et al. 2002, Etkin, Egner et al. 2006, Banks, Eddy et al. 2007, 

Srivastava, Espinoza et al. 2009).  In the UG, a proposer offers to split a sum 

of money, between himself and a responder who in turn decides whether to 

accept or reject the offer. If he accepts, both players receive the designated 

sum of money but if he rejects, both receive nothing. Replicated by countless 

studies, people tend to reject offers of 25% and below of the total sum (Camerer 
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2003). The common explanation is that these are unfair offers that elicit anger, 

which results in a rejection and thus no money is gained (Pillutla and Murnighan 

1996, Van’t Wout, Kahn et al. 2006, Rotemberg 2008, Andrade and Ariely 

2009). Several studies using the UG point to emotion regulation (ER) as the 

capability which enabled participants to overcome the anger evoked by the 

unfair offers and decide to accept them after all in order to increase monetary 

reward (Kirk, Carnevale et al. 2006, Koenigs and Tranel 2007, Kirk, Downar et 

al. 2011, Grecucci, Giorgetta et al. 2013). Thus it reasonable to assume that a 

participant who gains more money in a UG has employed some form of ER 

strategy which enabled to down-regulate the anger and accept more unfair 

offers, compared to a participant who gained less money.  

 A few neuroimaging studies investigated neural activation patterns induced 

over the course of UG. These identified the involvement of the insula, 

dorsolateral PFC (DPLFC), ACC, superior temporal sulcus (STS) and inferior-

frontal gyrus (IFG) when people are confronted with unfair offers (Sanfey, 

Rilling et al. 2003, Kirk, Downar et al. 2011, Feng, Luo et al. 2015).  However, 

patterns of functional connectivity induced by UG have not yet been explored. 

In addition, all these studies investigated data recorded during course of UG. 

The sustained neural effect of UG in subsequent resting-state is still 

unexplored.  

In this project we examined the effect of UG on subsequent resting state rsFC 

patterns, with respect to behavioral measures of gain and reported levels of 

anger.  We expected to find alterations in rsFC patterns that would be 

associated with behavioral measures. 

6.3.2  SPECIFIC MATERIALS AND METHODS  
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Participants 

We used fMRI data collected at our lab, on a cohort of 60 healthy male 

participants (age 18-20). Participants had no reported history of psychiatric or 

neurological disorders, no current use of psychoactive drugs, no family history 

of major psychiatric disorders, and no previous exposure to abuse during 

childhood and/or potentially traumatic events before entering the study. In 

addition, all participants had normal or corrected-to-normal vision and provided 

written informed consent approved by Tel Aviv Sourasky Medical Center Ethics 

Committee and conformed to the Code of Ethics of the World Medical 

Association (Helsinki Declaration). Of the 60, 9 individuals were excluded from 

the current analysis due to signal artifacts and additional 7 were removed due 

to excessive head movements; therefore the final study group consisted of 44 

participants. 

 

Experimental procedure 

Each participant underwent two 6 min. resting state scans ("rest1", and “rest2” 

respectively), interleaved by 10 rounds of anger-inducing task (10 minutes).  

Anger was induced using a modified version of the Ultimatum game (UG), fully 

described in (Gilam, Lin et al. 2015). Briefly, participants underwent 10 rounds, 

which included a money partition offer, a participant decision, a display of the 

resulting sums and a 30 seconds negotiation between the participant and a 

putative participant who is in fact a professional actor trained with scripted 

improvisations to further intensify the negative emotional experience.  The 

experimental timeline is shown in Figure 6-6. During the rest conditions 

participants were instructed to keep their eyes open and stare at a fixation point.  
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Behavioral measures 

Subjective emotional reports were obtained using the Geneva Emotion Wheel 

(Gilam, Lin et al. 2015) (GEW) scheme. The GEW presents 16 types of emotion 

arranged in a circular pattern based on two axes, control (high/low coping 

potential) and valence (positive/negative): Pride, Elation, Happiness, 

Satisfaction, Relief, Hope, Interest, Surprise, Anxiety, Sadness, Boredom, 

Shame/Guilt, Disgust, Contempt, Hostility and Anger. The GEW has been 

shown to be a valid instrument to measure emotions within a decision making 

context. In our adapted-GEW (aGEW), participants were instructed to rate each 

emotion on a 7-point intensity scale from 0 (zero) to 6 (very high). In addition, 

the aGEW is an iterated version in which participants have a specific emotional 

wheel for each offer, result and negotiation periods of the game, thus reaching 

30 wheels (3 wheels for each of the 10 UG-rounds). The participants were 

instructed to rate these wheels consecutively and dynamically, with each wheel 

being referenced to the emotion ratings of the previous wheel. This allows both 

the participant and the researchers a complex overview of all the emotions, with 

each their own intensity value, experienced in each period of the mUG. 

Figure 6-6: Experimental procedure of case study 2: Two sessions of 6 min. resting-state 

fMRI were recorded before and after 10 rounds of ultimatum game performed in the scanner, 

which included staring at a fixation cross, an offer made by the actor, a decision made by the 

participant, a display of the resulting partition and a negotiation period.    
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State-Trait Anxiety Inventory (STAI) described in section 4.2 was administered 

at the beginning of the experiment. 

 

fMRI data acquisition information 

fMRI was acquired with standard gradient-echo echo-planar imaging (GE-EPI) 

sequence of T2*-weighted images (TR/TE/flip angle: 3,000/35/90; FOV: 20 * 20 

cm1; matrix size: 96*96) divided into 39 axial slices (thickness: 3 mm; gap: 0 

mm) covering the whole cerebrum. Each scanning session also includes high-

resolution anatomical imaging which was acquired by a 3D spoiled gradient 

echo (SPGR) sequence with high-resolution 1mm slice thickness (FOV: 25*18; 

matrix: 256*256; TR/TE:7.3/3.3 ms). 

fMRI preprocessing and parcellation  

Preprocessing and parcellation procedures are identical to the ones described 

in chapter 6.2.2 . 

Parcel-based univariate global functional connectivity analysis 

To assess evidence for experimental effects we applied the same univariate 

analysis approach described in section 6.2, in which a model is fitted 

independently to each connection. In addition, we conducted global FC analysis 

in which for each parcel, the sum of functional connections with all other parcels 

was computed. This procedure was performed also for positive and negative 

FCs separately. We next calculated the change in these overall rsFC values for 

each subject and parcel by subtracting global FC level estimates of "rest1" from 

the corresponding estimates in "rest2", resulting in three rsFC change values 

(denoted ∆rsFC, ∆rsFCs and ∆rsFC-) for each parcel and for each subject. To 

identify parcels that demonstrated significant change in overall rsFC following 
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UG, we applied a one-sample t-test on the ∆rsFC values of each parcel across 

all subjects.  

 

The procedure is described in Figure 6-7. 

 
Figure 6-7: An illustration of the global rsFC analysis steps: Following 

parcellation, cross-correlation matrices were calculated for each subject and resting-state 
session. A paired t-test was applied separately on the sum of all positive rsFC values and of 
the sum of all negative rsFC values to identify parcels for which rsFC changed significantly. 
An FDR procedure was used to correct for multiple testing.  

 

6.3.3  RESULTS  

 

Though it is not part of the findings of the current study, it should be noted that 

during UG, unfair offers were associated with increased levels of reported 

anger, and with a decrease in positive emotions compared to fair offers. Notably 

this association increased in the second half of the game, in which even fair 

offers seemed to have become more irritating, pointing at the effect of the 

anger-infused social dynamics both in subjective reports and skin conductance 

measure (Gilam, Lin et al. 2015).  



78 

 

STAI-trait measures were associated with both reported anger and gain 

achieved in subsequent UG task. Specifically, a positive correlation was found 

between STAI-trait and achieved gain (Spearman r=0.35, p=0.019) and a 

negative correlation was found between STAI-trait and reported anger 

(Spearman r=-0.33, p=0.027).  

  rsFC alterations following anger-inducing ultimatum game 

 In order to identify anger-induced rsFC changes we conducted a univariate 

statistical analysis on the Fisher-transformed cross-correlation matrices. This 

was done by subtracting the “rest1” matrix from the “rest2” matrix, and then 

applying a one-sample t-test on the resulting ∆FC values of each parcel pair.  

This analysis did not reveal any significant rsFC change (FDR q>0.5). We next 

conducted a global functional connectivity analysis, by calculating, for each 

parcel, the sum of functional connections with all other parcels. This was 

repeated also for positive and negative FCs separately. We then applied a one-

sample t-test on the resulting ∆rsFC, ∆rsFC+ and ∆rsFC- values of each parcel. 

This analysis revealed a single parcel centered in the right amygdala (18,-3,-

18) for which positive rsFC significantly increased following the task (FDR 

q<0.05, t=4.34). We next repeated the rsFC univariate analysis focusing only 

on functional connections that involve this specific parcel. This analysis 

revealed a single connection with the right inferior frontal gyrus (rIFG) (28,18,-

18), which was significantly strengthened  following the task (FDR q< 0.05, 

t=4.29). This connection is shown in Figure 6-8 C. 
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Figure 6-8: rsFC changes identified flowing UG: A parcel centered in the right amygdala (shown in 

A) demonstrated a significant increase in overall positive rsFC following UG (level of increase is 

shown in B).   When examining rsFC change involving that parcel only, a significant increase was 

identified with a single parcel centered in the right IFG (Connection is shown in C). The extent of 

identified change is shown in D.  

 

Relation between identified rsFC change and behavioral measures 

Examination of the relation between the identified rsFC change and our 

behavioral measures, namely: reported anger, gain achieved in the game and 

trait-anxiety, revealed a significant positive correlation between the 

aforementioned rAmy-rIFG rsFC change and STAI-trait measure, estimated at 

the beginning of the experiment (Spearman r=0.48, p=0.0015).  However, no 

association was found between reported anger or gain and Amy-rIGF rsFC 

D) C) 

B) 
A) 
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(p>0.5) nor was there an association between these measures and overall 

change in rAmy rsFC (p>0.3).  

We further examined the relation between rsFC values during rest 1 and rest 2 

and the same behavioral measures and found a significant association between 

overall rsFC of the rAmy-centered parcel during “rest1” and reported anger level 

(Spearman r=-0.33,p<0.03; Figure 6-9 A), as well as with gain (Spearman 

r=0.353,p<0.02; Figure 6-9 B). Notably, a non-significant anti-correlation was 

found between reported anger, and gain achieved in UG (Spearman r=-0.27, 

p>0.07). 

 

 
 
 
 
6.3.4  D ISCUSSION-  STUDY 2 

 

As we hypothesized, UG induced a change in patterns of rsFC in subsequent 

resting-state. However, rather than a large-scale effect, our analysis in this case 

revealed a specific increase in rsFC of the right amygdala, which was mostly 

driven by an increase in rsFC with the right IFG. The right IFG has been 

acknowledged for its central involvement in response inhibition (Aron, Robbins 

et al. 2004, Aron, Robbins et al. 2014), and was reported to exhibit anti-

Figure 6-9: Scatter plots presenting the reported level of anger following UG (A) and the 

gain achieved during the game (B) against overall positive rsFC (denoted as gFC) of parcel 

363 centered in the right amygdala during rest1. Each spot shows the two values for one 

subject.  A significant anti-correlation is identified with reported anger (Spearman r=-0.33, 

p<0.03), while a significant correlation is identified with gain (Spearman r=0.353,p<0.02) 

A) B) 
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correlated activity with the amygdala during an emotion-regulation task. 

Furthermore the extent of this anti-correlation was reported as one of a few 

variables, explaining inter-individual variance in inhibition of emotional 

response (Depue, Orr et al. 2015). Interestingly, in the current study we 

identified an increased positive correlation between these regions in post-task 

resting state, rather than an anti-correlation. However, positive correlation has 

been demonstrated before between the amygdala and several frontal regions 

including dorsolateral, dorsal medial, anterior cingulate and orbital during 

emotion-regulation tasks (Banks, Eddy et al. 2007).  Notably, in the current study 

the extent of rAmy-rIFG change positively correlated with anxiety tendency 

measured at the beginning of the experiment by STAI-trait questionnaire. STAI-

trait measure was also positively correlated with gain and negatively correlated 

with reported anger, indicating that individuals with a higher trait anxiety gained 

more in the game and experienced less anger during UG task, after which they 

showed a higher increase in rsFC between the right amygdala and the right 

IFG. These results support the hypothesis that the increased FC in right 

amygdala – right IFG is part of an anger regulation mechanism.  

In contrast to previous literature on the involvement of amygdala-rIFG FC in 

emotion-regulation, in this case, findings were obtained on rsfMRI data and 

without making any a priori decisions on seed ROIs. To the best of our 

knowledge, this is the first attempt to investigate changes in rsFC following 

induction of anger. Thus our findings extend previous literature by indicating 

that the neural effect of UG task is sustained in subsequent rsFC patterns. 

Notably, the overall functional connectivity level of amygdala before the task 

(but not its connectivity with right IFG), was associated with the gain achieved 
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during the task as well as the levels of reported anger, supporting the claim that 

information on individual tendencies of emotion-processing and regulation 

exists in baseline coactivation patterns of rsfMRI.  

  

6.4  JOINT D ISCUSSION  

In this chapter we presented the analysis of alterations in rsFC patterns induced 

by two different types of psychological challenges that involve social 

interactions: acute-social stress (TSST) and inter-personal conflict that is 

known to provoke anger (UG). Notably, in both studies data was recorded from 

healthy young male participants. The number of participants was similar in the 

two studies. In addition, analysis steps (namely preprocessing steps, 

parcellation and rsFC analysis) were very similar between studies. In spite of 

this similarity, there was a substantial difference in the rsFC effect that was 

identified in each experiment. While acute stress induced a large-scale 

distributed effect, a very specific small-scale effect was identified following 

anger-provoking UG.  

In both cases connectivity patterns of the right amygdala were associated with 

individual differences in subjective experience induced by the task. However, 

while in the case of UG, its overall rsFC at baseline was associated with elicited 

anger following the task, in the case of acute social stress the decrease in its 

rsFC with the precuneus was associated with the sustainment of stress 20 min 

post induction.  

Interestingly, in study 2, anxious individuals demonstrated a more regulated 

behavioral as well as neural response to UG. This is in line with neural findings 
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showing opposed neuroendocrine responses in stress vs. anger (Moons, 

Eisenberger et al. 2010) as well as studies showing opposite patterns of frontal 

alpha asymmetry in approach vs. avoidance emotional response (Heller 1993, 

Davidson 2004, Harmon-Jones, Gable et al. 2010, Quaedflieg, Meyer et al. 

2015).   

While the current chapter deals with emotional challenges that are introduced 

by a psychological load generated via social interactions, the following chapter 

deals with the emotional challenge that is introduced by a physiological 

challenge (sleep deprivation), which is known to induce allostatic load.  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

7. CHARACTERIZING CHANGES IN RESTING-STATE NETWORKS 

FOLLOWING A PHYSIOLOGICAL PERTURBATION  

 

7.1  BACKGROUND  
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The state of sleep deprivation (SD) has consistently been associated with 

subjective reports of negative emotions and emotional difficulty (Horne 1985, 

Zohar, Tzischinsky et al. 2005, Goldstein and Walker 2014), as well as with 

difficulty to process, express and regulate emotions. Studies assessing 

objective physiological and neural measures of affect have provided additional 

verification of, and explanatory mechanisms for, emotional dysregulation 

following sleep deprivation (Gujar, Yoo et al. 2011, Goldstein and Walker 2014)  

Previous fMRI studies reported that SD also disrupts task-induced deactivation 

within the DMN (Gujar, Yoo et al. 2010, De Havas, Parimal et al. 2012). These 

findings suggest that SD has a significant effect on the intrinsic functional 

organization of the brain, an effect that should be detected when examining 

rsFC patterns. Indeed, several previous studies examined rsFC alterations 

induced by SD. These mainly focused on the DMN and its anti-correlation with 

the attention and control networks (Sämann, Tully et al. 2010, De Havas, 

Parimal et al. 2012). Other studies reported increased FC within 

dorsal prefrontal cortex (Bosch, Rihm et al. 2013) and decreased 

thalamocortical FC (Shao, Wang et al. 2013) following SD. Notably, all the 

above studies used a hypothesis driven approach and did not find any 

association with behavioural measures. In a recent study, Yeo et al. conducted 

a data-driven rsFC analysis of 68 healthy subjects that underwent SD and 

reported a predictive association between baseline levels of anti-correlation 

between the DMN and attention networks and task performance under SD 

(Yeo, Tandi et al. 2015). However, none of the above studies reported an 

association between SD induced rsFC modulations and affect-related 

behavioral measures. 

http://www.sciencedirect.com.rproxy.tau.ac.il/science/article/pii/S1053811915001196#200008595
http://www.sciencedirect.com.rproxy.tau.ac.il/science/article/pii/S1053811915001196#200013958
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In an attempt to expand our understanding on the SD-induced rsFC modulation 

that underlie subsequent emotional dysregulation, we used both univariate and 

multivariate analysis approach to investigate fMRI data recorded from 17 

healthy subjects during normal rest and in a state of sleep deprivation (after a 

night without sleep).  

We hypothesized that SD would significantly impact connectivity patterns in the 

human brain and that these changes would be associated with affective 

impairments known to occur without sleep. 

 
7.2  SPECIFIC MATERIALS AND METHODS  

 

7.2.1 Participants 

17 adults (age range: 23-33 years, mean 26.9 ± 3 years; 10 females) completed 

a repeated measures crossover design. Participants were healthy with no prior 

history of sleep, neurologic or psychiatric disorders (assessed using a pre-

screening questionnaire). Recent use of psycho-stimulants (e.g. Ritalin), 

psychiatric or hypnotic drugs also excluded subjects from participation in the 

study. The study was approved by the Tel-Aviv Sourasky Medical Center ethical 

review board and all participants provided written informed consent.  

 7.2.2 Experimental procedure 

Each participant underwent two experimental sessions under two rest 

conditions, a sleep deprived (SD) condition, which took place after a night 

without sleep, and a sleep-rested (SR) condition, which took place after a night 

of normal sleep. In each experimental session a resting state scan was 

acquired prior to task performance for a total time of 6:50 minutes. Subjects 

were instructed to stay awake and keep their eyes open in front of a fixation 
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cross. To verify wakefulness, subjects’ eyes were continuously monitored via a 

dedicated camera during the entire scan. As reported in (Simon, Oren et al. 

2015) cognitive and behavioral changes following SD were monitored across 

both experimental sessions.  

 

7.2.3 Behavioral measures 

Psychomotor Vigilance Task (PVT) (Drummond, Bischoff-Grethe et al. 2005) 

was used to assess changes in cognitive performance. A 10-minutes version 

of the PVT, adopted from the PEBL task library (Mueller and Piper 2014) was 

performed every two hours during the SD night (from 23:00 until 7:00 am) as 

well as in the morning of the sleep-rested session (~8:00 am).  

Positive and Negative Affective Scale (PANAS) (Watson 1988) and the visual 

analogue scale (VAS) were used to track mood changes. The PANAS consists 

of two 10-item questionnaires assessing either positive or negative mood. 

PANAS was administered every 4 hours across the SD night as well as upon 

arrival at the sleep-rested session. Participants were asked to rate each item 

on a scale ranging from 1 to 5. 

In addition to the PANAS questionnaires, participant were asked to rate their 

mood ranging from terrible to excellent on a 10cm visual analogue scale (VAS).   

STAI-trait questionnaire described in section 4.2 was administered at the 

beginning of the experiment to evaluate individual differences in anxiety 

proneness. 

 

7.2.4 fMRI acquisition information 
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Functional whole-brain scans were performed in interleaved order with a T2*-

weighted gradient echo planar imaging pulse sequence (time repetition [TR]/TE 

= [2,500-3,000]/35 ms, flip angle=90º, FOV = 200×200 mm, slice thickness = 4 

mm, 32-39 slices per volume). Structural scans included a T1-weighted 3D axial 

spoiled gradient echo (SPGR) pulse sequence (TR/TE = 7.92/2.98 ms, flip 

angle = 15º, pixel size = 1 mm, FOV = 256×256 mm, slice thickness = 1 mm). 

 

7.2.5 fMRI preprocessing and parcellation 

fMRI preprocessing and parcellation procedures are described in section 4.1.3. 

Notably, in the current study, the low-resolution 200 parcels template was 

selected order to compensate for low sample size. As explained in section 

4.1.3, parcels were masked to include gray matter voxels only using the WFU 

Pick Atlas Tool (Maldjian, Laurienti et al. 2003, Stamatakis, Adapa et al. 2010) 

and parcels that had less than 5 voxels in common with the gray matter mask 

were excluded, leaving 182 parcels. In order to reduce the effect of 

physiological artifacts and nuisance variables, the whole-brain mean signal, six 

motion parameters, cerebrospinal fluid, and white matter signals were 

regressed out of these parcel signals. 

7.2.6 Parcel-based univariate functional connectivity analysis 

Level of rsFC of each pair of parcels was estimated by calculating the Pearson 

correlation coefficients between the signals of the corresponding parcels. This 

was done for each subject and each rest condition separately. rsFC levels were 

next Fisher transformed to better fit a normal distribution. Baseline FC level 

estimates were then subtracted from the corresponding estimates in the SD 
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condition, resulting in a single FC change value (denoted ∆FC) for each parcel-

pair and for each subject. 

 To identify parcels-pairs that demonstrated significant rsFC change following 

SD, we applied a one-sample t-test on the ∆FC values of each pair across all 

subjects.  

To identify parcels that demonstrated significant overall rsFC change following 

SD, we calculated, for each parcel, the sum of ∆FC values with all other parcels, 

and applied a one-sample t-test on this sum across all subjects. 

 

7.2.7 Parcel-based multivariate functional connectivity analysis 

State-prediction using leave-one-out cross-validation analysis 

In order to further examine the overall effect of SD on rsFC, we applied a leave-

one-out cross validation (LOOCV) analysis on the data in the following 

manner: for each subject s, we calculated the Euclidian distance between 

subject–specific SR and SD rsFC values and the group average rsFC values 

(where subject s is excluded), across the k top ranking features (i.e. parcel 

pairs). Features were ranked according to the difference in group-level values 

between the two states (subject s excluded). Analysis was performed with k=1 

to 500. Each subject-specific scan was assigned a state (SR or SD) based on 

the closest group-level rsFC data. Accuracy levels were defined as the number 

of correct assignments divided by the number of scans. Sensitivity was defined 

as the fraction of correctly assigned SD scans, while specificity was defined as 

the fraction of correctly assigned SR scans.  

For each subject s, a success function was defined as follows: 
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7-1) 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑠) = {
0 𝑖𝑓 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠

𝐵𝑆, 𝐹𝐶𝐵𝑆) > 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠
𝐵𝑆, 𝐹𝐶𝐵𝑆) ∧ 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠

𝑆𝐷, 𝐹𝐶𝑆𝐷) > 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠
𝑆𝐷, 𝐹𝐶𝐵𝑆) ∧

2 𝑖𝑓 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠
𝐵𝑆, 𝐹𝐶𝐵𝑆) ≤∧ 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠

𝐵𝑆, 𝐹𝐶𝐵𝑆) ∧ 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠
𝑆𝐷, 𝐹𝐶𝑆𝐷) ≤∧ 𝑑𝑖𝑠𝑡(𝐹𝐶𝑠

𝑆𝐷, 𝐹𝐶𝐵𝑆)

1                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Total accuracy level (acc) was defined as: 

7-2) 

  𝑎𝑐𝑐 = ∑ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑠)𝑠𝑢𝑏𝑠
𝑠=1  

The significance of success levels was evaluated using the binomial 

cumulative distribution function, with p=0.5, n=2*subs: 

7-3) 

  𝑝(𝑎𝑐𝑐 ≥ 𝑘) = ∑ (
𝑛
𝑖

)𝑛
𝑖=𝑘 0.5𝑛 

 

Examining SD induced changes in graph modular organization 

Group level rsFC matrices were constructed by averaging state-specific rsFC 

matrices across subjects. State-specific modularity structures were evaluated 

separately for SR and for SD by applying the weight-conserving Louvain 

modularity algorithm (Rubinov and Sporns 2011) on the group-level rsFC 

matrices. Due to some randomized steps in the algorithm implementation, this 

step was repeated 100 times for each graph, and the results were merged 

using the BCT implementation of the algorithm for detection of consensus 

clustering in complex networks as described in (Lancichinetti and Fortunato 

2012).    

SR modules were compared with SD modules using the Jaccard overlap 

score. The Jaccard score is given by: 
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7-4)  𝒋𝒂𝒄(𝒎𝟏, 𝒎𝟐) =
|𝒑𝟏∩𝒑𝟐|

|𝒑𝟏∪𝒑𝟐|
 

 

Where mi stands for module I, and pi stands for the set of parcels that 

constitute module i. 

Modules were characterized by analysis of enrichment with seven predefined 

functional brain networks reported in (Yeo, Krienen et al. 2011). This analysis 

was conducted using the RichMind toolbox (http://acgt.cs.tau.ac.il/RichMind) 

described in 5.2.   

 

7.3  RESULTS  

Although it is not part of the current study, it should be noted that as expected, 

SD induced a significant elevation in negative mood (M=1.3±0.28 to 

M=1.59±0.56; p<0.05), reduction in positive mood (M=2.86±0.65 to 

M=2.01±0.85; p< 0.0005) and in overall mood assessment via VAS 

(M=8.1±1.14 to M=5.7±2.37; p< 0.005), and reduction in task performance 

(M=2.94±2.49 to M=10.06±6.86; p<0.0005) (Simon, Oren et al. 2015). 

  

7.3.1 rsFC alterations identified following sleep deprivation 

In order to identify SD-induced rsFC changes we conducted a univariate 

statistical analysis on the Fisher-transformed cross-correlation matrices. This 

was done by subtracting the SR matrix from the SD matrix, and then applying 

a one-sample t-test on the resulting ∆FC values of each parcel pair.  In this 

pairwise analysis, when correcting for all possible parcel-pairs no significant 

rsFC change was identified.  

http://acgt.cs.tau.ac.il/RichMind
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We next calculated a sum of ∆FC values for each parcel p, and applied a one-

sample t–test to evaluate the level of change in overall parcel FC. This analysis 

revealed two parcels demonstrating significant change in overall rsFC. Parcel 

165, centered in (-57,9,18) and mapped  to the left frontal inferior operculum, 

and parcel 148, centered in (0,-6,6) and mapped to the thalamus. Results are 

presented in Table 7-1 

TABLE 7-1– RESULTS OF UNIVARIATE OVERALL RSFC ANALYSIS   

Parcel MNI 

center 

AAL position t-value p-value FDR q-value 

165 -57,9,18 Front_Inf_Oprc_L 5.77 2.8e-5 0.0052 

148 0,-6,6 Thalamus_L -4.667 2.6e-4 0.0314 

  

We next performed the pairwise rsFC univariate analysis while considering only 

rsFC changes involving the above two parcels (i.e. treating these two parcels 

as seed-parcels), and correcting only for 2*n comparisons (n = 182; number of 

parcels). This resulted in 28 parcel-pairs demonstrating significant change in 

rsFC. Results are specified in Table 7-2 and shown in Figure 7-1 A and B. When 

examining the relationship between these two patterns of thalamus rsFC 

decrease and left operculum rsFC increase (Figure 7-1 C), we detected a 

marginally significant anti-correlation between them (r=-0.41, p=0.051 one 

tailed) .  

TABLE 7-2– RESULTS OF PAIRWISE UNIVARIATE RSFC ANALYSIS SEEDED IN 

PARCELS 165 AND 148  

MNI center  t-value p-value 

FDR   q-

value AAL positions 

Parcel 

Significant ∆FC change with parcel 165 

-48, -72, 9 3.65 0.0022 0.0441 Calcarine_L 19 

48, -72, 12 4.01 0.001 0.0441 Frontal_Inf_Orb_R 53 
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-9 , -69 , 21 3.46 0.0032 0.0446 Frontal_Inf_Orb_R 71 

45 , 30 , -12 3.46 0.0032 0.0446 Frontal_Sup_Medial_L 91 

27 , 24 , -15 3.73 0.0018 0.0441 Frontal_Sup_Medial_R 139 

0 , 51 , 27 3.4 0.0037 0.0475 Frontal_Sup_Medial_R 186 

12 , 63 , 9 4.09 0.0009 0.0441 Frontal_Sup_Medial_R 193 

12 , 45 , 45 3.73 0.0018 0.0441 Insula_L 112 

12 , 57 , 30 3.47 0.0032 0.0446 Lingual_R 105 

-30 , 12 , -18 3.94 0.0012 0.0441 Occipital_Mid_L 97 

15 , -57 , 3 4.19 0.0007 0.0441 Precentral_R 115 

-36 , -84 , 27 3.48 0.0031 0.0446 Precuneus_L 58 

45 , 0 , 48 3.65 0.0022 0.0441 Temporal_Mid_L 2 

0 , -54 , 15 3.55 0.0027 0.0446 Temporal_Mid_L 150 

-51 , -63 , 21 3.51 0.0029 0.0446 Temporal_Mid_R 85 

Significant ∆FC change with parcel 148 

-6 , 45 , 6 -3.7 0.002 0.0441 Cingulum_Ant_L 5 

0 , 21 , -9 -3.48 0.0031 0.0446 Cingulum_Ant_L 160 

6 , 42 , 6 -3.88 0.0013 0.0441 Cingulum_Ant_R 22 

0 , 57 , -9 -3.76 0.0017 0.0441 Frontal_Med_Orb_L 109 

30 , 18 , 51 -3.72 0.0019 0.0441 Frontal_Mid_R 127 

-9 , 63 , 12 -5.26 0.0001 0.028 Frontal_Sup_Medial_L 104 

12 , 63 , 9 -4.52 0.0003 0.0441 Frontal_Sup_Medial_R 139 

-27 , -51 , -12 -3.45 0.0033 0.0446 Fusiform_L 189 

9 , -66 , 24 -4.08 0.0009 0.0441 Precuneus_R 3 

-9 , 18 , 60 -3.68 0.002 0.0441 Supp_Motor_Area_L 173 

-42 , 6 , -39 -3.69 0.002 0.0441 Temporal_Inf_L 43 

-60 , -15 , -18 -4.2 0.0007 0.0441 Temporal_Mid_L 72 

-54 , 0 , -30 -3.52 0.0029 0.0446 Temporal_Mid_L 101 

 

A) 

B) 
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Figure 7-1: Results of pairwise 

univariate rsFC analysis seeded 

in parcels 165 and 148. Using 

FDR of 0.05, 28 parcels 

demonstrating significant change 

in rsFC between baseline and SD. 

Of these, 15 demonstrated rsFC 

increase with parcel 165 (A - 

shown in red) and 13 

demonstrated rsFC decrease with 

148 (B - shown in 

blue).  Visualization was 

generated using Brain Net Viewer 

(Xia, Wang et al. 2013). A 

negative association between the 

“red” and the “blue” patterns is 

shown in C, where each point 

represents one subject. 

 

 

 

 

We next examined the extent of rsFC change across parcel pairs 

identified in the above analysis against changes in task performance, 

mood and STAI reports. Results are shown in Figure7-2. Overall rsFC 

change across 15 strengthened connections with parcel 165 was 

marginally associated with change in negative PANAS score (Spearman 

r=-0.47, p=0.057), overall rsFC change across 13 weakened 

C

) 

 C

) 

C) 
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connections with parcel 150 was associated with task performance 

(Spearman r=0.61,p=0.009) and lastly, the extent of rsFC change across 

all 28 differential connections was positively associated with STAI-trait 

measured at the beginning of the experiment (Spearman r=0.48, 

p=0.053).   

 

 

 

 

rsFC-based state prediction using LOOCV 

In order to examine the extent to which rsFC patterns reflect SD, we 

applied a LOOCV procedure, so that for each subject s, group rsFC 

matrices were calculated after s had been excluded from the data. The 

analysis was performed 500 times using k=1 to 500 most differential 

functional connections. Figure 7-3 shows the accuracy achieved using 

subject-group Euclidean distance as a function of k. A maximum accuracy 

of 85.29% (p=1.93*10-5, Binomial distribution) was achieved using only 24 

FCs as features. 8 out of 24 features were repeatedly selected in all 17 

iterations, and these are listed in Table7-3 and shown in Figure7-4. 

Figure 7-2: association between SD –induced rsFC change and behavioral measures.  
The “red” pattern was marginally associated with change in negative mood measured 
with PANAS (Spearman r=-0.47,p<0.06) 
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Notably, only two of these features were identified in the previously 

described univariate rsFC analysis seeded in parcel 148 (Centered in the 

Thalamus). When examining the relationship between the “blue” (rsFC 

decrease) features and “red” (rsFC increase) features, (Figure 7-4), we 

detected a significant anti-correlation between them (r=-0.65, p=0.005). In 

contrast to the rsFC alterations identified in the univariate analysis, here 

we did not find any association between the extent of rsFC change across 

features and affective measures (p>0.1) nor did we find such an 

association with task performance. 

 

 

Table 7-3: Parcel pairs that were selected as features in all 17 iterations 
of LOOCV (k=24) analysis 

ID 1 MNI center ID 2 MNI center SR rsFC SD rsFC 

11 (-63,-30,-3) 24 (-60,-27,15) -0.172 0.305 

64 (27,-3,57) 65 (12,-45,66) 0.354 -0.086 

17 (48,9,33) 90 (-27,12,54) -0.374 0.159 

11 (-63,-30,-3) 119 (57,3,6) -0.223 0.256 

34 (-51,6,33) 127 (30,18,51) -0.226 0.245 

104 (-9,63,12) 148 (0,-6,6) 0.319 -0.148 

139 (12,63,9) 148 (0,-6,6) 0.427 -0.048 

119 (57,3,6) 197 (-42,-30,15) 0.343 -0.204 

 

Figure 7-3: Accuracy rates of LOOCV analysis presented as a function of number of 
used features (k). The red vertical line indicates k=24, the value for which the highest 
accuracy (85.29%, p=1.93*10-5, Binomial distribution) was achieved. 
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In addition to the above feature selection process, we conducted the same 

LOOCV analysis using all 28 parcel-pairs identified in the rsFC univariate 

analysis as features. Classification accuracy was then raised to 94.1% 

(p=3.47*10-8, Binomial distribution) with sensitivity =94.1% and specificity 

=94.1%.  

SD induced changes in rsFC modular organization 

A) 

Figure 7-4:  (A) 8 parcel pairs that were selected as features in all 17 iterations of LOOCV 
(k=24) analysis presented on a 3D brain image. Edge color indicates the direction of 
change in rsFC across group (red=rsFC increase, blue=rsFC decrease), edge width is 
proportional to the extent of change. Image was generated using Brain Net Viewer (Xia, 
Wang et al. 2013). (B) A scatter plot showing the rsFC change across “blue” features 
against rsFC change across “red" features in A.  Each point represents one subject. A 
significant anti correlation was identified (r=-0.65, p=0.005) 

B) 
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To gain a broad perspective on changes in network organization following 

SD, we applied modularity analysis on group-level graphs that were 

generated by averaging state-specific matrices across subjects. This 

analysis revealed 4 modules in each of the two state graphs. In order to 

characterize the differences in modular organization in a statistically 

sound manner, we analyzed the enrichment of 7 predefined functional 

brain networks reported in (Yeo, Krienen et al. 2011) within each module. 

The 7 networks are shown in Figure 7-5. Results are shown in Table 7-3.  

Table 7-4: Modules identified via modularity analysis on group-level rsFC 
matrices. Enrichment results are shown for each module, and include the FDR 
corrected significance (q-value), the enrichment score and the size of overlap 
between the module and the enriched network. Network name abbreviations:  
VS=visual network, FPCN=fronto-parietal control network, DMN=default mode 
network, SMN=somato-motor network, VAN=ventral attention network, 
DAN=dorsal attention network, Limb=limbic 

ID SR 

size 

SD 

size 

Overlap 

(jaccard) 

SR enrichments SD enrichments 

Network qValue No. of 

parcels 

Network qValue No. of 

parcels 
1 26 41 0.558 VN 4.8E-12 23 VN 6.54E-

13 

24 

2 82 48 0.547 FPCN 1.08E-

04 

21 FPCN 1.12E-7 19 

DMN 5.27E-

05 

26 DMN 2.23E-5 19 

Limb 0.0236 8 

3 60 63 0.732 SMN 0.0125 12 SMN 3.20E-8 19 

VAN 5.27E-

05 

16 VAN 7.62E-5 16 

4 14 30 0 DAN 7.19E-4 5 LIMB 4.11E-7 9 

DMN 0.0329 10 

 

Figure 7-5:  Annotations 

used in enrichment 

analysis: 7 network 

parcellation of the human 

cerebral cortex based on 

1,000 Subjects.  Adapted 

from (Yeo, Krienen et al. 

2011)  

 

 

 

 



98 

 

Our analysis revealed several changes in the modular organization of the 

brain following SD: following SD: first, the VN-enriched module (module 1) 

showed an increase in size. Second, the DMN-FPCN-Limb enriched 

module (module 2) showed a decrease in size due to DMN and Limb 

parcels (including bilateral amygdala) that were reassigned to a separate 

module that was enriched with Limbic and DMM parcels. Lastly, a module 

that was enriched with DAN parcels (baseline module 4) was not detected 

following SD. Instead DAN parcels were distributed among several 

modules including VN enriched module and SMN_VAN- enriched module. 

These changes are shown in Figure 7-6 A.  

Following these finding we examined the change in connectivity strength 

within modules that were enriched with Limbic-annotated parcels against 

affective behavioral measures. We identified a significant anti-correlation 

between the connectivity strength within SD module 4 and the change in 

positive mood as measured by the PANAS questionnaire (Spearman r=-

0.67, p=0.0031), whereas the change in connectivity strength among 

parcels of the same module was positively correlated with the change in 

overall mood as measured by VAS (Spearman r=0.64, p=0.0056). In 

addition a marginally significant association was found between change in 

connectivity strength of baseline module 2 and change in negative mood 

as measured by the PANAS questionnaire (Spearman r=0.46, p=0.06). 

Results are shown in Figure7-6 B.     
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7.4  D ISCUSSION  

Following sleep deprivation we identified a large-scale distributed effect of 

decrease in thalamo-cortical rsFC and increase in rsFC of the operculum with 

LIMB 

DMN 

 

VAN 

SMN 

 

FPCNMN 

DMN 

FPCN 

LIMB 

 

FPCN

MN 

VN 

A) 

B) 

Figure 7-6:  (A) SD-induced module alterations shown as overlays in MRICroN visualization. 

Baseline modules are shown in blue, SD modules are shown in red, overlaps are shown in purple. 

Enrichment based functional association is presented on the right; VN=visual network, 

DMN=default mode network,   FPCN=fronto-parietal control network, LIMB=limbic network, 

VAN=ventral attention network, SMN=somatomotor network (B) The changes in connectivity 

strength of baseline module2 (right plot) as well as SD module 4 (left plot) were associated with 

change in reported mood across subjects. 
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several cortical regions. These patterns were associated with changes in both 

task performance and reported mood. The use of a two-stage univariate 

analysis procedure assisted in overcoming the limitation of a relatively small 

sample size, by decreasing the number of statistical tests. For that same 

purpose we adopted, in this case, a relatively coarse parcellation of the brain 

into ~200 parcels instead of the ~500 parcels that were used for the other two 

datasets analyzed in this work.   

The left frontal operculum is part of the left IFG, which is known for its role in 

language comprehension and generation (Friederici, Rüschemeyer et al. 2003, 

Vigneau, Beaucousin et al. 2006). This region has also been implicated in 

evaluating affective meaning of speech intonation (Wildgruber, Hertrich et al. 

2004). However, its central involvement in SD induced neural modulations and 

the relation of these modulations to change in subjective affective experience 

is surprising. The thalamus is known for its central role in arousal regulation 

(Schiff 2008) and in mediating the interaction of attention and arousal in 

humans (Portas, Rees et al. 1998). Furthermore, reduced thalamo-cortical 

rsFC following SD has already been reported in previous literature (Shao, Wang 

et al. 2013). Modularity analysis performed on group-level rsFC matrices 

provided additional insight on SD induced network reorganization, by 

pinpointing the SD induced decomposition of a functional module involving 

DMN, limbic and FPCN regions into two functional modules, one enriched with 

DMN and FPCN parcels and the other enriched with limbic and DMN parcels. 

That change was further associated with subjective affective measures. 

Notably, this change was not revealed by our univariate analysis, which 

demonstrates the advantage of such a combined analysis. A breakdown in 
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connectivity within the DMN following SD has been documented before (De 

Havas, Parimal et al. 2012). However, to the best of our knowledge, this is the 

first time it has been associated with affective behavioral measures.      

 
 
 
 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

8.  CONCLUDING D ISCUSSION  

 

8.1  OVERVIEW  OF THE RESULTS  



102 

 

In this work the sustained effect of several types of emotionally challenging 

experiences on subsequent resting-state neural pattern was investigated, as 

well as the way these patterns reflect inter-individual differences in emotion 

processing and regulation.  

The novel use of enrichment analysis introduced here for studying changes in 

rsFC provides improved means for exploring experience-related neural 

modulations in cases where the induced effect is large and distributed. This 

type of distributed effect was found following acute social stress as well as 

following SD. However, while acute stress induced an increase in thalamo-

cortical functional connectivity, and a decrease in functional connectivity among 

various cortical regions, the opposite effect was identified following SD. 

Notably, in both cases, the extent of rsFC increase correlated with the extent of 

identified rsFC decrease, suggesting that these patterns are part of a joint 

mechanism.  

The central involvement of the thalamus in the identified large scale neural 

modulations following stress and under SD may be attributed to its central role 

in arousal regulation (Schiff 2008) and in mediating the interaction of attention 

and arousal in humans (Portas, Rees et al. 1998).  

The fundamental difference in the direction of rsFC modulation is in line with 

the suggestion that SD acts as a chronic stressor resulting in allostatic load (i.e. 

cumulative wear and tear on body systems),  in which the system is low on 

resources, and thus differs by nature from acute stress (McEwen 2006) in which 

the saliency system is recruited at the expense of higher cognitive functions 

(Hermans, Henckens et al. 2014). Interestingly, in both cases, the extent of the 
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two rsFC patterns (increase vs. decrease) was correlated across subjects, 

suggesting that they are both part of a joint mechanism of dominance shift. 

Furthermore, the extent of this change was associated with subjective 

measures of affective experience.  

In both SD and UG, trait anxiety was predictive of rsFC change effect. 

Specifically a higher STAI-t was associated with a larger change in rsFC 

following SD as well as UG. This indicates that individuals with a lower trait 

anxiety were less affected by the different challenges in the neuronal level and 

were thus more “resilient” to them. This finding extends previous literature on 

the relation between trait anxiety and stress resilience (McFarlane 1990). 

However, in contrast to our expectations, this indication was not found in the 

case of social stress, where no association was found between state or trait 

anxiety and the identified rsFC changes.    

In all three cases examined, rsFC patterns of the amygdala seemed to underlie 

individual differences in coping with the introduced challenges: (1) In the case 

of anger provoking UG, the overall baseline rsFC of the amygdala predicted 

gain as well as elicited anger. (2) Following acute stress, rsFC change between 

the BLA and precuneus was associated with subjective affective recovery 20 

minutes later. (3) Change in connectivity strength within a limbic-DMN 

functional module, which includes amygdala, was associated with change in 

affective state following SD. These findings extend previous literature by 

demonstrating again the relation between amygdala FC and individual 

differences in emotion processing and regulation. 



104 

 

Our findings can be summarized in a model by which the conditions of the 

environment (e.g. social conflict) as well as by individual tendencies effect the 

interaction between the limbic system and regions of the default-mode network, 

which in turn affects the emotional experience. This model is illustrated in 

Figure 8-1. 

  

 

 

 

8.2.  METHODOLOGICAL INSIGHTS AND CONTRIBUTIONS  

Throughout this work we adopted a univariate approach for exploring changes 

in patterns of rsFC. However, in the case of SD, due to small sample size, we 

used an additional multivariate approach, which included LOOCV analysis and 

a graph modularity analysis. This integrated analysis produced new and 

Figure 8-1:  A model that summarizes our findings on rsFC changes that are associated 

with individual differences in emotional response: challenging conditions (e.g. social 

conflict) as well as by individual tendencies affect the interaction between the limbic 

system and regions of the default-mode network, which in turn effects the emotional 

experience   
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interesting findings that corresponded with inter-individual differences in 

subjective affective measures, and would not have been revealed in full, had 

we chosen only one of these approaches. In light of these results, we believe 

that a combined univariate-multivariate analysis may be beneficial for studying 

large-scale effects, as suggested in (Varoquaux and Craddock 2013).    

The use of enrichment analysis to study patterns in fMRI, introduced in this 

work, offers a novel perspective on functional neural connectivity. This method 

addresses a basic problem in the field, by rigorously seeking the main signal 

within large-scale effects. In addition to providing an improved and more reliable 

mechanism of interpretation, extracting the main signal allows one to seek 

association with behavioral measures as well as other physiological measures 

with a low number of statistical tests, thus increasing statistical power of the 

analysis. To the best of our knowledge, enrichment analysis has not been used 

before for this purpose.    

 

8.2.  STUDY L IMITATIONS  

In this study we examined the effect of different types of emotional challenges 

on patterns of neural coactivation at rest. Notably, this type of analysis 

overlooks region/parcel activity levels (amplitude). rsfMRI activity patterns have 

been shown to hold valuable information (Tian, Jiang et al. 2008, Wang, Jiang 

et al. 2008, Han, Wang et al. 2011, Liu, Hu et al. 2012), which in the context of 

the current study was overlooked.  In addition, by using resting-state fMRI 

recorded immediately after an emotionally challenging task, our results provide 

a partial picture and do not reveal information on the chronometry of these 

modulations.   
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Our analysis was based on a predefined functional parcellation of the gray 

matter in order to reduce dimensionality. Though this parcellation has been 

tested and validated, the selection of parcellation template has been shown to 

effect subsequent results. Specifically high resolution templates provide 

reduced statistical power due to large number of tests, while low resolution 

templates may result in losing signals from small neural structures. 

The use of enrichment analysis is always based on some previously 

established mapping that is used as an annotation. For this purpose, it would 

be ideal to use an established functional mapping of the brain that is accepted 

and acknowledged in the field as “common ground”. Such annotation systems 

exist in other fields for this type of analysis. E.g. the Gene Ontology system 

(Consortium 2004) or the KEGG pathway database (Kanehisa and Goto 2000) 

that are used as gene annotations in computational genomics analysis. 

However, due to the lack of such a common-ground in neuroscience, we 

adopted a functional annotation that was based on a previously published 

study, conducted on the 1000 connectomes data, and an anatomic annotation 

of lobe-laterality information that was based on the TD atlas. We believe that 

established mapping systems will be available in the near future, which will 

encourage and improve the use of enrichment analysis in the field.  
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מ גם בעקבות מטלת קונפליקט "מ-ת ב"ק-( שמרכזו באמיגדלה הימנית הראה שינוי בparcelאיזור )

ת עם איזור בודד "במקרה זה נצפתה עליה בק).גרסה מעוררת כעס של משחק האולטימטום(בינאישי 

ת הכוללת של אזור זה היו במתאם חיובי עם הרווח "רמת ק. התחתון ירוס הפרונטלי הימני'שמרכזו בג

 .כמו גם עם רמת הכעס שדווחה בעקבות המשחק, שהושג לאחר מכן במשחק

מ בין התלמוס לאוסף גדול של אזורים "מ-ת ב"ק-בעקבות חסך שינה זיהינו תבנית רחבת היקף של ירידה  ב

. הפרונטלי השמאלי התחתון למספר אזורים קורטיקלים מ בין האופרקולום"מ-ת ב"ק-קורטיקלים ועליה ב

בנוסף לכך עוצמת . רוח שלילי -תבנית ההתחזקות לעיל הייתה במתאם שולי עם השינוי המדווח  במצב

כפי שנמדדה , השינוי על פני כל הקשרים המעורבים בתבנית הייתה במתאם עם מידת החרדה התכונתית

 . בתחילת הניסוי

( leave one out cross validation( ית מסוג אימות צולב  בהשארת נבדק אחד בחוץניתוח למידה חישוב

העלה כי תבנית רחבת היקף זו אפשרה להבחין בין מצב חסך שינה למצב מנוחה רגיל ברמת דיוק של 

מ הממוצעים על פני הקבוצה בשילוב עם "מ-מ ב"ק-ניתוח מודולריות שבוצע על נתוני ה, בנוסף. 94.1%

שבו היו מעורבים אזורים המיוחסים לרשת מצב ברירת ,  העשרה גילה שינוי בארגון המודולריניתוח 

שינוי זה . פריאלית וכן למערכת הלימבית-רשת הבקרה הפרונטו, (default mode networkהמחדל )

 .נמצא במתאם עם השינוי במצב הרוח המדווח

 

 :מסקנות

 

ת הביא לשיפור היכולת להבין ולאפיין "ק-לאפיון שינויים בהשימוש החדשני שנעשה פה בניתוח העשרה 

שיפור כזה נצפה בניתוח תוצאות המחקרים בעקבות חסך . כאשר אלה מתרחשים בקנה מידה רחב, שינויים

השינויים שנמצאו בעקבות כל אחת מהמטלות השונות היו . שינה וכן לאחר מטלה מעוררת מתח חברתי

תן לומר כי הן חולקות מכנה משותף לפיו הקשר בין המערכת הלימבית ני, אך עם זאת, שונים במהותם

ומשפיע על החוויה הרגשית , מושפע מהבדלים אישיותיים ומחוויות העבר לרשת מצב ברירת המחדל

 .הסובייקטיבית

במישור המתודולוגי אנו מאמינים כי ניתוח מוכוון נתונים בשילוב עם ניתוח העשרה מהווה כלי בעל 

 .אבחוני לחקירת שינויים בקישוריות תפקודית מוחית פוטנציאל
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 :מטרות

 . fMRIת של נתוני "פיתוח אמצעים משופרים לאפיון ופירוש של שינויים רחבי היקף בק )1

 ".אתגר רגשי"ת בעקבות מספר סוגים שונים של "ק-חקירה מוכוונת נתונים של שינויים ב )2

ת אשר נמצאים במתאם עם הבדלים בין אישיים במדדי חוויה "זיהוי הבדלים בין אישיים בשינויי ק (3

 רגשית. 

 :שיטות

אשך , גאומטרי-לצורך ניתוח העשרה בתוך קבוצות אזורים מוחיים אימצנו את המבחן הסטטיסטי ההיפר

תוך , kאלמנטים בעלי תכונה מסוימת בתוך מדגם מקרי בגודל  xמעריך את ההסתברות לראות לפחות 

מבחן זה שימש אותנו גם לצורך חישוב העשרה בתוך . התכונה באוכלוסייה הנדגמת התחשבות בשכיחות

המתחשב בשונות , פרמטרי-אך לצורך מקרה זה הוספנו גם מבחן פרמוטציות א, קבוצות של קשרים מוחיים

בהינתן אוסף . RichMindבשם  Matlabשני המבחנים שולבו בחבילת . ת באיזורי המוח השונים"במידת ק

, בוחן את מידת העשרה בקלט RichMind,  ומיפוי מוחי ידוע )אזורי עניין או קשרים מוחיים(ת תוצאו

התוכנה נבדקה על ממצאים . ומספק הן דוחות סטטיסטיים והן תצוגה של ההעשרות שזוהו על המוח

בי מ בין נבדקים עם ליקוי קוגניטי"ת במ"הראשון בדק הבדלי ק, שהתקבלו בשני מחקרים שפורסמו בעבר

 .והשני שבדק משתתפים בריאים אשר צפו בקטעי סרטים מעוררי רגשות, אמנסטי קל לבין נבדקים בריאים

מטלה : מ לפני ואחרי שלוש פרדיגמות שונות המציבות אתגר רגשית"בהמשך ניתחנו נתוני דימות במ

.  ולילה ללא שינה)  משחק האולטימטום(מטלת קונפליקט בינאישי המעוררת כעס ,  המעוררת מתח חברתי

בכל שלושת המקרים נעשה שימוש . נבדקים בהתאמה 17-ו  44, 57מחקרים אלו הכילו נתונים עבור  

מוגדרת מראש של המוח אשר יושמה על הנתונים לפני הניתוח לצורך ) פרצלציה(בחלוקה פונקציונלית 

למקסם את הכח  קנה המידה של הפרצלציה נבחר בהתאם למספר הנבדקים במטרה. הפחתת ממדים

במחקר על חסך שינה . מ"מ-ת ב"ק-משתני כדי לזהות שינויים ב-השתמשנו בגישה של ניתוח חד. סטטיסטי

ממצאים בקנה מידה . השמשנו בשילוב בין גישה חד משתנית לרב משתנית בשל מספר הנבדקים הנמוך

ובחלק וני דיווח עצמי החוויה הרגשית נמדדה באמצעות מספר שאל. רחב אופיינו בעזרת ניתוח העשרה

 . מהמקרים גם בעזרת מדד פיסיולוגי של קצב הלב והשונות בקצב הלב

 :תוצאות עיקריות

ת בין "מ אשר כלל התחזקות ק"מ-ת ב"ק-( חברתי זיהינו שינוי רחב היקף בstressבעקבות מטלת לחץ )

האונה הטמפורלית ת  בין "המיספריאלית של ק-והחלשות בין, התלמוס לאזורים קורטיקליים שונים

הוספת מדע לגבי שימור הלחץ . שינויים אלה עמדו במתאם עם שינוי בדיווחי לחץ  סובייקטיבי. לפריאטלית

אשר ניבא במהופך את , דקות מאוחר יותר הביא לגילוי הקשר בודד בין האמיגדלה הימנית לפרקונאוס 20

 .מידת ההחלמה בחוויה הסובייקטיבית
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 : רקע

האחרון למדה קהילת חוקרי המוח כי גם במצב מנוחה מתרחשת פעילות מתמדת במוח אשר בעשור וחצי 

נמצא כי כאשר מתמקדים בתדירויות נמוכות של אותות דימות מוחי, פעילות זו . צורכת משאבים רבים

עוד נמצא כי למרות שימורן הכללי של תבניות . מתרחשת באופן  מסונכרן בתוך רשתות תפקודיות ידועות

והועלתה ההשערה , הן משתנות  יחד עם שינויים במצב הקוגניטיבי והרגשי,  ונכרנות אלה לאורך זמןמס

 .כי הן מכילות בתוכן מידע על חוויות העבר של הפרט כמו גם נטיותיו הרגשיות והקוגניטיביות

פקודית על ידי הדמיה מגנטית תי) מ"מ(מוחית במצב מנוחה ) ת"ק(חקירת השונות בקישוריות תפקודית 

(fMRI(   תוך התמקדות במספר מועט של אזורי עניין, בוצעה בעבר באמצעות ניתוח מוכוון היפותזה .

גישה זו מוגבלת בכך שהיא מאפשרת לגלות רק חלק מהתופעה המתרחשת, בשל התבססותה על ידע קיים 

א תובעני יותר מבחינה שהו, גישה חלופית היא לבצע ניתוח כלל מוחי מבוסס ווקסלים. בנוגע לתהליך הנחקר

פשרה אפשרית בין הגישות היא התמקדות באוסף של אזורי עניין המספקים . חישובית ורגיש יותר לרעש

תוך , מ"ת כלל מוחי במ"הפחתת ממדים שכזאת מאפשרת לבצע ניתוח ק). פרצלציה( כיסוי טוב של המוח

, לחלופין. טי על כל קשר כזה בנפרדולבצע ניתוח סטטיס, התייחסות לנתונים כאוסף של קשרים עצמאיים

מ ואת המשתנים "משתנים מאפשרות להעריך את היחסים בין מטריצות שלמות של ערכי ק-שיטות רבות

עם זאת גישה זו לא מגלה מידע אודות מעורבותם של . הפנוטיפים הקשורים אליהם במבחן סטטיסטי בודד

 . קשרים ספציפים בתהליך הנחקר

ממצאים אשר מתקבלים ,  נכון להיום, מ"ת במ"המתודולוגית שנעשתה בלימוד שונות בקלמרות ההתקדמות 

. מניתוח רחב היקף כזה מפורשים לרוב על ידי השוואה איכותית למיפוי מוחי  המבוסס על ספרות קודמת

א טומנת בחובה סיכון לדיווח על תוצאות שוו, אשר לא עושה שימוש בכלים סטטיסטים, מתודולוגיה שכזאת

יש להשתמש בכלים , על מנת לפרש את הממצאים באופן מדוייק. וכן להחמצת ממצאים רלוונטים

דרך טבעית לעשות זאת היא לבדוק האם קשר בין שני אזורים מוחיים מופיע בתוצאות בכמות . סטטיסטים

מזה ניתוח העשרה שכזה נמצא בשימוש נרחב ). כלומר מועשר(גדולה מהצפוי באופן מובהק סטטיסטית 

והוא הדרך המקובלת לאפיון קבוצות גנים אשר מזוהים בניתוח גנטי , זמן רב בתחום הביואינפורמטיקה

 .  מוכוון נתונים

מ על מנת לבחון את האופן שבו סוגים שונים של "בעבודה זו נעשה שימוש בנתוני דימות מוחי תפקודי במ

לצורך כך . צב המנוחה שלאחר החוויהת המוחית במ"חוויות מאתגרות רגשית משפיעים על תבניות הק

בשילוב עם ניתוחי העשרה כדרך מבוססת לפירוש , נעשה שימוש במספר שיטות מוכוונות נתונים

אנו בוחנים את , מ מכילה בתוכה מידע על נטיות אישיות וכן על חוויות העבר"ת במ"בהנחה שק. הממצאים

בין מדדים התנהגותיים של תגובה רגשית וויסות ההבדלים הבין אישיים בתבניות אלה ואת הקשר ביניהם ל

בנוסף . ת במזמן מנוחה"שיערנו כי חוויות מאתגרות רגשית יגרמו לשינוים רחבי היקף בתבניות ק. רגשי

שיערנו כי חלק משינויים אלה יהיו במתאם עם הבדלים בינאישיים במדדים סובייקטיביים של החוויה 

 .  הרגשית
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