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Abbreviations and symbols

Brain regions: Anterior Cingulate Cortex (ACC); Amygdala (Amy);
Basolateral Amygdala (BLA); Inferior Frontal Gyrus (IFG); Prefrontal Cortex
(PFC); dorsolateral PFC (DPLFC); Superior temporal sulcus (STS); Posterior
cingulate cortex (PCC); Visual network (VN); Default-mode network (DMN);
Fronto-parietal control network (FPCN); Sub-lobular (SL); Auditory network
(AN); Executive control network (ECN); Ventral attention network (VAN);
Dorsal attention network (DAN); Sensory-motor network (SMN)

Brain imaging and physiology: Functional Magnetic Resonance Imaging
(fMRI); Magnetic Resonance Imaging (MRI); Electroencephalogram (EEG);
General Electric (GE); repetition time (TR); Region Of Interest (ROI); field
potential (LFP); Heart rate (HR); Heart rate variability (HRV);
Electrocardiogram (ECG);

Others: Post-traumatic Stress Disorder (PTSD); Functional Connectivity (FC),
Resting State (rs); Leave-one-out cross validation (LOOCV); Ultimatum-game
(UG); Trier Social Stress Test (TSST); Degree preserving permutation (DPP);
Hypergeometric (HG); inter-subject correlation (ISC); Automated Anatomic
Labeling (AAL)



1 « ABSTRACT

Background

In the past decade and a half, the neuroscience community has learned that
during rest, ongoing energy consuming activity takes place in the brain. When
focusing on low frequencies, this activity is highly correlated within known
functional networks. Although these correlated fluctuations are generally
maintained over time, they were shown to vary with changes in cognitive and
emotional states, and were suggested to hold information on individual history

of interaction with the world as well as a priori cognitive and emotional biases.

Exploration of variability in resting-state (rs) neural functional connectivity (FC)
through functional magnetic resonance imaging (fMRI) has been traditionally
performed using hypothesis-driven analysis while focusing on one or a few pre-
defined seed regions. This approach can reveal only a fraction of the actual
phenomenon as it relies on prior knowledge of the putative functional network
structure. An alternative approach is to conduct a whole-brain voxel-wise
analysis, which is computationally expensive and sensitive to noise. A possible
compromise is to define a set of regions of interest (ROIs) that provide good
coverage of the brain. Such dimensionality reduction allows conducting whole-
brain rsFC analysis while treating the data as a collection of independent
connections and performing statistical analyses of each connection separately.
Alternatively, multivariate techniques evaluate the relationship between the
entire connectome matrices and their associated phenotypic variables in a
single statistical test. While powerful, such analysis does not reveal information

on the involvement of individual connections.

Despite the methodological progress in studying variability in rsFC patters, to
date findings that are obtained from large-scale rsFC analysis are mostly
interpreted by a qualitative comparison to known neural maps which are is
based on existing literature. Such methodology does not use statistical tools
for interpretation, and holds the risk of reporting false positive results and

missing important findings. In order to perform this interpretation rigorously one



must address it statistically. A natural way to do this is by testing whether a link
between two known brain regions or functional networks is significantly more
prevalent in the results than would be expected by chance (i.e. enriched).
Analysis of enrichment has long been used in the field of Bioinformatics, and is
the acceptable way for characterizing large sets of genes that emerge from data

driven genomic analysis.

This work uses rsfMRI to examine the way in which different types of
emotionally challenging experiences affect patterns of neural coactivation in
subsequent resting periods. This is done using several approaches for large-
scale rsFC analysis in combination with enrichment analysis as an established
manner for interpretation. Assuming that rsFC holds information on individual
tendencies as well as on prior experience, we examined inter-individual
differences in these patterns and their relation to various behavioral measures
of emotional reactivity and regulation. We hypothesized that emotionally
challenging experiences will induce large scale changes in patterns of fMRI
rsFC. We further expected these changes to be associated with subjective
measures of emotional experience.

Objectives:

1) Develop improved means for characterizing and interpreting large-scale
changes in FC patterns of rsfMRI data.

2) Data-driven investigation of rsFC modulations following several different
types of “emotional challenge”.

3) ldentify inter-individual differences in rsFC modulations that correspond
to inter-individual differences in measures of affective experience.

Methods

To evaluate enrichment within sets of neural positions we adopted the statistical
hyper-geometric test. We used the same test to evaluate enrichment within sets
of neural connections, however for this case we added an additional non-
parametric permutation test, which accounts for uneven levels of FC in different
brain areas. Both tests were integrated into the RichMind Matlab package.
Given a collection of findings (neural positions or connections), and a known
neural mapping, RichMind tests for enrichment in the input, and provides both

statistical reports and brain visualization of the identified enrichments. The



software was validated on two previously published studies, the first conducted
on healthy participants viewing emotion-inducing film clips, and the second on

participants with amnestic mild cognitive impairment.

Next, we analyzed data recorded before and after three different emotionally—
challenging paradigms: a social-stress induction task, an anger-provoking inter-
personal conflict task (the ultimatum game; UG) and a night without sleep (i.e.
sleep deprivation; SD). In all three cases a pre-defined functional parcellation
was applied on the data before analysis for dimensionality reduction. We used
a univariate analysis approach to identify rsFC changes. In the sleep
deprivation study we used a combination of univariate analysis with multivariate
approaches of leave-one-out cross validation (LOOCV) and modularity
analysis, due to the small sample size. Large-scale findings were characterized
using enrichment analysis. Emotional experience was measured using a
number of self-reported questionnaires, and in some cases also using a

physiological measure of heart-rate and heart-rate variability.

Main results

Following the Trier social stress test we identified a large-scale rsFC change
across the brain, which included strengthening of thalamo-cortical connectivity
alongside a weakening of cross-hemispheral parieto-temporal connectivity.
These alterations were associated with change in subjective stress reports.
Integrating report-based information on stress sustainment 20 minutes post
induction revealed a single significant rsFC change between the right
basolateral amygdala (BLA) and the precuneus, which inversely predicted the
level of subjective recovery. A parcel centered in the right amygdala
demonstrated differential rsFC also following the inter-personal conflict task.
Specifically, it showed increased rsFC with a single parcel centered in the right
inferior frontal gyrus. Baseline levels of overall rsFC of that parcel were
positively correlated with subsequent subject gain in UG as well as reported
anger following the game.

Following SD we identified a large-scale pattern of decreased thalamo-cortical
rsFC and increased rsFC of the left frontal inferior operculum with a distributed
set of cortical regions. The increased rsFC pattern was marginally associated

with change in negative mood. Furthermore, the extent of rsFC change across
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all differential connections was positively associated with trait-anxiety
measured at the beginning of the experiment. LOOCV analysis revealed that
this distributed pattern distinguishes between SD and baseline states with an
accuracy level of 94.1%. Modularity analysis that was applied on the group-
level average rsFC matrices, combined with enrichment analysis, revealed a
pattern of network reorganization involving regions of the default-mode network
(DMN), the Limbic network and the fronto-parietal control network. This change
was associated with the change in reported mood.

Conclusions

The novel use of enrichment analysis, introduced here for studying changes in
rskFC, allowed improved insight on experience-related neural modulations in
cases where the induced effect is large and distributed. This type of
improvement was observed when analyzing rsFC modulations induced by
acute social stress as well as following SD. The changes that were identified
following each of the tasks were different by nature, however, it can be said that
they share a common mechanism in which inter-individual differences and past
experiences affect the connectivity between the limbic system and the DMN,

which, in turn, affects the subjective emotional experience.

From a methodological perspective, we believe that data-driven rsFC analysis
combined with enrichment analysis comprises a productive tool with a

diagnostic potential for investigating alterations in neural connectivity.

11



2 s INTRODUCTION

2.1 THE RESTING BRAIN

“Tis the great art of life to manage well the restless mind.”

John Armstrong , The Art of Preserving Health, 1744

Although most cognitive neuroscience research has traditionally focused
on mapping the details of task-induced activation patterns, in recent years
it has become it became clear that even in the absence of a task —
that is, in what appears to be a state of rest , ongoing activity takes place
in the brain (Harmelech and Malach 2013, Kelly and Castellanos 2014). This
activity has been shown to be a compulsive user of energy and resources
(Raichle and Mintun 2006, Raichle 2010). In blood oxygen-level-dependent
(BOLD) functional MRI (fMRI), these fluctuations appear to span the entire
cortex and are of similar amplitude to those produced during task
performance (Nir, Hasson et al. 2006). These patterns have also been
documented in human single unit and local field potential (LFP) recordings
(He, Snyder et al. 2008, Nir, Mukamel et al. 2008, Manning, Jacobs et al. 2009,
Keller, Bickel et al. 2013, Foster, Rangarajan et al. 2015), revealing that their
dynamics is far slower than typical task activations (Nir, Mukamel et al.
2008). When focusing on low frequencies, this activity demonstrates high
correlations within known functional networks (Biswal, Zerrin Yetkin et al. 1995),
correlations that extend beyond primary sensory and motor systems to circuits
supporting higher order cognitive and social function (Greicius, Krasnow et al.
2003, Beckmann, DeLuca et al. 2005, Fox, Snyder et al. 2005). This

correspondence between task-evoked and resting-state architectures suggests

12



that correlated activity at rest serves to maintain the integrity of neuronal
networks, supporting cognition and action, even in the absence of processing
demands. Patterns of resting-state functional connectivity (rsFC) are
understood to constitute a trace of task-evoked coactivation among regions
within an individual. By consequence, the complete set of resting state networks
(RSNs) within an individual, also termed the functional connectome, can be
seen to comprise of both universal and unique aspects (Biswal, Mennes et al.
2010, Kelly and Castellanos 2014). The universal aspects comprises of the set
of phylogenetically determined functional networks that, in the absence of
developmental aberration, emerge in all individuals (Buckner and Krienen
2013), and are evident in observations of precursory RSNs in infants and young
children (Gao, Zhu et al. 2009, Dinstein, Pierce et al. 2011, Fransson, Aden et
al. 2011), of homologous RSNs in other species (Vincent, Patel et al. 2007,
Margulies, Vincent et al. 2009, Hutchison, Gallivan et al. 2012, Lu, Zou et al.
2012), in the reproducibility of RSNs across hundreds of studies and samples
(e.g., (Biswal, Mennes et al. 2010)), and in the moderate-to-high test-retest
reliability of RSNs over both short and long intervals (Shehzad, Kelly et al.
2009, Thomason, Dennis et al. 2011). The unique aspects of the functional
connectome, on the other hand, appear to reflect the individual history of
interaction each person has with the world, which sculpts patterns of evoked
coactivation and thus fine-tunes the intrinsic brain architecture (Harmelech and
Malach 2013). This aspect is demonstrated by studies linking differences in
rsFC to genetic variation (Glahn, Winkler et al. 2010, Liu, Song et al. 2010,
Wiggins, Bedoyan et al. 2012, Tunbridge, Farrell et al. 2013), environmental

influences such as early life stress (Burghy, Stodola et al. 2012, Herringa, Birn
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et al. 2013), and interindividual differences in a variety of behavioral
characteristics including task performance, social competence, and personality
(Hampson, Driesen et al. 2006, Tambini, Ketz et al. 2010, Adelstein, Shehzad
et al. 2011). Together, these traces of previous coactivation patterns provide a
predictive neural context, a preparatory state that anticipates future patterns of
evoked coactivation (Fox and Raichle 2007, Deco and Corbetta 2011, Raichle
2011, Engel, Gerloff et al. 2013). That is, these spontaneous fluctuations
capitalize on the individual’s history of interactions with the world, i.e. past
experience, to optimize the brain’s readiness to respond to similar inputs in the

future (Kelly and Castellanos 2014).

2.2 EXPERIENCE RELATED FINGERPRINT IN RESTING STATE FMRI

Assuming that an individual's past experience has an effect on personal biases
and tendencies, the notion that rsFC patterns reflect these biases, is supported
by the vast body of research showing traces of task-evoked coactivation
patterns in successive resting state periods. This has been demonstrated for
cognitive and motor tasks (Waites, Stanislavsky et al. 2005, Lewis, Baldassarre
et al. 2009, Vahdat, Darainy et al. 2011, Wang, Liu et al. 2012, Harmelech,
Preminger et al. 2013, Guidotti, Del Gratta et al. 2015) as well as for tasks that
present an emotional challenge (Van Marle, Hermans et al. 2010, Eryilmaz,
Van De Ville et al. 2011, Riedl, Valet et al. 2011, Veer, Oei et al. 2011,
Vaisvaser, Lin et al. 2013). For example: Lewis et al. (2009) trained participants
on performing a difficult perceptual target detection task for several days,

leading to significantly improved performance. Comparing rs-fMRI data
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acquired before and after training revealed that after training, negative rsFC
between the trained portion of visual cortex and regions of the dorsal attention
network (DAN), was strengthened, while negative correlations with the default
mode network (DMN) were weakened. The former change was also associated
with behavioral evidence of learning. The authors interpret the redistribution of
rsFC observed to reflect the active decoupling of DAN and visual areas that
occurs with the development of expertise on and automation of the trained task
(Lewis, Baldassarre et al. 2009). In another study Eryilmaz et al. investigated
the effect of emotionally joyful and fearful video clips on subsequent rsfMRI
patterns in 15 healthy participants. They reported a strong enhancement of
rsFC between ACC and insula as well as an increased level of activity in these
regions following emotional context alongside a reduction in ventro-medial
prefrontal cortex and amygdala rsFC that was selective to fearful context

(Eryilmaz, Van De Ville et al. 2011).

2.3 NEURAL TRACES OF INTER-INDIVIDUAL DIFFERENCES IN HANDLING
EMOTIONALLY-CHALLENGING EXPERIENCES

Emotion is a dynamic, complex psycho-physiological experience of an
individual's state of mind as interacting with internal and external influences. As
emotion is an inseparable part of human experience, its proper regulation has
been acknowledged as a key function that is required for adapting to socially
accepted norms as well as for maintaining well-being, and its dysregulation
could lead to various forms of psychopathology (Cicchetti, Ackerman et al.

1995, John and Gross 2004).
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In spite of the fact that emotional experiences are common to all humans, high
inter-individual variability exists in the process that takes place between the
occurrence of an event and the emotional response, as has been
demonstrated with subjective (behavioral) as well as neurophysiological
measures (Admon, Lubin et al. 2009, Admon, Leykin et al. 2013, Lin, Vaisvaser
et al. 2015). These differences result from the fact that events impinge on
different personality traits and concerns (Silvia, Henson et al. 2009, Smith and
Kirby 2009), as well as different appraisal propensities in different individuals
(Frijda 2009, Van Mechelen and Hennes 2009). For example, inter-individual
differences have been demonstrated in stress vulnerability and tendency to
develop post-traumatic stress disorder (PTSD) (McEwen 2004, Yehuda and
LeDoux 2007). This variability has been associated with the tendency to attend
to a threatening stimuli (Bar-Haim, Lamy et al. 2007), trait anxiety (McFarlane
1990) and neural activity in limbic regions and prefrontal cortex (Admon, Lubin
et al. 2009, Admon, Milad et al. 2013). Another example is the individual
tendency to use specific regulation strategies such as reappraisal or
suppression. The frequent explicit use of reappraisal has been associated with
lower levels of negative affect, greater interpersonal functioning, and greater
psychological and physical well-being (Gross and John 2003). Moreover
Greater use of reappraisal in everyday life has been associated to decreased
amygdala activity and increased prefrontal and parietal activity during the
processing of negative emotional facial expressions (Drabant, McRae et al.

2009).
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In spite of the above, the question remains, to what extent are inter-individual
differences in emotion generation, processing and regulation evident in the

variability of rsFC patterns.

2.4 METHODS FOR STUDYING VARIABILITY IN RESTING STATE
FUNCTIONAL CONNECTIVITY

Several approaches have been used to study changes in FC patterns. Analytic
hypothesis-driven routines like seed based analysis (Biswal, Zerrin Yetkin et al.
1995) have been used in numerous studies investigating cognitive functions
(Rissman, Gazzaley et al. 2004, Uddin, Clare Kelly et al. 2009, Mennes, Kelly
et al. 2010). However, this approach is limited to revealing only a fraction of the
actual phenomenon as it relies on prior knowledge of the putative functional
network structure. An alternative approach is to conduct a whole-brain voxel-
wise analysis, but such an approach is computationally expensive, sensitive to
noise, and difficult to interpret. Furthermore, there is high redundancy in the
representation of the data at the voxel scale, which makes it possible to
significantly reduce the dimensionality of the fMRI data (Craddock, James et al.
2012). This can be done by defining a set of regions of interest (ROIs) that
provide good coverage of the brain. The definition of ROIs is crucial both for
the estimation of connectomes and for group comparison (Wang, Wang et al.
2009, Varoquaux and Craddock 2013). Several strategies exist for defining
suitable ROIs. One popular approach is to use anatomic definitions (Shehzad,
Kelly et al. 2009, Wang, Wang et al. 2009, Zeng, Shen et al. 2012) however,
while the regions defined by these atlases are anatomically or cyto-
architectonically homogeneous, they do not necessarily have homogeneous
activity patterns. For example, it has been shown that adjacent regions of the
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anterior cingulate cortex (ACC) have drastically different structural and FC
patterns (Margulies, Kelly et al. 2007, Beckmann, Johansen-Berg et al. 2009),
even though the ACC is typically represented as a single ROI in brain atlases
(Talairach and Tournoux 1988). Another approach is to define a whole-brain
functional parcellation using the fMRI signals, which results in more
homogeneous regions that better represent connectivity present at the voxel
level than anatomically-defined atlases such as the anatomic atlas labeling
(AAL) or Harvard-Oxford (Craddock, James et al. 2012). This has been done
using various clustering methods (Beckmann and Smith 2004, Thirion, Flandin
et al. 2006, Bellec, Rosa-Neto et al. 2010, Craddock, James et al. 2012), and
has been shown to identify well-known functional structures from rest data
(Varoquaux and Craddock 2013). Notably, the most appropriate number of
regions (i.e. resolution) for whole-brain connectivity analysis should be carefully
considered. On one hand a sufficiently large number of regions is needed to
ensure functional homogeneity within regions and adequate representation of
FC information in the data. On the other hand too many regions reduce the
power of statistical inference and increase computational complexity
(Varoquaux and Craddock 2013). In order to estimate an optimal number of
regions cross-validation methods can be employed (Blumensath, Behrens et
al. 2012, Craddock, James et al. 2012). For example, Craddock et. al. (2012)
used a spatially constrained spectral clustering algorithm on rsfMRI data
recorded from 41 healthy subjects. Resulting parcellations, comprised of 200,
500 and 1000 parcels, were evaluated and compared against anatomic atlases
and random parcellations on an independent dataset. Evaluation was based on

homogeneity, the ability to reproduce connectivity information present at the
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voxel scale, and the ability to obtain the same parcellations from independent
data. The authors report that ROIs generated from their clustering approach
outperformed anatomic atlas-based ROIls as well as random parcellations in all
measures (Craddock, James et al. 2012). This reported ability to obtain a very
similar parcellation from independent data allows such a parcellation to be used
as a pre-defined template in other studies rather than repeat the parcellation
process for each study. Thus, in all data driven analysis performed throughout
this work, we defined ROIs using the parcellation templates generated in the
above study. The choice of the template resolution depended on the number of

subjects, to allow sufficient statistical power for data driven analysis.

After defining ROIs and extracting the BOLD signal for each ROI, a similarity
measure (usually Pearson correlation coefficient) can be used to estimate the
level of rsFC for each pair of ROIs, producing a whole-brain rsFC matrix. The
simplest approach to compare such whole-brain rsFC matrices is to treat them
as a collection of independent connections and perform statistical analyses of
each connection separately, without accounting for interactions or relationships
between them (Varoquaux and Craddock 2013). Such analysis results in a set
of p-values (one for each connection), which can be obtained using t-tests, F-
tests, regression, etc. that indicate the extent of identified difference for each
connection. Such results are relatively easy to interpret. However, this
approach involves many statistical tests, which require correction for multiple
comparisons to adequately control for the number of false positives. Standard
correction techniques such as false discovery rate (Genovese, Lazar et al.
2002) that do not model the dependencies between edges may result in overly

liberal or conservative corrections (Efron 2008, Craddock, Jbabdi et al. 2013).
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Alternatively, multivariate techniques evaluate the relationship between the
entire connectome matrices and their associated phenotypic variables with a
single statistical test (Craddock, Holtzheimer et al. 2009, Dosenbach, Nardos
et al. 2010). Although powerful, such analysis does not reveal information on
the involvement of individual connections; extracting such information requires
a return to connection-specific tests, which necessitate multiple-comparison

correction (Craddock, Holtzheimer et al. 2009, Craddock, Jbabdi et al. 2013) .

Regardless of the exact method used, data-driven analysis of variability in rsFC
often produces large sets of neural positions or position pairs (i.e. functional
connections). The interpretation of such sets is usually done by comparing them
against an existing neural mapping based on previous literature. In some cases,
where the number of results is large, they are filtered either by manual selection
or by repeating the analysis with a stricter statistical threshold, to facilitate
interpretation. As the interpretation is often done without a clear statistical
justification, such methodology holds the risk of reporting false positive results
and missing additional results. Thus, a more rigorous method of interpretation

is required to allow improved inference of data-driven results.

3 » RESEARCH OBJECTIVES

In this work we address two gaps that exist in the current literature. The first is

a methodological gap: the lack of rigorous means for interpreting large-scale

20



changes in rsFC. The second is the following question: to what extent are inter-
individual differences in affective experience evident in the variability of rsFC

patterns? Accordingly, we define the following objectives:

Objective 1. Develop improved means for characterizing large-scale
changes in connectivity patterns of task-free (resting state) fMRI data:
Such means should facilitate the interpretation of large sets of modified
functional connections and/or functional modules under previously established
neural mapping schemes, and provide these sets with statistical significance.
The approach will be validated on previously published large-scale neural

results.

We hypothesize that this approach will allow interpreting large-scale results that
were not interpreted in the original studies. We further hypothesize that it will
statistically collaborate most of the claims made in the original studies, and

possibly add additional insight.

Objective 2: Data-driven investigation of changes induced in resting-state
fMRI patterns following different types of emotional challenges.

This will be done by investigation of existing rsfMRI data, recorded from three
different groups of participants in three independent experiments. Analysis will
involve a hypothesis-free parcellation-based whole-brain exploration, with no a-
priori assumptions regarding the identity of the networks and the inference of
their behavioral relevance to the specific emotional experience. We expect to
find a unique effect of rsFC change across participants, following each

challenge. We further expect some of these effects to be of large-scale, in
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accordance with previous literature, and thus require special means for

interpretation.

Objective 3: ldentify inter-individual differences in rsFC modulations
that correspond to inter-individual differences in affective behavioural

measures

Inter-individual differences in the identified changes in rsfMRI patterns will be
compared against several behavioral and physiological measures which have
been validated as indicators of emotional experience. We hypothesize that
some of the modulations identified across participants (i.e. objective 2) will be

sensitive to inter-individual differences in affective behavioral measures.

I » GENERAL METHODS AND MATERIALS
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This section describes materials and methods that were applied for most or all
of the studies included in this work. Specific adaptations made in certain cases

are described in the specific context of each study in the next sections.

4.1 FUNCTIONAL MRI

4.1.1 Background - fMRI is a noninvasive neuroimaging method that is
typically utilized to provide the blood-oxygen-level-dependent (BOLD) signal.
This signal has been shown to reflect hemodynamic responses coupled with
stimulus-induced neuronal activity, and thus it comprises an indirect index of
such local activity. While neuronal activity affects the factors of blood volume
and blood oxygenation (Fox, Raichle et al. 1988, Attwell, Buchan et al. 2010),
it is mainly the coupled increased blood flow that enhances the BOLD signal.
Following glutamate release during neural activation, neurons and astrocytes
send molecular messengers inducing nitric oxide, prostaglandins to smooth
muscles of the adjacent blood vessels. These messengers cause the dilation

of the vessels and thus increase the blood flow (Attwell, Buchan et al. 2010).

The enhanced flow locally increases the ratio between red blood cells
containing oxidized hemoglobin and those that have deactivated form of
hemoglobin. Deoxidized hemoglobin has stronger magnetic influence on its
surrounding than oxidized hemoglobin and it produces measurable
inhomogeneity in the magnetic field. Its displacement by the increasing blood
flow about two seconds after the onset of the stimulus-induced neuronal activity
therefore increases inhomogeneity and therefore causes a rise in the BOLD

signal®®. Finally, it should be noted that comparative studies of fMRI and
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intracranial recording indicate that BOLD mainly reflects local field potential,
which is influenced by synaptic input to the local neurons (post-synaptic activity)

and internal neural processing rather the by regional output.

4.1.2 fMRI acquisition - All of the MRI scans included in this work were
performed in a 3 Tesla, General Electric scanner, Horizon echo speed scanner
with an 8-channel head coil and a resonant gradient echoplanar imaging
system (GE, Milwaukee, WI, USA) located at the Wohl Institute for Advanced

Imaging at the Tel-Aviv Sourasky Medical Center.
4.1.3 fMRI preprocessing and parcellation

Preprocessing was performed using SPM software
(http://www.fil.ion.ucl.ac.uk/spm). Head motions were detected and corrected
using trilinear and sinc interpolations respectively, applying rigid body
transformations with 3 translation and 3 rotation parameters. The criterion for
data exclusion due to exaggerated head motions was deviations higher than
2.5 mm from the reference point. . Spatial smoothing with a 6 mm FWHM kernel
was applied. Anatomical SPGR data were standardized to 1x1x1 mm and
transformed into MNI space. SPGR images were then manually co-registered
with the corresponding functional maps. Before further analysis, low frequency
fluctuations (0.01-0.08Hz) in blood oxygenation level-dependent (BOLD)

signals were filtered out using DPARSF toolbox 192,

In all studies we used whole-brain functional parcellations reported in
(Craddock, James et al. 2012), which was generated by applying a correlation-

based clustering procedure on rsfMRI data recorded from 41 healthy subjects,
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and partitions the brain volume into either 200 or 517 parcels. Parcels were
masked to include gray matter voxels only using the WFU Pick Atlas Tool
(Maldjian, Laurienti et al. 2003, Stamatakis, Adapa et al. 2010) and parcels that
had less than 5 voxels in common with the gray matter mask were excluded,
leaving 182 and 463 parcels respectively. For each scan, average BOLD value
across all gray matter voxels was calculated within each parcel at each time

point. These time series were used as the parcel’s signal.

4.1.4 Cross correlation functional connectivity analysis

In all studies, the level of rsFC between every two parcels was estimated
separately for each subject and scan by calculating the Pearson correlation
coefficient between the corresponding BOLD signals. The Pearson correlation

coefficient is given by:

(4-1) 1y, = corr(X,Y) =E[(X - X)(Y = Y)]/0, 0,

Before making statistic inference of these correlation values they were Fisher
transformed to better fit a normal distribution, which is assumed in the

parametric statistical student t-test. The Fisher transformation is given by:

(4-2) Fisher(corr(X,Y)) = arctan[corr(X,Y)]

All p-values obtained in rsFC analysis were controlled for a false discovery rate
(FDR) of 0.05 using the procedure suggested by Benjamini and Hochberg

(Benjamini and Hochberg 1995).

4.2 BEHAVIORAL MEASURES OF AFFECTIVE RESPONSE

25



Several behavioral and physiological measures were used in this work as indices of

affective response. Of these, the State-Trait Anxiety Inventory (STAI) (Spielberger
2010) was collected and used in all three experiments. The other measures are
described in the specific materials and methods sections of each experiment.
STAIl is a 40-item gold standard questionnaire for assessing anxiety. State
Anxiety reflects subjective feelings of tension, nervousness, and arousal, and
fluctuates in intensity over time as a function of perceived threat. Iltems are rated
on a 4 -point frequency scale from 1 (not at all) to 4 (very much). Trait anxiety
relates to stable individual differences in anxiety proneness, i.e. the tendency
one has in perceiving stressful situations as dangerous and threatening (and
thus reflects the disposition to respond to such situations with increased state
anxiety). Items are rated on a 4 -point frequency scale from 1 (almost never) to
4 (almost always). The psychometric properties of these scales are well
established (Spielberger and Sydeman 1994, Spielberger, Sydeman et al.

1999).

4.3 Comparing neural measures against behavioral and other

physiological measures

In all studies, identified neural changes were compared against behavioral
measures as well as physiological measures using Spearman’s rank correlation
coefficient, which is a nonparametric measure of statistical dependence, and
thus makes no assumptions on the nature of the measured variables 1,

Spearman’s rank correlation coefficient is given by:

(4-3) Txy = E[(rank(X) — rank(X))(rank(Y) — rank(Y))]/ Orank(x) Orank(y)

26



5 « IMPROVING INTERPRETATION OF LARGE-SCALE
CHANGES IN RESTING STATE NETWORKS

In this chapter, we address the methodological gap that was introduced in
chapter 2.4 (i.e. objective 1), namely, the lack of means for rigorous

interpretation of large-scale changes in patterns of rsFC.
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A paper describing this section was written and is currently under review

5.1 BACKGROUND

As described in chapter 3, various methods exist for data-driven investigation
of variability in rsfMRI patterns. Many of these methods identify large sets of
neural positions (i.e. voxels or parcels) demonstrating an activity pattern of
interest (e.g. increased/decreased nodal degree following a specific task). To
date, functional interpretation of such large-scale neuroimaging findings is often
done by associating the identified regions to known classes (e.g., anatomic
structures or functional networks). This process of using previous knowledge to
ascribe functional meaning to findings is commonly based on a subjective visual
inspection or on percent of overlap with existing maps (Nummenmaa, Glerean
et al. 2012, Jola, McAleer et al. 2013, Wang, Zuo et al. 2013, Lahnakoski,
Glerean et al. 2014, Ames, Honey et al. 2015). Such methodology, which is not
based on statistical justification, holds the risk of reporting false positive results
and overlooking additional results. For example, Nummenmaa et al. (2012)
analyzed fMRI signals recorded from 16 healthy participants, while viewing film
clips depicting unpleasant, neutral, and pleasant emotions. They identified
cerebral regions where inter-subject correlations (ISC) were significantly
correlated with subjective reports of valence and arousal provided by the
participants. In order to interpret the findings, the authors subjectively
associated the identified regions to known functional networks. They reported
that arousal was mostly associated with ISC in regions of the sensori-motor
network (SMN), visual network (VN) and dorsal attention network (DAN) while

valence was negatively associated with ISC in regions of the default mode
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network (DMN) as well as regions known to be involved in emotional processing
(Nummenmaa, Glerean et al. 2012). However, as in many neuroimaging
studies, no quantitative statistical measure was presented to support this
association of findings to functional networks. An even more complex case is
the case where the identified findings are a collection of neural position pairs
(i.e. connections). When this collection is very large, as may occur in data-
driven studies (Finn, Shen et al. 2014, Sripada, Kessler et al. 2014, Tyszka,
Kennedy et al. 2014), interpretation becomes challenging. In some cases, this
challenge is faced by filtering the results either by manual selection or by
repeating the analysis using a stricter statistical threshold. For example Wang
et. al. (2013) reported a set of 363 functional connections (FCs) that differed
between a group of amnestic mild cognitive impairment (aMCI) patients and
healthy controls. These connections were identified using the network-based
statistic approach (Zalesky, Fornito et al. 2010) using a predefined 1024
functional parcellation (Craddock, James et al. 2012, Wang, Zuo et al. 2013).
Results significance was estimated using a permutation test. However, due to
the complexity of interpreting such a large set of connections, analysis was

repeated using a stricter statistical threshold.

An alternative approach to interpreting such a large set of findings is to test
whether the results contain significantly more elements with a specific class
than expected by chance. For instance, one can examine whether an identified
set of weakened connections in terms of DMN-SMN connectivity, and explore
whether aMCI is associated with a significantly large number of weakened
connections linking the DMN with the SMN. If the answer is positive, we say

that the corresponding class (i.e. DMN-SMN) is enriched in the identified

29



collection. Such enrichment (or over-representation) can be assigned with a
statistical significance value under an appropriate null hypothesis

(Rahnenfuhrer, Domingues et al. 2004, Glaab, Baudot et al. 2012).

In this study we propose using enrichment analysis to facilitate and improve the
interpretation process of large-scale fMRI studies. We focus on two possible
cases. In the first, position-group analysis, the identified collection is a set of
neural positions (e.g. following inter-subject correlation analysis). In the second,
connection group analysis, the identified collection is a set of neural position
pairs that represent connections between brain regions (e.g. following a data-
driven functional connectivity analysis). We examined different models for
detecting significant overrepresentation of known functional brain annotation
using simulated and real data.

We implemented our methods in RichMind, a computational tool that provides
both statistical significance reports based on our suggested enrichment
analysis methods, as well as brain visualizations. We demonstrate the abilities
of RichMind by reanalyzing two previous fMRI studies: the first of subjects
viewing emotion-inducing film clips (Nummenmaa, Glerean et al. 2012), and
the second of subjects suffering from aMCI (Wang, Zuo et al. 2013). We show
that by using enrichment analysis, we were able to provide statistical validation
to most of the conclusions drawn in the original studies, while revealing
additional statistically significant results. In addition we show how enrichment
analysis allows interpreting a large set of results without having to apply
additional filters, as often applied in studies, thus, allowing more accurate

interpretation of the results.

5.2 METHODS
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Neural annotation

A neural annotation is a mapping of neural positions to known classes. The
annotation is based on previous knowledge, and can contain anatomic structure
(E.g. Anatomic atlas labeling (Tzourio-Mazoyer, Landeau et al. 2002)), known
functional mapping (E.g. functional networks identified in previous studies
(Greicius, Krasnow et al. 2003, Yeo, Krienen et al. 2011)), previously known
pathology association, etc.

In the current study we used two sets of annotations that are based on
functional neural mapping. The first was used in (Nummenmaa, Glerean et al.
2012) and it consists of 6 functional networks, and the second annotation was
used in (Wang, Zuo et al. 2013) and it consists of 5 functional brain networks.

In our simulation, we used a made-up dummy annotation.

The Hypergeometric test

In this study, we use the hypergeometric (HG) test calculate the significance of
the overlap of two sets. Let’'s assume that we have two sets A and B of sizes N
and K respectively. Let x be the size of the intersection between the two sets.
Let M be the total number of items in the background set from which the two
sets were selected. Suppose that B is fixed. The null hypothesis of the HG test
is that the N items in A were sampled randomly and independently from the
population without replacement. Therefore, the significance of the intersection
is the probability of having x or more elements in the intersection, which can be

calculated using the hyper-geometric distribution as follows:

K\(M
5-1) p=F(xVM,K,N)=ymnwKn —(i)((ﬂgv)—i)

N
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Position group enrichment analysis using the HG test

Here, we are given a group of neural positions AP and a class B. We also know
the background set of neural positions from which AP and B were taken. When
using the HG test N is the number of neural positions in AP, M is the number of
all neural positions in the background set and K is the number of neural

positions in B. The number of positions that are both in AP and B is x.

Connections group enrichment analysis

Here we are given a group of connections (i.e. pairs of neural positions) A¢ =
{(x1,y1),...,(Xn,yn)}, where each xi and yi is a neural position. This set can also
be viewed as a graph G(V,E), where V is the set of all neural positions, and
E=A°C. In addition we are given two subsets of V, B and C. Our goal is to decide
whether the number of observed edges between B and C in E, denoted as
a(E,B,C), is larger than expected by chance. In this work, we test two
approaches for this task: (1) a parametric approach that uses the HG test; and
(2) a non-parametric test based on permutations. In the next two sections we

use the same notation described above.

Parametric connection group analysis using the HG test

Here, we use the HG test with the following parameters. N is the number of
pairs in A®. M (i.e., the background set size) is the number of all possible neural
pairs: |V|(|V|-1)/2. K=|BJ*|C]| is the number of possible pairs between B and C.

Finally, x is the observed number of pairs between B and C - a(E,B,C).

Non-parametric degree-preserving analysis
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The HG approach for connection groups does not account for the degree
distribution in the graph G. The importance of this distribution has been
previously observed in brain networks (Rubinov and Sporns 2010, Sporns
2011). We therefore propose an additional non-parametric test. Here, our null
hypothesis is that the graph G was randomly selected from the set of all graphs
with the same node degrees - S. Formally, S={G'=(V,E") | |E'|=|E| and
degc(v)=degec(v) for all v in V}, where degg(v) is the number of pairs in E that

contain v as one of the end points.

We calculate the p-value empirically by drawing graphs from S using a heuristic
rewiring step: remove two disjoint edges in the current graph and replace them
by two others so that node degrees remain unchanged. A long chain of such
steps leads to a near-random sampling from S (Milo, Kashtan et al. 2003). The
method has been successfully used in multiple bioinformatics applications
(Pradines, Farutin et al. 2005, Franceschini, Szklarczyk et al. 2013). Given a
set of graphs generated using this process we calculate for each one the
number of observed edges between B and C. This step produces a vector of
scores a=azi,...,am (by default we generate m=1000 randomized graphs). The
final empirical p-value is the fraction of scores in a greater than or equal to

a(g,B,C).

Multiple testing correction

Since enrichment is tested for each combination of an identified collection and
a class, the output contains multiple p-values. Therefore, we correct for multiple
testing at a false discovery rate (FDR) of 0.05 using the procedure suggested

by Benjamini and Hochberg (BH) (Benjamini and Hochberg 1995).
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5.3 RESuULTS

In this study we propose using enrichment analysis to facilitate and improve the
interpretation of results obtained from large-scale fMRI studies. We address
two cases: In the first case the large-scale analysis produces a set of neural
positions. For example, these positions could be a set of voxels that
demonstrate increased activation under a specific condition. In this case, we
call the enrichment analysis position-group analysis. In the second case, the
identified results are a set of neural position pairs (i.e. neural connections). For
example, they can be pairs of neural positions demonstrating increased
functional connectivity under a specific experimental condition (Finn, Shen et
al. 2014, Sripada, Kessler et al. 2014, Tyszka, Kennedy et al. 2014). In this
case, we call the enrichment analysis connection-group analysis. In both cases,
in addition to the study results we are given an annotation of the brain that maps
neural positions to classes representing known neural functions (e.qg.
(Damoiseaux, Rombouts et al. 2006, Yeo, Krienen et al. 2011, Shirer, Ryali et
al. 2012)), or anatomic structures (e.g. (Talairach and Tournoux 1988,
Lancaster, Woldorff et al. 2000, Maldjian, Laurienti et al. 2003)). For position-
group analysis we use the hyper-geometric (HG) test, and for connection-group
analyses we propose two different tests (See Methods for details). The first test
is based on the HG score and is easy to compute. However, this test ignores
the degree distribution in the graph represented by the neural connections. The
second test uses permutations to create a large set of random graphs with the

same node degrees.
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Figure 5-1 shows a toy example that illustrates the difference between these
tests. Graph A is very sparse, and the degree of “red” and “green” nodes is high
relative to the rest of the graph. As a result, its HG p-value is significant, but its
degree preserving permutation (DPP) p-value is not. In contrast, graph B is
denser, and the degree of red and green nodes is relatively low, so its HG p-

value is not significant but its DPP p-value is.

FIGURE 5-1: TWO EXAMPLES THAT DEMONSTRATE THE DIFFERENCE BETWEEN
THE TWO APPROACHES TO CONNECTIVITY ENRICHMENT SIGNIFICANCE

Each of the graphs contains 20 nodes, of which three are labeled “green” and three are labeled
“red”. The number of connections between green nodes and red nodes is 6 in both cases,
however, the number of connections and consequently the degree of the nodes varies greatly
between the two cases. Graph A was found to be enriched with red-green connections using
HG-test (FDR g=4.4*10-5) but not using DPP (FDR g=0.22). On the other hand, graph B was
found to be enriched with red-green connections using DPP (FDR g<0.001) but not using HG
test (FDR q=0.34).

We implemented the two approaches in a matlab-based tool called RichMind.
Below, we first give a brief explanation on the input and output of the tool. Next,
we show two case studies in which we apply RichMind to real data from fMRI

studies.

RichMind — a toolbox for analysis of enrichment of fMRI results:
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RichMind receives as input either (1) one or more sets of neural positions for
position-group analysis, or (2) a set of neural position-pairs for connection-
group analysis. In addition, the collection of all positions considered in the
experiment is required. RichMind uses an established neural annotation,
attributing neural positions to meaningful terms. These classes reflect prior
knowledge of brain function or anatomic structure, so they can be anatomic
labels, functions, pathology association, etc. By default, RichMind uses as
annotation the functional neural mapping provided in (Yeo, Krienen et al. 2011).
Alternatively, it provides an option to use the anatomic mapping provided in
(Fischl, Salat et al. 2002), or any other mapping provided by the user. In each
type of analysis RichMind calculates the p-values for over-representation of the
classes (see Methods for details). All p-values are corrected for multiple testing
using the false discovery rate (FDR) g-value (Benjamini and Hochberg 1995).
Alternatively, the user can choose the more stringent Bonferroni correction.
Finally, RichMind reports a list with all significant enrichments (0.05 FDR by
default), and also produces bar plots that display the p-value and an additional
measure of enrichment level called the “frequency ratio”. The frequency ratio is
the ratio between class representation within the tested set and its
representation in the background set (see Figure 5-2 A for example). For each
reported result, brain 2D and 3D views overlaying the neural positions (or
connections) are available by clicking on the result (see Figures 5-2 B, and 5-3
B for examples). In addition, one can export these overlay graphs into files that
can be loaded to the BrainNet viewer (Xia, Wang et al. 2013) (see right hand

panels in Figures 5-2 B and 5-3b for examples).
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Case Study 1: Inter-subject correlation identified while watching emotion
inducing film clips

Nummenmaa et al. (2012) analyzed fMRI signals recorded from 16 healthy
participants, while viewing film clips depicting unpleasant, neutral, and pleasant
emotions. They identified cerebral regions where inter-subject correlation (ISC)
was reported to be significantly correlated with self-reported valence and
arousal scores provided by the participants. ISCs were derived by calculating,
for each voxel, the Pearson correlation coefficient of the BOLD time series
recorded in each pair of subjects. This was done both for the entire time frame
and for sliding windows of 17 time points. Ongoing measures of self-reported
valence and arousal provided by participants were used as regressors in a
general linear model (GLM), to identify significantly associated ISCs. Results
were interpreted by the authors in the context of six functional networks
extracted using seed-based FC analysis on the same data — the VN, SMN, AN,
DMN, DAN and the executive control network (ECN). The authors reported that
arousal was mostly associated with ISC in the SMN, VN and DAN while valence
was negatively associated with ISC in the DMN as well as in regions involved
in emotional processing, such as midbrain, thalamus, ventral striatum, insula,
and anterior cingulate cortex (ACC) (Nummenmaa, Glerean et al. 2012). No

guantitative statistical measure was presented to support this interpretation.

We ran RichMind position group analysis on two sets of cerebral regions: one
where ISC was inversely associated with self-reported valence, and another
where ISC was positively associated with self-reported arousal. All gray matter
voxels were used as background for enrichment test. The mapping of voxels to
the six functional networks was taken from the original paper. The results are

presented in Table 5-1 and Figure 5-2. RichMind identified arousal associated
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ISC to be enriched with regions involved in AN (g=1.28E-10), SMN (q=1.85E-
10), DAN (g=9.28E-09), and VN (g=9.26E-11), and valence associated ISCs to
be enriched with DMN (9=9.26E-11), SMN (<1.4E-37) and ECN (q=6.59E-09).
These results recapitulate the results of the original paper. However, they add
additional findings of AN enrichment within arousal associated ISCs, and ECN
and SMN enrichment within valence associated ISCs. These finding reinforce
the claim made in the original study, by which high arousal serves to direct
individuals’ attention to features of the environment. Identifying ECN and SMN
enrichment within valence associated ISCs, is in line with the authors’
suggestion by which negative valence synchronizes brain circuitries, supporting

emotional sensations across individuals.

TABLE 5-1 — RICHMIND RESULTS FOR CASE STUDY 1

DAN=dorsal attention network, AN=auditory network, SMN=sensori-motor network,
VN=visual network, DMN=default-mode network, ECN=executive control network

1SCs set Enriched HG-based g- FreqUt?ncy # Voxels
attribute values Ratio
Arousal DAN 9.28E-09 2.9 4560
Arousal AN 1.28E-10 1.6 2358
Arousal SMN 1.85E-10 14 5018
Avrousal VN 9.26E-11 6.9 2901
Valence DMN 9.26E-11 3.5 1357
Valence ECN 6.59E-09 4.3 2684
Valence SMN 0 1.3 2056

A)
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FIGURE 5-2: RICHMIND RESULTS VISUALIZATION FOR CASE STUDY 1

(A) Bar plots displaying the p-values and frequency ratios of enrichment analysis
results. Each bar is colored according to the attribute which corresponds to the
enriched attribute. (B) 2D and high-resolution 3D brain visualization, which shows, for
each enriched attribute, all neural positions that are both in the SOI and in the attribute.
Positions are colored according to the corresponding attributes. High resolution 3D
images were generated using BrainNet viewer (Xia, Wang et al. 2013).
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Case Study 2: fMRI FC differences identified in cases of amnestic mild
cognitive impairment

Wang et. al. (2013) analyzed resting state (rs) fMRI data recorded from 37
subjects with aMCl, and 47 healthy controls. The analysis produced functional
connections (FCs) that differed between the groups. These connections were
identified using the network-based statistic approach (Zalesky, Fornito et al.
2010) on a predefined functional parcellation containing 1024 parcels
(Craddock, James et al. 2012, Wang, Zuo et al. 2013). The approach identified
connected components (CCs) that are composed of FCs for which the inter-
group difference exceeded a pre-defined threshold. Component significance
was estimated using a permutation test. This analysis detected a single CC of
363 reduced FCs when using a p-value threshold of 5*10*. We call this set
CC363. In addition, two CCs of 65 and 22 reduced FCs were discovered using

a p-value threshold of 104, denoted as CC65 and CC22, respectively.

In the original study, due to the large number of connections in CC363, only
CC65 and CC22 were further interpreted. This was done in the context of a
modular architecture derived from the control group, which includes five
modules corresponding to the VN, the SMN, the DMN, the ventral attention
network (VAN) and the auditory network (AN). CC65 was reported as
comprised mainly of inter-module connections (46/65, 70.8%), which linked
regions in the SMN module, the VN module, and the AN module. CC22 was
reported to contain predominantly intra-module connections (15/22, 68.2%)

within the DMN module (Wang, Zuo et al. 2013).

We used RichMind to analyze CC363. All 1024 parcels were used to generate
the background for the enrichment analyses. A mapping of nodes to functional
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modules was taken from the original paper. The results are presented in Table
5-2 and Figure 5-3. The HG-based analysis identified CC363 as enriched with
inter-modular FCs that link regions of the SMN module, the VN module, and the
AN module (gemn-vny= 0.011, gismn-any= 6.54E-08; gan-vn=1.2E-09), and with
intra-modular connections within the DMN module (g=0.003). These results
reproduce the main conclusions of the original study, but were obtained on the
larger CC, which was not discussed in the original study due to its size. In
addition, the test revealed enrichment in connections within the VN module
(q=0.00014), which was not reported in the original study. The degree
preserving permutation test did not identify FC enrichment within the VN nor
did it identify FC enrichment between the SMN and the VN. However, it

recovered the other three inter-module links (see Table 5-2).

TABLE 5-2: RICHMIND RESULTS FOR CASE STUDY 2 ; CLASS ABBREVIATIONS: VN=VISUAL
NETWORK, AN=AUDITORY NETWORK, SMN=SENSORI-MOTOR NETWORK, DMN=DEFAULT-MODE
NETWORK

Enriched inter-class | HG- based g- Permutation Frequency | #
. based g- : .
connection value ratio Connections
value

VN-AN 6.8E-10 0.0325 2.8 72

SMN-AN 3.9E-08 0.00075 2.3 54

VN-VN 8.4E-05 0.79 1.9 41
DMN-DMN 0.0019 <0.00075 1.6 49

SMN-VN 0.0066 0.79 1.4 55
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FIGURE 5-3: RICHMIND RESULTS VISUALIZATION FOR CASE STUDY 2

(A) Bar plots displaying the p-values and frequency ratios of enrichment analysis results. Each bar is
composed of two rectangles colored by the two classes that constitute the enriched class. (B) 2D and
high-resolution 3D brain visualization, showing, for each enriched class, all neural connections that are
both in CC363 and in the class. Parcels are colored according to the corresponding classes. High
resolution 3D images were generated using BrainNet viewer (Xia, Wang et al. 2013).

Repeating case analyses with an external annotation

The above analyses were conducted using the same annotations that were

used by the authors of the original papers for interpretation. In both cases, these
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were functional brain networks that were extracted from the same experiment.
However, to validate the results of a new experiment, it is preferable that
enrichment analysis is conducted using an independent annotation. Another
advantage of using such an external annotation is that it allows the results to
be comparable across studies. Accordingly, we repeated both case analyses
using an annotation reported in (Yeo, Krienen et al. 2011), which includes a
partition of the cortex into seven functional brain networks. This annotation was
selected because it is based on a thorough analysis of a very large cohort of
1000 subjects. When we repeated the analysis of RichMind using this
annotation two of the 5 results in our previous analysis of case study 2 were
identified (VN-SMN and VN-VN connectivity). In case study 1, the results
remained similar to those obtained in our previous analysis, however, slight
differences were identified. For example, valence associated ISC was enriched
with SMN using the original annotation but not the external one. This difference

results from discrepancies in the mapping of voxels to network.

5.4 DISCUSSION

In this work we describe RichMind, a Matlab-based, easy-to-use computational
tool that tests for enrichment of known classes in large-scale neural results. It
provides both statistical reports and brain visualizations of the identified
enrichments. Statistical reports state the probability of getting the observed

representation of each annotation in the tested set by chance.

We applied RichMind totwo case studies, and in both of them RichMind

reinforced the main claims made in the original papers, while adding new
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findings. In case study 1, the involvement of the ACC in the valence-associated
ISCs seems to contribute most to the identified ECN enrichment within that
group (Figure 5-2B shown in black), in accordance with the statement in the
original study. However, regions of the SMN were reported in the original study
only in association with arousal ISCs and not with valence ISCs. Using
RichMind we reveal SMN enrichment within valence associated ISCs, a finding
with extremely low g-value, indicating that it is highly significant. Notably, this
enrichment was not identified using the external annotation that was based on
(Yeo, Krienen et al. 2011), due to differences between the mappings. This
inconsistency demonstrates the need for an established functional mapping of

the brain that is acknowledged in the field as “common ground”.

While enrichment analysis is standard in genomic and genetic studies
(Sherman and Lempicki 2009, Ulitsky, Maron-Katz et al. 2010), few previous
fMRI studies addressed the issue of large-scale interpretation by calculating the
relative frequency of specific classes. For example, in case study 2 Wang et al.
used maps of known functional brain networks extracted from the set of healthy
controls through modularity analysis, and then calculated the percent of the
results that link each pair of networks (Wang, Zuo et al. 2013). However, such
an approach does not take into consideration the spatial coverage of each
class, which has a major effect on the frequency of its representation in the
results. Furthermore, it does not provide statistical significance of the reported

findings.

Unlike the simple case where results contain sets of neural positions, when
examining sets of neural connections, the null hypothesis of random

independent sampling, which underlies the hyper-geometric test, may not be
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suitable. This is due to a non-uniform distribution of the degrees in the brain
network (Rubinov and Sporns 2010, Sporns 2011). Instead, empirical p-values
can be calculated using a permutation test, in which the random background
model preserves the degrees of the nodes in the graph. Such degree-
preserving permutation test has been previously used for analyzing enrichment
within protein-protein interaction networks (Pradines, Farutin et al. 2005,
Franceschini, Szklarczyk et al. 2013). In our tests, when comparing HG to the
degree preserving permutation test, we observed that the latter was often much

more stringent and produced less results.

Shortcomings and future plans: Using a data-driven approach, which
considers all possible classes, while correcting for multiple tests, is very strict,
and thus may increase the rate of false negative findings. In addition, the
analysis is conducted under the assumption of specific null models, which, in
some cases, may not hold. Other null models can be added to RichMind in the

future based on user requests.

The use of enrichment analysis is always based on some previously
established mapping that is used as an annotation. For this purpose, it would
be ideal to use an established functional mapping of the brain that is accepted
in the field as “common ground”. Such annotation systems exists in other fields
for this type of analysis, e.g. the Gene Ontology system (Consortium 2004) or
the KEGG pathway database (Kanehisa and Goto 2000), which are used as
standard gene annotations in computational genomics analysis. However, due
to the lack of such a common ground in neuroscience, we adopted a functional
annotation that was based on a previously published study, conducted on the

1000 connectomes data, and an anatomic annotation of lobe-laterality

45



information that was based on the TD atlas. We believe that established
mapping systems will be available in the near future, and will encourage and

improve the use of enrichment analysis in the field.

Availability: RichMind package and sample data is freely available for

academic use at http://acqgt.cs.tau.ac.il/RichMind. A technical user manual is

available at http://acgt.cs.tau.ac.il/RichMind/help.html .

In the coming chapters of this work, enrichment analysis was applied whenever
there was a need to interpret large-scale changes in rsFC. This was done using

the RichMind toolbox.
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6 s CHARACTERIZING CHANGES IN RESTING-STATE NETWORKS
INDUCED BY A PSYCHOLOGICAL PERTURBATION

6.1 BACKGROUND

The dynamics of interpersonal interactions often evoke strong emotions, some
perceived as positive and pleasant, while others as unpleasant or negative. Of
the latter, social stress and anxiety are associated with appraisals of
uncertainty, risk, and relative weakness (Smith and Ellsworth 1985, Mackie,
Devos et al. 2000, Lerner and Keltner 2001) and are considered emotions that
discourage confrontation (i.e. flight/avoidance) (Smith and Lazarus 1990,
Blanchard and Blanchard 2003), whereas anger is associated with appraisals
of certainty, low risk, and relative strength (Smith and Lazarus 1990, Blanchard
and Blanchard 2003), and is more likely to motivate one to take action (i.e. fight
/approach)-(Berkowitz 1989, Berkowitz 1993, Lazarus 1994, Harmon-Jones
and Sigelman 2001). This difference is further supported by evidence for two
different biological profiles of stress hormonal response. The same study
demonstrates how individual tendencies affect levels of reported anger and

anxiety provoked by the same stressor (Moons, Eisenberger et al. 2010).
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These two behavioral patterns of approach vs. avoidance were shown to be
associated with differences in functional lateralization in the prefrontal cortex,
as indicated by frontal asymmetry measured with electroencephalography
(EEG) (Heller 1993, Davidson 2004, Harmon-Jones, Gable et al. 2010,
Quaedflieg, Meyer et al. 2015). However, little is known on differences in

patterns of neural network reorganization that underlie these two behaviors.

In this section we present two case studies in which we explore changes in
patterns of rsFC induced by established paradigms involving social interactions
that were used to generate an emotional challenge: the first of acute social
stress and the second of inter-personal social conflict that is known to provoke
anger. In both cases the study was conducted on a cohort of healthy young
male subjects. We assumed that both challenges would have a large-scale
effect on patterns of neural FC, which would be evident in subsequent rsfMRI.
We further expected that the identified changes in rsFC would differ between

the two case studies due to the difference in type of challenge.

6.2 CASE STUDY 1: CHARACTERIZING CHANGES IN RESTING-STATE
NETWORKS INDUCED BY ACUTE SOCIAL STRESS

In this section we describe the data-driven investigation of rsFC changes
identified following exposure to acute social stress. A paper describing the

results was submitted to a journal, and is now under peer review.

6.2.1 SPECIFIC BACKGROUND

Acute stress calls for an adequate immediate response, followed by recovery

processes and homeostasis restoration once the stressor has terminated
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(Cannon 1929, De Kloet, Joéls et al. 2005, Hermans, Henckens et al. 2014).
While the neural basis of the stress response at the time of induction has been
widely investigated (Wang, Rao et al. 2005, Pruessner, Dedovic et al. 2008,
Ulrich-Lai and Herman 2009), much less is known about the neural processes
that underlie successive recovery in human subjects. Characterizing individual
variability in recovery from stress is of particular interest since it has been
associated with several stress-related psychopathologies, including Post
Traumatic Stress Disorder (PTSD) and depression (McEwen 2003, Yehuda and

LeDoux 2007).

One approach to study post-processing of prior events, such as stress, is by
inspecting the spontaneous neural activity that takes place during rest after the
event occurred. This post-processing has been shown to support prior
experience consolidation (Lewis, Baldassarre et al. 2009, Tambini, Ketz et al.
2010, van Kesteren, Fernandez et al. 2010), and thus, may play a central role
in regaining mental and physiological homeostasis and is expected to involve
large scale brain network reorganization (Eryilmaz, Van De Ville et al. 2011,
Wang, Liu et al. 2012, Hermans, Henckens et al. 2014). Accordingly, using
post-stress resting-state functional magnetic resonance imaging (rsfMRI) to
investigate network reorganization following stress may provide a vital insight
into the large-scale neural mechanism that underlies affective recovery from

acute stress.

Few previous fMRI studies investigated changes in resting-state functional
connectivity (rsFC) following acute stress (Van Marle, Hermans et al. 2010,
Veer, Oei et al. 2011, Vaisvaser, Lin et al. 2013). For example, van Marle et al.

reported increased amygdala rsFC immediately following acute stress with
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anterior cingulate cortex, anterior insula, and a dorso-rostral pontine region
(Van Marle, Hermans et al. 2010). In another study Veer et al. reported
increased amygdala rsFC with the posterior cingulate cortex, precuneus and
medial prefrontal cortex an hour following stress, suggesting that these effects
could be related to top-down control of the amygdala and consolidation of self-
relevant information following a stressful event (Veer, Oei et al. 2011). Lastly,
Vaisvaser et al. examined changes in rsFC patterns seeded at the posterior
cingulate cortex (PCC) and hippocampus, both immediately after social stress
induction and two hours later (Vaisvaser, Lin et al. 2013). Unlike the two
aforementioned studies, here rsFC alterations were examined with respect to
the pre-stress resting period. Immediately after stress induction several rsFC
changes were reported including altered coupling within the default mode
network (DMN) and between hippocampus and amygdala. Intriguingly, two
hours later all rsFCs returned to pre-stress levels with the exception of a
sustained increase in rsFC found between the hippocampus and amygdala.
Notably, these studies used a hypothesis-driven fMRI analysis approach,
exploring connectivity changes involving one or few predefined seed regions.
Alongside the clear statistical advantages of such a seed-based approach lies
the disadvantage of revealing only that fraction of the actual phenomena that
involves the preselected seed, and possibly missing other relevant findings,
which can be identified using a data-driven approach. Such a data-driven
approach was taken by Hermans et al. who used group independent
component analysis (ICA) in combination with inter-subject correlation analysis
to identify large-scale stress-related FC changes induced during exposure to

fear-related movie clips. They reported an increase in interconnectivity within a
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salience network, which positively correlated with the subjective stress
response magnitude (Hermans, van Marle et al. 2011). This network included
cortical (frontoinsular, dorsal anterior cingulate, inferotemporal, and
temporoparietal) and subcortical (amygdala, thalamus, hypothalamus, and
midbrain) regions. Accordingly, it has been suggested that exposure to acute
stress prompts the recruitment of a salience network, atthe expense of a
fronto-parietal executive control network involving dorso- frontal and parietal
areas, and that this resource allocation is reversed after stress subsides
(Hermans, Henckens et al. 2014). Nonetheless, large scale alterations after

exposure to stress require further identification and deeper characterization.

In this study we aimed to gain a broader perspective on rsFC modulations
following acute social stress, and examine their correspondence to individual
subjective experience. To this end we adopted a data-driven approach for
analyzing rsfMRI data recorded from healthy male subjects before and after
performing the arithmetic task from the well-established Tier Social Stress Test
(Kirschbaum, Prussner et al. 1995), adapted to the scanner (Wang, Rao et al.
2005, Vaisvaser, Lin et al. 2013). In addition, in order to study the relation
between stress-induced rsFC modulations and subjective experience of
recovery, we divided our participants according to their reported stress

sustainment.

Data analysis was conducted using a fine-grained predefined functional
parcellation (Craddock, James et al. 2012) that allowed dimensionality

reduction on one hand, while maintaining a relatively coherent per-parcel BOLD
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signal on the other hand. The parcellation contained 517 parcels, of which 463
survived after gray-matter masking. In this parcellation most anatomic
structures are covered by more than one parcel. This redundancy in regional
representation along with the expected large-scale effect of stress induction
may lead to a large number of identified changes even after controlling for type-
| error. In such cases an additional means is required in order to pinpoint the
most robust rsFC changes. To this end we applied enrichment analysis, which
is described in section 5, and is commonly used in the field of Bioinformatics
for interpreting a large number of noisy results (Sherman and Lempicki 2009,
Ulitsky, Maron-Katz et al. 2010). In the current study enrichment analysis was
conducted based on parcel anatomic positions, seeking pairs of lobes that were
over-represented (i.e. significantly more prevalent than would be expected by

chance) in the set of identified modulations.

We hypothesized that using a whole-brain data-driven approach would reveal
a large-scale effect of stress-induced rsFC modulations, which corresponds to
changes in the subjective experience of stress. We expected some of these
changes to involve rsFC that had been previously associated with stress
reactivity, such as connections within the salience network and executive
control network, as suggested in (Hermans, Henckens et al. 2014), and rsrFC
previously associated with post-stress processing, e.g. within the DMN or
between the DMN and limbic regions (Veer, Oei et al. 2011, Vaisvaser, Lin et
al. 2013). Furthermore, we expected some of these stress-induced rsFC robust
changes to be sensitive to inter-individual differences in subjective stress

recovery measured 20 minutes after the stress eliciting experience.
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6.2.2 SPECIFIC MATERIALS AND METHODS

Participants

We used fMRI data from a study conducted at our lab, on a cohort of 61 healthy
male participants (age 19-22) (Vaisvaser, Lin et al. 2013). The data were
previously analyzed using a different methodological approach of exploring
changes in rsFC of a-priori preselected seed regions. Participants had no
reported history of psychiatric or neurological disorders, no current use of
psychoactive drugs, no family history of major psychiatric disorders, and no
previous exposure to abuse during childhood and/or potentially traumatic
events before entering the study. In addition, all participants had normal or
corrected-to-normal vision and provided written informed consent approved by
Tel Aviv Sourasky Medical Center Ethics Committee and conformed to the
Code of Ethics of the World Medical Association (Helsinki Declaration). Of the
61, four individuals were excluded from the current analysis due to signal

artifacts; therefore the final study group consisted of 57 participants.

Experimental procedure

Each participant underwent a 65 minutes MRI scan that consisted of 6 phases:
acclimation and anatomical scan (15 minutes), a rest condition ("restl”, 5
minutes), control task (6 min), a social stress task (6 minutes), a second rest
condition ("rest2", 5 minutes) and another anatomical scan (15 minutes). Acute
stress was induced using a serial subtraction arithmetic task (Kirschbaum,
Prussner et al. 1995, Wang, Rao et al. 2005), fully described in (Vaisvaser, Lin

et al. 2013). Briefly, participants were instructed to continuously subtract 13
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from 1022 for a period of 6 minutes, responding verbally, while monitored on-
line by an experimenter. The stress task was preceded by a non-stressful
condition of backward counting for a period of 6 minutes, without external
monitoring. The experimental timeline is shown in Figure 6-2 A. During the rest
conditions participants were instructed to keep their eyes open and stare at a fixation
point. Psychological effect of stress (on a 9 point Likert scale) and salivary
cortisol were evaluated at four time points: after the first rest scan (Stress
Reprot_1; SR1), after the control task (SR2), right after the stress task (SR3) and
20 minutes after the stress task, following the second anatomical scan (SR4)
(Figure 6-2 A). In addition, the STAI questionnaire described in section 4.2 was
administered and Electrocardiography (ECG) was recorded continuously
during scanning via a BrainAmp ExG MRI-compatible system at a sampling rate

of 5000Hz, and used to extract heart-rate measure.

Physiological data analysis

Preprocessing of the ECG signal and RR interval analysis was performed
similarly to (Raz, Winetraub et al. 2012). Briefly, gradient artifacts were
removed using FASTR algorithm (Niazy, Beckmann et al. 2005), implemented
in FMRIB plug-in for EEGLAB (Delorme and Makeig 2004). R peaks of ECG
were detected using the FMRIB toolbox, and corrected for mis-detection
(maximum correction rate over participants was 5.95%) and presence of
ectopic beats. Finally, RR intervals were used to derive a beats-per minute HR
index. Due to motion artifacts, 42 participants, for whom a reliable R peak signal

could be detected in all conditions, were included in the final HR analysis. The
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Kubios software tool (Tarvainen, Niskanen et al. 2009) was used to extract the

high frequency component of HRV from the ECG channel.

fMRI data acquisition information

Functional imaging was acquired with gradient echo-planar imaging (EPI)
sequence of T2"-weighted images (TR/TE/flip angle: 3000/35/90; FOV: 20 x 20
cm; matrix size: 96 x 96) in 39 axial slices (thickness: 3 mm; gap: 0 mm)

covering the whole cerebrum.

fMRI preprocessing and parcellation

fMRI data preprocessing was performed with SPM5 (Wellcome Department of
Imaging Neuroscience, London, UK). The procedure is described in section

4.1.3.

We used the whole-brain functional parcellation reported in (Craddock, James
et al. 2012), as described in section 4.1.3 to partition the brain into 463 parcels
for which average BOLD values across all gray matter voxels were calculated
at each time point. These time series were used as the parcel’s signal. In order
to reduce the effect of physiological artifacts and nuisance variables, the whole-
brain mean signal, six motion parameters, cerebrospinal fluid, and white matter

signals were regressed out of these parcel signals.

Parcel-based univariate functional connectivity analysis

The procedures of rsFC analysis and statistical characterization are illustrated

in Figure 6-1. We used a univariate analysis approach, in which a model is
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fitted independently to each connection to assess evidence for experimental

effects.

Level of rsFC between every two parcels was estimated by calculating the
Pearson correlation coefficient between the corresponding signals. This was
done for each subject and each rest condition separately. Correlation values
were next Fisher transformed to better fit a normal distribution. FC level
estimates of "restl" were then subtracted from the corresponding estimates in
"rest2", resulting in a single FC change value (denoted AFC) for each pair of
parcels and for each subject. To identify parcel-pairs that demonstrated
significant rsFC change following the stress task, we applied a one-sample t-

test on the AFC values of each pair across all subjects.
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Figure 6-1: Anillustration of data-driven univariate rsFC analysis. Following
parcellation, cross-correlation matrices were calculated for each subject and resting-state
session. A paired t-test was applied on the Fisher-transformed rsFC values to identify parcel-
pairs for which rsFC changed significantly. An FDR procedure was used to correct for
multiple testing. Next, anatomy-based enrichment analysis was used to characterize the

Statistical characterization of identified connections using enrichment
analysis

In order to characterize the identified changes, we conducted enrichment

analysis on the two sets of connections that were identified as differential: the



set of weakened connections, and the set of strengthened connections. This
was done using the RichMind toolbox described in section 5.2. Each parcel was
annotated according to the lobe and hemisphere in which it was located. Lobes
were identified by mapping parcel spatial centers into the TD lobe map provided
with the WFU Pick Atlas Tool (Maldjian, Laurienti et al. 2003, Stamatakis,
Adapa et al. 2010), combined with laterality information, i.e., left(x<-6), midline
(-6<x<6) or right (x>6). This resulted in a unique mapping of each of the 463
parcels to one of 18 possible annotations. Consequently each connection was
given a pair of annotations according to the location of the two parcels

comprising it.

The Hyper-geometric cumulative distribution function (HG-CDF) was used to
assess the enrichment levels of the lobe representation of identified
connections (see section 5.4 for details). The probabilities were corrected for

multiple comparisons using Bonferroni correction.

Since the null hypothesis that underlies the HG-CDF is that parcel-pairs were
obtained randomly and independently. As an additional filtering, to rule out
dependency biases in the enrichment results, we used a random permutation

test (see section 5.4 for details).

For each identified enrichment result, an additional measure called “enrichment
factor” (EF) was calculated. For each pair of annotations (a1,a2) EF
corresponds to the ratio between the relative frequency of al-a2 links in the
sample (e.g. parcel-pairs with increased rsFC) and their relative frequency in

the background (i.e. all possible parcel-pairs). This descriptive measure was
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not used to identify the results; rather it allowed additional assessment of the

extent of each of the identified enrichment results.

6.2.3 RESULTS

Behavioral and physiological indications of stress

As reported by Vaisvaser et al., both subjective reports and HR (beats per
minute) measures showed a significant elevation in stress in measure SR3 as
compared to the two previous measures (SR1 and SR2), and a decrease to
initial levels during the second rest period. For salivary cortisol, a marginally
significant main effect of time was reported, with a peak in cortisol level in the

final sample (SR4) as compared to post “rest1” sample.

Stress sustainment versus recovery group division: The SR4-SR1 value
distribution is shown in Figure 6-5 A. Out of 57 participants, 23 demonstrated
elevated reported stress levels 20 minutes post stress induction (i.e. SR4-
SR1>0), and were thus assigned in the current study to the “sustained stress”
group. The rest of the subjects (n=34) were assigned to the “recovered stress”
group. For the “recovered stress” group a significant decline in stress ratings
was identified 20 minutes following stress-induction (SR4) relative to ratings
immediately after stress induction (SR3, Tukey’s HSD p <0.0001). This decline

was not evident in the "sustained stress" group (Figure6-2 B).

Notably, no association was found between state and trait anxiety measured by
STAI questionnaire at the beginning of the experiment and level of stress
sustainment as measured by SR4-SR1 value (p>0.15) or increase of reported stress

following the task as measure by SR3-SR1 value (p>0.5).
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Figure 6-2: Psychological response to stress on experimental timeline.

Subjective ratings of stress (B) are presented in reference to the time course
of the experiment (A). Time 0 indicates the start of the first rest condition.
The oranae columns represent control and stress tasks (6 min each), violet

Stress-induced rsFC alterations

In order to identify post-stress rsFC changes we conducted a univariate
statistical analysis on the Fisher-transformed cross-correlation matrices. This
was done by subtracting the “rest1” matrix from the “rest2” matrix, and then
applying a one-sample t-test on the resulting AFC values of each parcel pair.
A significant rsFC change (FDR<0.05) was identified in 490 out of 106953
possible parcel-pairs. Of these, 189 pairs demonstrated rsFC increase and 301
demonstrated rsFC decrease. Pairs are presented as connections/edges on a

3D brain image in Figure 6-3.
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Figure 6-3:: Significant rsFC changes following stress

Using FDR of 0.05, 490 parcel-pairs demonstrated a significant AFC between “rest1”
and “rest2”. Of these, 301 demonstrated rsFC decrease (A - shown in blue) and 189
demonstrated rsFC increase (B - shown in red). Visualization was generated using
Brain Net Viewer (Xia, Wana et al. 2013).

This large-scale effect required a second-level analysis in order to highlight the
main findings. To this end, we conducted enrichment analysis.

Using the lobe and laterality annotation of each parcel, we searched for pairs
of annotations that were significantly over-represented (i.e. “enriched”) in the
set of connections identified as affected by the stress task across all subjects.
Enrichment analysis was applied separately on the set parcel-pairs

demonstrating rsFC increase (i.e. “strengthened set”) and on the set parcel-
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pairs demonstrating rsFC decrease (i.e. “weakened set”’). Results are
summarized in Table 6-1 and illustrated in Figure 6.4-A. The strengthened set
was found to be enriched with thalamo-frontal (right), thalamo-temporal
(bilateral) and thalamo-parietal (right) connections, while the weakened set was
found to be enriched with cross-hemispheral temporo-parietal connections,
including regions of the inferior, middle and superior temporal gyri along with
regions of the pre- and post central gyri and the superior and inferior parietal
lobule. Table 6-2 contains information on enrichment-inducing pairs (i.e. parcel-
pairs that were both modulated by the task and link lobe pairs that were found

to be enriched).
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Figure 6-4: A graph representation of the enrichment analysis results

(A) Lobe distribution of connections that demonstrated significant AFC from "rest1" to "rest2".
Each node corresponds to a lobe in the analysis. An edge indicates significant over-representation
of the corresponding lobe pairs in the set of strengthened connections (red) and the set of weakened
connections (blue). Edge width reflects the enrichment factor (EF) of the identified connections.
(B) A scatter plot presenting the mean AFC across all parcel-pairs that were involved in the
identified enrichments against the (SR3-SR1) change in subjective stress rating. Each spot shows
the two values for one subject. A significant correlation is identified (r=0.32, p<0.02).

TABLE 6-1 — LOBE-BASED ENRICHMENT ANALYSIS RESULTS
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Results of lobe-based enrichment analysis of significantly strengthened
and weakened connections (p-value<=0.05, Bonferroni corrected). The
enrichment factor is the ratio between the fraction of pairs with the
specified lobe representation in the set of increased/decreased AFC
pairs, and that fraction in the set of all possible connections. R=right,
L=left.

Lobes AFC | #connections | Corrected % of Enrichment

p-value connections factor

Temporal L; 1 17 1.13E-08 9% 60.1
Temporal R; 1 7 2.46E-05 3.7% 20.2
Parietal R; 1 10 4.51E-07 5.3% 47.2
Frontal R; 1 12 6.94E-08 6.3% 28.3
Temporal L; l 30 5.76e-08 10% 8.88
Temporal R; l 27 6.04e-08 9% 7.83

TABLE 6-2 — ENRICHMENT-INDUCING PARCEL PAIRS:

A specification of all parcels-pairs that demonstrated differential rsFC
following stress, and link enriched lobe pairs. Rows are sorted
according to t-values.

Parcell | x y z Parcel2 | x y z p-value Fdr g ;[/alue

453 54| -9] -15]524_ -39 - | 54| 2.28E-07 | 0.007 -
93 _ -45 | -36 [ 54 [ 453_ 54| -9] -15] 4.86E-07 | 0.007 -
93 -45 ] -36 | 54 [ 188_ 63 - | -12 | 7.78E-07 | 0.007 -
196 _ 51 [ -24 | 54]258_ -60 | -9 | -24 | 9.79E-07 | 0.007 -
11 48 | -27 | 42 | 102_ -54 - 0] 1.55E-06 | 0.01 -
196 _ 51 [ -24 ] 54]399_ -60 - | -15| 3.13E-06 | 0.014 -
11 48 | -27 | 42 | 258 -60 | -9 | -24 | 3.24E-06 | 0.014 -
3_ 63 [ -12 ]| -21 ] 93 _ -45 | 54| 6.17E-06 | 0.015 -
102_ -54 | -33 0 | 508 54 - | 45| 7.02E-06 | 0.015 -
3_ 63 [ -12 | -21 | 549_ -60 | 30| 7.72E-06 | 0.016 -
158 _ -54 | -24 | -3[233_ 27 - | 66| 1.08E-05| 0.018 -
79 39 [-36] 45]102_ -54 - 0| 1.17E-05 | 0.018 -
158 _ -54 | -24 | -3[345_ 63 -| 18| 1.31E-05| 0.019 -
258 _ -60 | -9 -24 [508_ 54 - | 45| 1.49E-05| 0.019 -
151 -12 | -66 [ 57 [ 453 54| -9] -15] 1.56E-05 | 0.019 -
258 _ -60 | -9 -24[393_ 39 | 57| 1.90E-05| 0.02 -
37_ -42 | -36 | 42 | 453 54| -9]-15] 1.95E-05 | 0.02 -
399 -60 | -12 | -15 [ 508_ 54 | 451 2.09E-05| 0.02 -
3 63 | -12 | -21 | 180_ -54 - | 42| 2.10E-05| 0.02 -
102_ -54 | -33 0 [345_ 63 - | 18] 2.36E-05| 0.021 -




393 39| -39 | 57 ]399 -60 - | -15 ] 2.55E-05 | 0.022 | -4.59
102_ -54 | -33 0| 286_ 63 -] 30| 2.66E-05 | 0.022 3
192 54 -3 | -18 [ 508 54 - | 45 ] 3.05E-05 | 0.024 3
11 48 | -27 | 42 [ 158 -54 | -3 ] 3.18E-05| 0.024 3
102 -54 | -33 0]393 39 - | 57 ] 4.12E-05 | 0.028 3
11 48 | -27 | 42 ]341_ -54 3 6 | 4.63E-05| 0.028 3
140 -57 | -18 | -24 [ 196 51 | 54 ] 4.71E-05 | 0.028 3
3_ 63| -12 | -21 | 151 -12 - | 57 ] 4.87E-05 | 0.028 3
11 48 | -27 | 42 [ 399 -60 - | -15] 4.93E-05 | 0.028 3
151 -12 | -66 [ 57 [ 496 36 -] -21 ] 5.87E-05 | 0.031 3
265 -54 | -42 | 45 [ 453 541 -9] -15] 6.05E-05 | 0.031 3
79_ 39| -36 | 45| 258 -60 [ -9 ] -24 | 6.66E-05 | 0.033 | -4.31
158 -54 | -24 | -3[508 54 | 45] 6.67E-05| 0.033 | -4.31
498 63| -3]-18] 549 -60 -] 30 ] 6.76E-05 | 0.033 :
188 63| -18 | -12 | 219 -57 | -9 15| 8.51E-05 | 0.036 -
151 -12 | -66 [ 57 [ 326 27 -] -18 | 8.52E-05 | 0.036 3
192 54 -3|-18[196 51 | 54 ] 9.48E-05 | 0.037 -
180_ 54 [ -27 | 42 | 316_ 541 -3 ] -27 | 9.49E-05 | 0.037 3
93 -45 | -36 | 54 [ 316 54| -3 ] -27 | 9.89E-05 | 0.037 -
214 -30 [ -42 | 63 [ 264 63 3 3| 9.97E-05 [ 0.038 3
180 -54 | -27 | 42 | 453 541 -9] -15] 0.000102 | 0.038 -
56_ -57 | -60 9179 _ 39 | 451 0.000103 | 0.038 | -4.18
11 48 | -27 | 421192 -54 | -3 | -18 ] 0.000112 [ 0.039 )
3_ 63| -12 | -21 | 37_ -42 - | 42 ] 0.000124 0.04 3
318 _ -27 | -57 | 57 [ 453 541 -9] -15] 0.000128 | 0.041 )
93_ -45 [ -36 | 54 [ 498 63| -3 ] -18] 0.000132 | 0.041 :
79_ 39| -36 | 45| 325_ -51 6| -27 ] 0.000134 | 0.041 )
11 48 | -27 | 42 {145 -63 3 3| 0.000137 | 0.041 :
158 54 [ -24 | -3 (286 63 -] 30 ] 0.00015 ] 0.043 )
219 S57 1 -9 15([498 63| -3 ] -18 ] 0.000156 | 0.043 :
188 _ 63 | -18 | -12 | 549 -60 -] 30 ] 0.00017 ] 0.045 | -4.03
3_ 63 | -12 | -21 | 524 -39 - | 541 0.000173 | 0.045 3
303 _ -66 [ -39 [ -3[393_ 39 - | 571 0.000178 | 0.045 )
63_ -27 | -72 | 36 | 288 _ 54 9] -12 | 0.000191 | 0.047 3
102_ -54 | -33 0] 233_ 27 ~ | 66 0.0002 | 0.048 | -3.98
180 _ -54 | -27 | 42 {498 63| -3 ] -18 ] 0.000215 | 0.049 3
19 -21 | -78 | 42 [ 288 _ 54 91 -12 ] 0.000217 | 0.049 )
72_ -60 | -12 3242 6] -9 6 | 0.000228 0.05 | 3.941
45 12| -63 | 21 ]420_ 3 ) 9 | 0.000224 0.05 | 3.945
242 6] -9 6 | 550_ 63 -] 12 ] 0.000223 0.05 | 3.947
248 60 O 18 [420_ 3 ) 91 0.00021 [ 0.049 | 3.965
24 -6| -6 91204 _ 54 0| 45] 0.000204 | 0.048 [ 3.974
24 6] -6 91173 _ -66 } 9 1 0.000201 | 0.048 | 3.979
35 -3 -3 3]248_ 60 0] 18 0.0002 | 0.048 | 3.981
196 _ 51| -24 | 54242 6] -9 6 | 0.000183 | 0.046 [ 4.008
11 48 | -27 | 42 | 242_ 6] -9 6 | 0.000141 | 0.041 | 4.087
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242 6] -9 6| 345 63 | 18] 0.000138 | 0.041 [ 4.094
159 511 -30| 21]242 6 9 6 | 0.000127 | 0.041 { 4.117
158 54 | -24 | -3242_ 6 9 6 | 0.000123 0.04 | 4.129
24 6] -6 91196 _ 51 - | 541 0.000119 0.04 | 4.139
102 -54 | -33 0] 242 6 9 6 | 0.000107 | 0.038 | 4.169
35_ -3 -3 3152 51 9] 36| 0.000106 | 0.038 | 4.173
264 63 | -15 31420 3 3 9| 8.79E-05 [ 0.036 | 4.228
89 _ 54 | -33 0 ]420_ 3 3 9| 8.48E-05 [ 0.036 | 4.239
229 -48 | -30 9420 3 3 9| 8.48E-05 [ 0.036 | 4.239
28 _ 54 6| 33]|242_ 6 9 6 | 8.33E-05 | 0.035 [ 4.244
35 -3 -3 3] 508 54 | 45| 8.14E-05 | 0.035 | 4.251
242 6] -9 6 | 264 63 3 3| 7.93E-05 | 0.035 | 4.259
115_ 54 1 -15| 15 (242 6 9 6 | 6.62E-05 | 0.033 | 4.312
24 6| -6 91501 -45 | 21 ] 6.59E-05 | 0.033 | 4.314
103_ 54 1 -24| -3[242_ 6 9 6 | 5.72E-05 | 0.031 | 4.355
35_ -3 -3 3168 _ 63 6| 30| 5.50E-05 0.03 | 4.367
145 -63 | -27 31242 6 9 6 | 5.35E-05 0.03 | 4.375
152 511 -9] 36]|242_ 6 9 6 | 4.52E-05 | 0.028 | 4.424
24 6| -6 9172 -60 ) 3| 3.07E-05 | 0.024 | 4.536
242 6] -9 61321 63 3 0| 2.35E-05 | 0.021 | 4.613
102_ -54 | -33 01420 _ 3 ) 9 | 2.00E-05 0.02 4.66
24 6| -6 91152 51 91 36| 1.90E-05 0.02 | 4.674
24 6| -6 91145 -63 ) 3| 1.69E-05| 0.019 | 4.708
103 _ 541 -24 1 -3]420_ 3 3 9| 1.48E-05 | 0.019 | 4.746
24 6| -6 91102_ -54 i 0| 1.44E-05] 0.019 | 4.753
242 6] -9 6413 _ 60 3 6| 1.40E-05| 0.019 | 4.761
145 -63 | -27 31420 _ 3 . 9| 7.28E-06 | 0.015 | 4.946
24 6| -6 91229 -48 3 9| 6.74E-06 [ 0.015 | 4.967
72_ -60 | -12 31420 _ 3 . 9 | 6.09E-06 | 0.015 | 4.995
158 54 [ -24 | -3 (420 3 3 9| 5.82E-06 [ 0.015 | 5.008
24 6| -6 91158 -54 -] -3 | 5.51E-06 | 0.015 | 5.023
24 6| -6 68_ 63 6| 30| 5.17E-06 | 0.015 | 5.041
68_ 63| -6] 30]|242 6 9 6 | 4.05E-06 | 0.014 { 5.109
242 6] -9 6 | 508 _ 54 | 45| 3.84E-06 | 0.014 | 5.124
24 6] -6 9 1508 _ 54 | 45] 8.12E-06 | 0.014 | 5.181
24 -6| -6 91269 -60 | 21 ] 8.23E-07 | 0.007 | 5.546
242 6] -9 6 | 248 _ 60 0] 18] 2.27E-07 | 0.007 | 5.893

Relation between stress-induced rsFC changes and subjective stress

reports
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Examination of the relation between the mean AFC magnitude across all 103
enrichment-inducing pairs and the reported change in stress immediately after
induction (i.e. SR1 vs SR3) across all subjects, revealed a significant positive
correlation (Spearman r=0.32, p<0.02; Figure 6-4 B). When conducting the
same test separately for the 46 parcel-pairs involved in strengthened rsFC
enrichment (the “strengthened subset”, Table 6-1) and the 57 parcel-pairs
involved in weakened rsFC enrichment (the “weakened subset”), a significant
correlation was found for the strengthened subset (Spearman r=0.265, p<0.05),
but not for the weakened subset (Spearman r = -0.21, p=0.115). Nevertheless,
the mean ArsFC within the weakened subset was found to be significantly anti-
correlated with the mean ArsFC within the strengthened subset (Pearson r=-
0.47, p<0.0005). Notably, no association was found between the extent of AFC
across all 103 enrichment-inducing pairs and STAlI-trait or state measures

(p>0.45).

In order to identify functional connections for which the change induced by
stress was associated with affective stress sustainment, we used the SR4-SR1
stress-rating-based group partition (described above), and applied a two-
sample t-test on AFC values of enrichment-inducing parcel-pairs. No significant
inter-group difference was identified in AFC of any of the pairs separately (FDR
g>0.99). Additionally, there was no significant difference in the mean AFC
magnitude of all 103 enrichment-inducing pairs (p>0.6). Following this lack of
association, we conducted a similar two-sample t-test on the entire set of
106,953 parcel-pairs in the data. Once again, an FDR procedure was used to

correct for multiple hypothesis testing. Only one parcel pair demonstrated a
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significant inter-group difference in AFC between groups (with an FDR of 0.05).
Parcels of the identified pair were anatomically mapped to the right basolateral
amygdala (BLA) and to the precuneus, based on parcel spatial centers (x=6,

y=-54, z=48 and x=27, y=-3, z=-21 respectively) (Figure 6-5 B).

We further examined the relationship between this BLA-precuneus rsFC
modulation and the longer term change in subjective stress ratings (SR4-SR1)
across all subjects, and found a negative association between them (Spearman
r=-0.526, p<0.00005, Figure 6-5 C). Additionally, a repeated measures ANOVA
conducted on the corresponding Fisher-transformed rsFC values at both
conditions ("restl" and "rest2"), revealed an interaction between condition and
group [F(1,55)=32.6, p <0.001]. Finally, Tukey’s HSD post-hoc analyses
revealed that only the "sustained stress" group showed a significant BLA-
precuneus rsFC decline following stress ("rest2") as compared to "restl"
(p<0.001). The means and standard deviation (in parenthesis) of "restl" and
"rest2" were -0.12 (0.24) and -0.18 (0.23) respectively, for all subjects, -0.024
(0.23) and -0.289 (0.24) for the "sustained stress" group and -0.18 (0.22) and -

0.11 (0.2) for the “recovered stress” group. Results are shown in Figure6-5 D.
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Figure 6-5: Results of inter-group rsFC change comparison. (A) Group partition
marked on the distribution of change in subjective stress ratings. (B) A connection
between the right BLA and the precuneus that was identified in the inter-group AFC
analysis. (C) A scatter plot presenting the right amygdala - precuneus AFC against the
(SR4-SR1) change in subjective stress rating. Each spot shows the two values for one
subject and is colored by group assignment (green — “recovered stress”, purple —
“sustained stress”). A significant anti-correlation is identified (r=-0.562, p<0.00005) (D)
right BLA-precuneus rsFC patterns of "sustained stress" group (purple) and “recovered
stress” group (green). Bars indicate standard error. * p<0.001, ** p<0.0005

The change in rsFC between right BLA and precuneus was further found to be
significantly correlated with change in the high frequency component of HRV
across all 34 subjects for which a valid HR signal was extracted from both
restring-state scans (Spearman r=0.4, p<0.02). However, no association was
found between the extent of this change and STAI-trait or state measures

(p>0.5).

6.2.4 DISCUSSION — STUDY 1
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In this work we conducted a data-driven investigation of stress-induced rsFC
alterations and their correspondence to the subjective experience of stress,
among a cohort of 57 healthy male participants. In line with our hypothesis, our
analysis revealed a large-scale effect of rsFC modulations following acute
social stress induction. Pinpointing the most significantly prevalent rsFC
modulations, our enrichment analysis unraveled a pattern of decreased cross-
hemispheral temporo-parietal connectivity along with increased thalamo-
cortical (frontal, temporal and parietal lobes) connectivity. Importantly, as we
predicted, these patterns of change in connectivity strength were associated
with the change in subjective stress reports across subjects. Specifically a
larger mean increase in reported stress immediately after the task was
associated with a larger absolute rsFC change across all parcel-pairs forming

both the strengthened and the weakened enriched connectivity alterations.

Network reorganization following acute stress

Our work extends previous studies investigating post-stress rsFC modulations
in a hypothesis-driven manner (Van Marle, Hermans et al. 2010, Veer, Oei et
al. 2011, Vaisvaser, Lin et al. 2013), by providing a broader unbiased picture.
Identifying the thalamus as a central node of stress-induced rsFC increase is
consistent with its known role in arousal regulation (Schiff 2008) and in
mediating the interaction of attention and arousal in humans humans (Portas,
Rees et al. 1998). Notably, the thalamus was found to be involved in post-stress
rsFC alteration in our previous seed-based study, increasing its connectivity
with the PCC (Vaisvaser et al., 2013). Increased rsFC of the thalamus with
several cortical regions including the Insula and IPL was also reported following

fearful in comparison to neutral movies (Eryilmaz, Van De Ville et al. 2011).
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In addition, a larger increase in thalamo-cortical rsFC was associated with a
larger decrease in temporo-parietal rsFC, suggesting that both patterns are part
of a joint mechanism of dominance-shift induced by acute stress. The identified
pattern of stress-induced rsFC weakening involved regions of the inferior,
middle and superior temporal gyri along with regions of the pre- and post-
central gyri and the superior and inferior parietal lobule. Most of these regions
were reported to exhibit reduced BOLD activation in a within-subject analysis
comparing high-stress task to a control task using a similar experimental
paradigm (Wang, Rao et al. 2005) and have been repeatedly reported to
increase activity in attention-driven goal-directed tasks (Hopfinger, Buonocore
et al. 2000, Culham and Kanwisher 2001, Behrmann, Geng et al. 2004, Culham
and Valyear 2006, Raz and Buhle 2006).
These findings are in overall agreement with the recently suggested model by
which exposure to acute stress prompts a reallocation of resources to a
salience network, involving several subcortical regions including the thalamus,
and several cortical regions in the frontal , temporal and parietal lobes, at the
cost of an executive control network , involving dorsal frontal areas and

dorsal posterior parietal areas (Hermans, Henckens et al. 2014).

Post-stress rsFC modulations associated with inter-individual differences
in subjective recovery

In addition to the above large-scale pattern of rsFC alterations, which were
evident across subjects, we were interested in neural modulations that underlie
inter-individual differences in the sustainment versus recovery of the stress
experience. We identified a single modulation of rsFC between the right BLA

and the precuneus that differed between individuals with self-reported
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“sustained stress” and individuals with “recovered stress”. Importantly, this
single statistically significant rsFC modulation was identified out of over 100,000
possible parcel-pairs without making any a-priori assumptions. This modulation
was further associated with change in heart rate variability (HRV ) measure
from the first to the second resting state session. HRV is an established
measure of regulated emotional responding, and has been used for this
purpose in multiple studies (reviewed in (Appelhans 2006)). The physiological
basis of this measure is that high-frequency (0.15 to 0.4 Hz) component of the
power spectrum of heart rate variability (HF-HR) is considered to represent an
autonomic parasympathetic vagal influence on the sino-atrial node of the heart
(Malik, Bigger et al. 1996). The BLA had been acknowledged as an important
locus for integrating the various hormonal and neurotransmitter systems that
are involved in consolidation following exposure to acute stress (Roozendaal,
McEwen et al. 2009). Moreover, previous evidence points to casual
involvement of the right amygdala in generation of the subjective experience of
fear and mark it as a potential therapeutic target in anxiety disorder (Fredrikson
and Furmark 2003). The precuneus is a node of the DMN known to play a
central role in a wide range of complex tasks, including self-referential
processing and an experience of agency (Cavanna and Trimble 2006).
Abnormal precuneus activity and connectivity patterns have been previously
reported in PTSD patients (Bluhm, Williamson et al. 2009, Lanius, Bluhm et al.
2010, Patel, Spreng et al. 2012, Sartory, Cwik et al. 2013, Yan, Brown et al.
2013). Importantly, spontaneous BOLD activity in the BLA has been shown to
be negatively associated with the activity in the posterior cingulate cortex and

precuneus in healthy subjects (Roy, Shehzad et al. 2009, Zhang and Li 2012),
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and abnormal patterns of precuneus-BLA rsFC have been previously reported
in anxiety disorders (Bluhm, Williamson et al. 2009, Liao, Qiu et al. 2010,
Pannekoek, Veer et al. 2013). In the current study we found a stress-induced
enhancement of the BLA-precuneus anti-correlation in "rest2" as compared to
"restl” only in individuals who reported a sustained stress experience, i.e., the
"sustained stress" group. Furthermore, when accounting for inter-individual
differences, we found that the extent of this single modulation predicted the
level of affective recovery reported 20 minutes later across all subjects,
suggesting that it may underlie the individual tendency and dynamics of

subjective stress recovery.

In conclusion, using our robust data-driven approach we were able to
characterize stress-induced large-scale rsFC modulations, that were further
associated with subjective experience. In addition, our group-based analysis
pinpointed stress-induced rsFC change between right BLA and precuneus as
a neural predictor of affective recovery. This specific connection may serve as

a potential biomarker and target for future treatment in stress-related disorders.

6.3 CASE STUDY 2: CHARACTERIZING CHANGES IN RESTING-STATE
NETWORKS FOLLOWING AN ANGER INDUCING SOCIAL INTERACTION

6.3.1 SPECIFIC BACKGROUND

Anger is regarded as one of the most prototypical of all emotions (Fehr and
Russell 1984, Scherer and Tannenbaum 1986, Shaver, Schwartz et al. 1987),
and is reported by healthy people to be experienced on a daily basis (Averill
1983, Kassinove, Sukhodolsky et al. 1997). It may be caused by a wide variety
of triggers, and though it has negative consequences on health and well-being,

it has a central role in motivating to take action and approach rather than avoid
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a confrontation. Although anger is considered to be a survival response
inherent in all living creatures, humans are normally equipped with the mental
ability to control and regulate their anger, and adapt it to socially accepted
norms. Anger is thus a complex multidimensional construct that poses
theoretical and operational difficulties in defining it as a single psycho-biological

phenomenon.

Previous neuroimaging studies investigated anger-related patterns of neural
activity, under a few types of anger-inducing paradigms. These include
depicting angry faces as static stimuli (Blair, Morris et al. 1999, Kesler,
Andersen et al. 2001, Whalen, Shin et al. 2001), self-generation of anger by
recollecting personal autobiographic angry experiences (Dougherty, Shin et al.
1999, Kimbrell, George et al. 1999, Damasio, Grabowski et al. 2000,
Fabiansson, Denson et al. 2012), and generating an interpersonal situation that
evokes an angry experience within the fMRI setting (Denson, Pedersen et al.
2009, Gilam, Lin et al. 2015). Of these, the latter approach accounts for the
ecological and naturalistic dynamics of anger that are typically rooted in social
interactions. An example to such an ecological approach is the Ultimatum
Game (UG) (Guth, Schmittberger et al. 1982), which has been regarded as an
interpersonal induction of angry experience (Guth, Schmittberger et al. 1982,
Ochsner, Bunge et al. 2002, Etkin, Egner et al. 2006, Banks, Eddy et al. 2007,
Srivastava, Espinoza et al. 2009). In the UG, a proposer offers to split a sum
of money, between himself and a responder who in turn decides whether to
accept or reject the offer. If he accepts, both players receive the designated
sum of money but if he rejects, both receive nothing. Replicated by countless

studies, people tend to reject offers of 25% and below of the total sum (Camerer
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2003). The common explanation is that these are unfair offers that elicit anger,
which results in a rejection and thus no money is gained (Pillutla and Murnighan
1996, Van't Wout, Kahn et al. 2006, Rotemberg 2008, Andrade and Ariely
2009). Several studies using the UG point to emotion regulation (ER) as the
capability which enabled participants to overcome the anger evoked by the
unfair offers and decide to accept them after all in order to increase monetary
reward (Kirk, Carnevale et al. 2006, Koenigs and Tranel 2007, Kirk, Downar et
al. 2011, Grecucci, Giorgetta et al. 2013). Thus it reasonable to assume that a
participant who gains more money in a UG has employed some form of ER
strategy which enabled to down-regulate the anger and accept more unfair

offers, compared to a participant who gained less money.

A few neuroimaging studies investigated neural activation patterns induced
over the course of UG. These identified the involvement of the insula,
dorsolateral PFC (DPLFC), ACC, superior temporal sulcus (STS) and inferior-
frontal gyrus (IFG) when people are confronted with unfair offers (Sanfey,
Rilling et al. 2003, Kirk, Downar et al. 2011, Feng, Luo et al. 2015). However,
patterns of functional connectivity induced by UG have not yet been explored.
In addition, all these studies investigated data recorded during course of UG.
The sustained neural effect of UG in subsequent resting-state is still
unexplored.

In this project we examined the effect of UG on subsequent resting state rsFC
patterns, with respect to behavioral measures of gain and reported levels of
anger. We expected to find alterations in rsFC patterns that would be

associated with behavioral measures.
6.3.2 SPECIFIC MATERIALS AND METHODS
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Participants

We used fMRI data collected at our lab, on a cohort of 60 healthy male
participants (age 18-20). Participants had no reported history of psychiatric or
neurological disorders, no current use of psychoactive drugs, no family history
of major psychiatric disorders, and no previous exposure to abuse during
childhood and/or potentially traumatic events before entering the study. In
addition, all participants had normal or corrected-to-normal vision and provided
written informed consent approved by Tel Aviv Sourasky Medical Center Ethics
Committee and conformed to the Code of Ethics of the World Medical
Association (Helsinki Declaration). Of the 60, 9 individuals were excluded from
the current analysis due to signal artifacts and additional 7 were removed due
to excessive head movements; therefore the final study group consisted of 44

participants.

Experimental procedure

Each participant underwent two 6 min. resting state scans ("restl”, and “rest2”
respectively), interleaved by 10 rounds of anger-inducing task (10 minutes).
Anger was induced using a modified version of the Ultimatum game (UG), fully
described in (Gilam, Lin et al. 2015). Briefly, participants underwent 10 rounds,
which included a money partition offer, a participant decision, a display of the
resulting sums and a 30 seconds negotiation between the participant and a
putative participant who is in fact a professional actor trained with scripted
improvisations to further intensify the negative emotional experience. The
experimental timeline is shown in Figure 6-6. During the rest conditions

participants were instructed to keep their eyes open and stare at a fixation point.
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| Rest1 | Round 1 | Round 2 |- ------- | Round 10 | Rest2

R G

12 sec 6 sec 6 sec 6 sec 30 sec

Fixation Offer Decision Result Negotiation

Figure 6-6: Experimental procedure of case study 2: Two sessions of 6 min. resting-state
fMRI were recorded before and after 10 rounds of ultimatum game performed in the scanner,
which included staring at a fixation cross, an offer made by the actor, a decision made by the
participant, a display of the resulting partition and a negotiation period.

Behavioral measures

Subjective emotional reports were obtained using the Geneva Emotion Wheel

(Gilam, Lin et al. 2015) (GEW) scheme. The GEW presents 16 types of emotion
arranged in a circular pattern based on two axes, control (high/low coping
potential) and valence (positive/negative): Pride, Elation, Happiness,
Satisfaction, Relief, Hope, Interest, Surprise, Anxiety, Sadness, Boredom,
Shame/Guilt, Disgust, Contempt, Hostility and Anger. The GEW has been
shown to be a valid instrument to measure emotions within a decision making
context. In our adapted-GEW (aGEW), participants were instructed to rate each
emotion on a 7-point intensity scale from 0 (zero) to 6 (very high). In addition,
the aGEW is an iterated version in which participants have a specific emotional
wheel for each offer, result and negotiation periods of the game, thus reaching
30 wheels (3 wheels for each of the 10 UG-rounds). The participants were
instructed to rate these wheels consecutively and dynamically, with each wheel
being referenced to the emotion ratings of the previous wheel. This allows both
the participant and the researchers a complex overview of all the emotions, with

each their own intensity value, experienced in each period of the mUG.

75



State-Trait Anxiety Inventory (STAI) described in section 4.2 was administered

at the beginning of the experiment.

fMRI data acquisition information

fMRI was acquired with standard gradient-echo echo-planar imaging (GE-EPI)
sequence of T2*-weighted images (TR/TE/flip angle: 3,000/35/90; FOV: 20 * 20
cml; matrix size: 96*96) divided into 39 axial slices (thickness: 3 mm; gap: O
mm) covering the whole cerebrum. Each scanning session also includes high-
resolution anatomical imaging which was acquired by a 3D spoiled gradient
echo (SPGR) sequence with high-resolution 1mm slice thickness (FOV: 25*18;

matrix: 256*256; TR/TE:7.3/3.3 ms).

fMRI preprocessing and parcellation

Preprocessing and parcellation procedures are identical to the ones described

in chapter 6.2.2 .

Parcel-based univariate global functional connectivity analysis

To assess evidence for experimental effects we applied the same univariate
analysis approach described in section 6.2, in which a model is fitted
independently to each connection. In addition, we conducted global FC analysis
in which for each parcel, the sum of functional connections with all other parcels
was computed. This procedure was performed also for positive and negative
FCs separately. We next calculated the change in these overall rsFC values for
each subject and parcel by subtracting global FC level estimates of "rest1" from
the corresponding estimates in "rest2", resulting in three rsFC change values
(denoted ArsFC, ArsFCs and ArsFC") for each parcel and for each subject. To

identify parcels that demonstrated significant change in overall rsFC following
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UG, we applied a one-sample t-test on the ArsFC values of each parcel across

all subjects.

The procedure is described in Figure 6-7.

parcels
Sum over L) X'
. ] (]
negatives and £ g Set of differentially
fMRI rest1 X positive FCs = 2 connected parcels
& Group level
N Fi ’5"'9’ Rest 1 Positive Rest 1 negative ‘t‘“’“’“’lte‘t
Rest1FC transformatlon FCsum FCsum
Multlple hypothesis
parcels correct:an
Sum over 2 2
negatives and % £
fMRI rest2 positive FCs e o
Rest 2 FC Rest 2 Positive Rest2 negative
FCsum FCsum

Figure 6-7: An illustration of the global rsFC analysis steps: Following
parcellation, cross-correlation matrices were calculated for each subject and resting-state
session. A paired t-test was applied separately on the sum of all positive rsFC values and of
the sum of all negative rsFC values to identify parcels for which rsFC changed significantly.
An FDR procedure was used to correct for multiple testing.

6.3.3 RESULTS

Though it is not part of the findings of the current study, it should be noted that
during UG, unfair offers were associated with increased levels of reported
anger, and with a decrease in positive emotions compared to fair offers. Notably
this association increased in the second half of the game, in which even fair
offers seemed to have become more irritating, pointing at the effect of the
anger-infused social dynamics both in subjective reports and skin conductance

measure (Gilam, Lin et al. 2015).
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STAIl-trait measures were associated with both reported anger and gain
achieved in subsequent UG task. Specifically, a positive correlation was found
between STAI-trait and achieved gain (Spearman r=0.35, p=0.019) and a
negative correlation was found between STAlI-trait and reported anger

(Spearman r=-0.33, p=0.027).

rsFC alterations following anger-inducing ultimatum game
In order to identify anger-induced rsFC changes we conducted a univariate
statistical analysis on the Fisher-transformed cross-correlation matrices. This
was done by subtracting the “rest1” matrix from the “rest2” matrix, and then
applying a one-sample t-test on the resulting AFC values of each parcel pair.
This analysis did not reveal any significant rsFC change (FDR g>0.5). We next
conducted a global functional connectivity analysis, by calculating, for each
parcel, the sum of functional connections with all other parcels. This was
repeated also for positive and negative FCs separately. We then applied a one-
sample t-test on the resulting ArsFC, ArsFC* and ArsFC- values of each parcel.
This analysis revealed a single parcel centered in the right amygdala (18,-3,-
18) for which positive rsFC significantly increased following the task (FDR
0<0.05, t=4.34). We next repeated the rsFC univariate analysis focusing only
on functional connections that involve this specific parcel. This analysis
revealed a single connection with the right inferior frontal gyrus (rIFG) (28,18, -
18), which was significantly strengthened following the task (FDR g< 0.05,

t=4.29). This connection is shown in Figure 6-8 C.
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Figure 6-8: rsFC changes identified flowing UG: A parcel centered in the right amygdala (shown in
A) demonstrated a significant increase in overall positive rsFC following UG (level of increase is
shown in B). When examining rsFC change involving that parcel only, a significant increase was
identified with a single parcel centered in the right IFG (Connection is shown in C). The extent of
identified change is shown in D.

Relation between identified rsFC change and behavioral measures

Examination of the relation between the identified rsFC change and our
behavioral measures, namely: reported anger, gain achieved in the game and
trait-anxiety, revealed a significant positive correlation between the
aforementioned rAmy-rIFG rsFC change and STAI-trait measure, estimated at
the beginning of the experiment (Spearman r=0.48, p=0.0015). However, no

association was found between reported anger or gain and Amy-rIGF rsFC

79



(p>0.5) nor was there an association between these measures and overall
change in rAmy rsFC (p>0.3).

We further examined the relation between rsFC values during rest 1 and rest 2
and the same behavioral measures and found a significant association between
overall rsFC of the rAmy-centered parcel during “rest1” and reported anger level
(Spearman r=-0.33,p<0.03; Figure 6-9 A), as well as with gain (Spearman
r=0.353,p<0.02; Figure 6-9 B). Notably, a non-significant anti-correlation was

found between reported anger, and gain achieved in UG (Spearman r=-0.27,

p>0.07).
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Figure 6-9: Scatter plots presenting the reported level of anger following UG (A) and the
gain achieved during the game (B) against overall positive rsFC (denoted as gFC) of parcel
363 centered in the right amygdala during restl. Each spot shows the two values for one
subject. A significant anti-correlation is identified with reported anger (Spearman r=-0.33,

p<0.03), while a significant correlation is identified with gain (Spearman r=0.353,p<0.02)

6.3.4 DISCUSSION- STUDY 2

As we hypothesized, UG induced a change in patterns of rsFC in subsequent
resting-state. However, rather than a large-scale effect, our analysis in this case
revealed a specific increase in rsFC of the right amygdala, which was mostly
driven by an increase in rsFC with the right IFG. The right IFG has been
acknowledged for its central involvement in response inhibition (Aron, Robbins
et al. 2004, Aron, Robbins et al. 2014), and was reported to exhibit anti-
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correlated activity with the amygdala during an emotion-regulation task.
Furthermore the extent of this anti-correlation was reported as one of a few
variables, explaining inter-individual variance in inhibition of emotional
response (Depue, Orr et al. 2015). Interestingly, in the current study we
identified an increased positive correlation between these regions in post-task
resting state, rather than an anti-correlation. However, positive correlation has
been demonstrated before between the amygdala and several frontal regions
including dorsolateral, dorsal medial, anterior cingulate and orbital during
emotion-regulation tasks (Banks, Eddy et al. 2007). Notably, in the current study
the extent of rAmy-rIFG change positively correlated with anxiety tendency
measured at the beginning of the experiment by STAI-trait questionnaire. STAI-
trait measure was also positively correlated with gain and negatively correlated
with reported anger, indicating that individuals with a higher trait anxiety gained
more in the game and experienced less anger during UG task, after which they
showed a higher increase in rsFC between the right amygdala and the right
IFG. These results support the hypothesis that the increased FC in right

amygdala — right IFG is part of an anger regulation mechanism.

In contrast to previous literature on the involvement of amygdala-riIFG FC in
emotion-regulation, in this case, findings were obtained on rsfMRI data and
without making any a priori decisions on seed ROIs. To the best of our
knowledge, this is the first attempt to investigate changes in rsFC following
induction of anger. Thus our findings extend previous literature by indicating
that the neural effect of UG task is sustained in subsequent rsFC patterns.
Notably, the overall functional connectivity level of amygdala before the task

(but not its connectivity with right IFG), was associated with the gain achieved
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during the task as well as the levels of reported anger, supporting the claim that
information on individual tendencies of emotion-processing and regulation

exists in baseline coactivation patterns of rsfMRI.

6.4 JOINT DISCUSSION

In this chapter we presented the analysis of alterations in rsFC patterns induced
by two different types of psychological challenges that involve social
interactions: acute-social stress (TSST) and inter-personal conflict that is
known to provoke anger (UG). Notably, in both studies data was recorded from
healthy young male participants. The number of participants was similar in the
two studies. In addition, analysis steps (namely preprocessing steps,
parcellation and rsFC analysis) were very similar between studies. In spite of
this similarity, there was a substantial difference in the rsFC effect that was
identified in each experiment. While acute stress induced a large-scale
distributed effect, a very specific small-scale effect was identified following

anger-provoking UG.

In both cases connectivity patterns of the right amygdala were associated with
individual differences in subjective experience induced by the task. However,
while in the case of UG, its overall rsFC at baseline was associated with elicited
anger following the task, in the case of acute social stress the decrease in its
rsFC with the precuneus was associated with the sustainment of stress 20 min

post induction.

Interestingly, in study 2, anxious individuals demonstrated a more regulated

behavioral as well as neural response to UG. This is in line with neural findings
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showing opposed neuroendocrine responses in stress vs. anger (Moons,
Eisenberger et al. 2010) as well as studies showing opposite patterns of frontal
alpha asymmetry in approach vs. avoidance emotional response (Heller 1993,
Davidson 2004, Harmon-Jones, Gable et al. 2010, Quaedflieg, Meyer et al.

2015).

While the current chapter deals with emotional challenges that are introduced
by a psychological load generated via social interactions, the following chapter
deals with the emotional challenge that is introduced by a physiological

challenge (sleep deprivation), which is known to induce allostatic load.

7 s CHARACTERIZING CHANGES IN RESTING-STATE NETWORKS
FOLLOWING A PHYSIOLOGICAL PERTURBATION

7.1 BACKGROUND
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The state of sleep deprivation (SD) has consistently been associated with
subjective reports of negative emotions and emotional difficulty (Horne 1985,
Zohar, Tzischinsky et al. 2005, Goldstein and Walker 2014), as well as with
difficulty to process, express and regulate emotions. Studies assessing
objective physiological and neural measures of affect have provided additional
verification of, and explanatory mechanisms for, emotional dysregulation

following sleep deprivation (Gujar, Yoo et al. 2011, Goldstein and Walker 2014)

Previous fMRI studies reported that SD also disrupts task-induced deactivation
within the DMN (Gujar, Yoo et al. 2010, De Havas, Parimal et al. 2012). These
findings suggest that SD has a significant effect on the intrinsic functional
organization of the brain, an effect that should be detected when examining
rsFC patterns. Indeed, several previous studies examined rsFC alterations
induced by SD. These mainly focused on the DMN and its anti-correlation with
the attention and control networks (Samann, Tully et al. 2010, De Havas,
Parimal et al. 2012). Other studies reported increased FC within
dorsal prefrontal cortex (Bosch, Rihm et al. 2013) and decreased
thalamocortical FC (Shao, Wang et al. 2013) following SD. Notably, all the
above studies used a hypothesis driven approach and did not find any
association with behavioural measures. In a recent study, Yeo et al. conducted
a data-driven rsFC analysis of 68 healthy subjects that underwent SD and
reported a predictive association between baseline levels of anti-correlation
between the DMN and attention networks and task performance under SD
(Yeo, Tandi et al. 2015). However, none of the above studies reported an
association between SD induced rsFC modulations and affect-related

behavioral measures.
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In an attempt to expand our understanding on the SD-induced rsFC modulation
that underlie subsequent emotional dysregulation, we used both univariate and
multivariate analysis approach to investigate fMRI data recorded from 17
healthy subjects during normal rest and in a state of sleep deprivation (after a

night without sleep).

We hypothesized that SD would significantly impact connectivity patterns in the
human brain and that these changes would be associated with affective

impairments known to occur without sleep.

7.2 SPECIFIC MATERIALS AND METHODS

7.2.1 Participants

17 adults (age range: 23-33 years, mean 26.9 + 3 years; 10 females) completed
a repeated measures crossover design. Participants were healthy with no prior
history of sleep, neurologic or psychiatric disorders (assessed using a pre-
screening questionnaire). Recent use of psycho-stimulants (e.g. Ritalin),
psychiatric or hypnotic drugs also excluded subjects from participation in the
study. The study was approved by the Tel-Aviv Sourasky Medical Center ethical

review board and all participants provided written informed consent.

7.2.2 Experimental procedure

Each participant underwent two experimental sessions under two rest
conditions, a sleep deprived (SD) condition, which took place after a night
without sleep, and a sleep-rested (SR) condition, which took place after a night
of normal sleep. In each experimental session a resting state scan was
acquired prior to task performance for a total time of 6:50 minutes. Subjects
were instructed to stay awake and keep their eyes open in front of a fixation
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cross. To verify wakefulness, subjects’ eyes were continuously monitored via a
dedicated camera during the entire scan. As reported in (Simon, Oren et al.
2015) cognitive and behavioral changes following SD were monitored across

both experimental sessions.

7.2.3 Behavioral measures

Psychomotor Vigilance Task (PVT) (Drummond, Bischoff-Grethe et al. 2005)

was used to assess changes in cognitive performance. A 10-minutes version
of the PVT, adopted from the PEBL task library (Mueller and Piper 2014) was
performed every two hours during the SD night (from 23:00 until 7:00 am) as
well as in the morning of the sleep-rested session (~8:00 am).

Positive and Neqative Affective Scale (PANAS) (Watson 1988) and the visual

analogue scale (VAS) were used to track mood changes. The PANAS consists

of two 10-item questionnaires assessing either positive or negative mood.
PANAS was administered every 4 hours across the SD night as well as upon
arrival at the sleep-rested session. Participants were asked to rate each item
on a scale ranging from 1 to 5.

In addition to the PANAS questionnaires, participant were asked to rate their
mood ranging from terrible to excellent on a 10cm visual analogue scale (VAS).

STAl-trait questionnaire described in section 4.2 was administered at the

beginning of the experiment to evaluate individual differences in anxiety

proneness.

7.2.4 fMRI acquisition information
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Functional whole-brain scans were performed in interleaved order with a T2*-
weighted gradient echo planar imaging pulse sequence (time repetition [TR]/TE
= [2,500-3,000]/35 ms, flip angle=90°, FOV = 200x200 mm, slice thickness = 4
mm, 32-39 slices per volume). Structural scans included a T1-weighted 3D axial
spoiled gradient echo (SPGR) pulse sequence (TR/TE = 7.92/2.98 ms, flip

angle = 15°, pixel size = 1 mm, FOV = 256x256 mm, slice thickness = 1 mm).

7.2.5 fMRI preprocessing and parcellation

fMRI preprocessing and parcellation procedures are described in section 4.1.3.
Notably, in the current study, the low-resolution 200 parcels template was
selected order to compensate for low sample size. As explained in section
4.1.3, parcels were masked to include gray matter voxels only using the WFU
Pick Atlas Tool (Maldjian, Laurienti et al. 2003, Stamatakis, Adapa et al. 2010)
and parcels that had less than 5 voxels in common with the gray matter mask
were excluded, leaving 182 parcels. In order to reduce the effect of
physiological artifacts and nuisance variables, the whole-brain mean signal, six
motion parameters, cerebrospinal fluid, and white matter signals were

regressed out of these parcel signals.

7.2.6 Parcel-based univariate functional connectivity analysis

Level of rsFC of each pair of parcels was estimated by calculating the Pearson
correlation coefficients between the signals of the corresponding parcels. This
was done for each subject and each rest condition separately. rsFC levels were
next Fisher transformed to better fit a normal distribution. Baseline FC level

estimates were then subtracted from the corresponding estimates in the SD
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condition, resulting in a single FC change value (denoted AFC) for each parcel-

pair and for each subject.

To identify parcels-pairs that demonstrated significant rsFC change following
SD, we applied a one-sample t-test on the AFC values of each pair across all

subjects.

To identify parcels that demonstrated significant overall rsFC change following
SD, we calculated, for each parcel, the sum of AFC values with all other parcels,

and applied a one-sample t-test on this sum across all subjects.

7.2.7 Parcel-based multivariate functional connectivity analysis

State-prediction using leave-one-out cross-validation analysis

In order to further examine the overall effect of SD on rsFC, we applied a leave-
one-out cross validation (LOOCV) analysis on the data in the following
manner: for each subject s, we calculated the Euclidian distance between
subject—specific SR and SD rsFC values and the group average rsFC values
(where subject s is excluded), across the k top ranking features (i.e. parcel
pairs). Features were ranked according to the difference in group-level values
between the two states (subject s excluded). Analysis was performed with k=1
to 500. Each subject-specific scan was assigned a state (SR or SD) based on
the closest group-level rsFC data. Accuracy levels were defined as the number
of correct assignments divided by the number of scans. Sensitivity was defined
as the fraction of correctly assigned SD scans, while specificity was defined as
the fraction of correctly assigned SR scans.

For each subject s, a success function was defined as follows:
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7-1)

0 if dist(FCBS,FCBS) > dist(FCBS, FCBS) A dist(FCSP, FCSP) > dist(FCSP, FCBS) A
Success(s) =42 if dist(FCBS, FCBS) <A dist(FCBS, FCBS) A dist(FCSP, FCSP) <A dist(FCSP, FCBY)
1 otherwise

Total accuracy level (acc) was defined as:

7-2)

acc = Y55 Success(s)

The significance of success levels was evaluated using the binomial

cumulative distribution function, with p=0.5, n=2*subs:
7-3)

placc =2 k) =YL, (Yll) 0.5™

Examining SD induced changes in graph modular organization

Group level rsFC matrices were constructed by averaging state-specific rsFC
matrices across subjects. State-specific modularity structures were evaluated
separately for SR and for SD by applying the weight-conserving Louvain
modularity algorithm (Rubinov and Sporns 2011) on the group-level rsFC
matrices. Due to some randomized steps in the algorithm implementation, this
step was repeated 100 times for each graph, and the results were merged
using the BCT implementation of the algorithm for detection of consensus
clustering in complex networks as described in (Lancichinetti and Fortunato

2012).

SR modules were compared with SD modules using the Jaccard overlap

score. The Jaccard score is given by:
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7-4) jac(my,my) =
Where mi stands for module I, and pi stands for the set of parcels that

constitute module i.

Modules were characterized by analysis of enrichment with seven predefined
functional brain networks reported in (Yeo, Krienen et al. 2011). This analysis

was conducted using the RichMind toolbox (http://acgt.cs.tau.ac.il/RichMind)

described in 5.2.

7.3 RESULTS

Although it is not part of the current study, it should be noted that as expected,
SD induced a significant elevation in negative mood (M=1.3+0.28 to
M=1.59+0.56; p<0.05), reduction in positive mood (M=2.86+0.65 to
M=2.01+0.85; p< 0.0005) and in overall mood assessment via VAS
(M=8.1+£1.14 to M=5.7+2.37; p< 0.005), and reduction in task performance

(M=2.94+2.49 to M=10.06+6.86; p<0.0005) (Simon, Oren et al. 2015).

7.3.1 rsFC alterations identified following sleep deprivation

In order to identify SD-induced rsFC changes we conducted a univariate
statistical analysis on the Fisher-transformed cross-correlation matrices. This
was done by subtracting the SR matrix from the SD matrix, and then applying
a one-sample t-test on the resulting AFC values of each parcel pair. In this
pairwise analysis, when correcting for all possible parcel-pairs no significant

rsFC change was identified.
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We next calculated a sum of AFC values for each parcel p, and applied a one-
sample t—test to evaluate the level of change in overall parcel FC. This analysis
revealed two parcels demonstrating significant change in overall rsFC. Parcel
165, centered in (-57,9,18) and mapped to the left frontal inferior operculum,
and parcel 148, centered in (0,-6,6) and mapped to the thalamus. Results are

presented in Table 7-1

TABLE 7-1— RESULTS OF UNIVARIATE OVERALL RSFC ANALYSIS

Parcel MNI AAL position t-value p-value | FDR g-value
center
165 -57,9,18 Front_Inf_Oprc_L 5.77 2.8e-5 0.0052
148 0,-6,6 Thalamus_L -4.667 2.6e-4 0.0314

We next performed the pairwise rsFC univariate analysis while considering only
rsFC changes involving the above two parcels (i.e. treating these two parcels
as seed-parcels), and correcting only for 2*n comparisons (n = 182; number of
parcels). This resulted in 28 parcel-pairs demonstrating significant change in
rsFC. Results are specified in Table 7-2 and shown in Figure 7-1 A and B. When
examining the relationship between these two patterns of thalamus rsFC
decrease and left operculum rsFC increase (Figure 7-1 C), we detected a
marginally significant anti-correlation between them (r=-0.41, p=0.051 one

tailed) .

TABLE 7-2— RESULTS OF PAIRWISE UNIVARIATE RSFC ANALYSIS SEEDED IN
PARCELS 165 AND 148

Parcel FDR g-

AAL positions value p-value t-value | MNI center

Significant AFC change with parcel 165

19 | Calcarine_L 0.0441 0.0022 3.65 | -48,-72,9
53 | Frontal_Inf_Orb_R 0.0441 0.001 4.01 | 48, -72,12
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71 | Frontal_Inf_Orb_R 0.0446 0.0032 346 1-9,-69, 21
91 [ Frontal_Sup_Medial_L 0.0446 0.0032 3.46 [ 45,30, -12
139 | Frontal_Sup_Medial_R 0.0441 0.0018 3.73 | 27,24 ,-15
186 | Frontal_Sup_Medial_R 0.0475 0.0037 34]10,51,27
193 | Frontal_Sup_Medial_R 0.0441 0.0009 4.09112,63,9
112 | Insula_L 0.0441 0.0018 3.73 112,45 ,45
105 | Lingual_R 0.0446 0.0032 3.47 112,57, 30
97 | Occipital_Mid_L 0.0441 0.0012 3.94|-30,12,-18
115 | Precentral R 0.0441 0.0007 4,19 | 15,-57,3
58 | Precuneus_L 0.0446 0.0031 3.48 | -36, -84, 27
2 | Temporal_Mid_L 0.0441 0.0022 3.65]45,0,48
150 | Temporal_Mid_L 0.0446 0.0027 355|0,-54,15
85 | Temporal_Mid_R 0.0446 0.0029 351|-51,-63,21
Significant AFC change with parcel 148
5 | Cingulum_Ant_L 0.0441 0.002 -3.71-6,45,6
160 | Cingulum_Ant_L 0.0446 0.0031 -34810,21,-9
22 | Cingulum_Ant_R 0.0441 0.0013 -3.8816,42,6
109 | Frontal_Med_Orb_L 0.0441 0.0017 -3.76 | 0,57,-9
127 | Frontal_Mid_R 0.0441 0.0019 -3.72 130, 18,51
104 | Frontal_Sup_Medial_L 0.028 0.0001| -5.26]-9,63,12
139 | Frontal_Sup_Medial R 0.0441 0.0003| -452[12,63,9
189 | Fusiform_L 0.0446 0.0033 -3.45 | -27,-51,-12
3 | Precuneus_R 0.0441 0.0009 -40819,-66, 24
173 | Supp_Motor_Area_L 0.0441 0002 -3.68]-9,18,60
43 | Temporal_Inf_L 0.0441 0.002 -3.69 | -42,6,-39
72 | Temporal_Mid_L 0.0441 0.0007 -4.21-60,-15, -18
101 | Temporal_Mid_L 0.0446 0.0029 -3.521-54,0,-30

A)

B)
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Figure 7-1: Results of pairwise rsFCsum over “red” patterns

univariate rsFC analysis seeded re ; ; '
in parcels 165 and 148. Using 2’ ¢4 * ° i
FDR of 0.05, 28 parcels 34 e ’“
demonstrating significant change 23 6 . 3 M

in rsFC between baseline and SD. %’ . *

Of these, 15 demonstrated rsFC i . ¢
increase with parcel 165 (A - E'm

shown in red) and 13 5'12

demonstrated rsFC decrease with % -14 *

148 (B - shown in -16

blue). Visualization was
generated using Brain Net Viewer
(Xia, Wang et al. 2013). A
negative association between the
“red” and the “blue” patterns is
shown in C, where each point
represents one subject.

We next examined the extent of rsFC change across parcel pairs
identified in the above analysis against changes in task performance,
mood and STAI reports. Results are shown in Figure7-2. Overall rsFC
change across 15 strengthened connections with parcel 165 was
marginally associated with change in negative PANAS score (Spearman

r=-0.47, p=0.057), overall rsFC change across 13 weakened
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connections with parcel 150 was associated with task performance
(Spearman r=0.61,p=0.009) and lastly, the extent of rsFC change across
all 28 differential connections was positively associated with STAI-trait

measured at the beginning of the experiment (Spearman r=0.48,

1 rsFC change
05 ¢
) e,
c
_S ) \..\ * T ¥
9 2 4 6 8
[
2 *
T 05 * o
by LR
o *
2.,
Z .
e - L2
15 Al
3 ?‘} ¢
AR RETA
¥ \“Q‘j&\' 3|
2 -\i‘n;“;
R

Figure 7-2: association between SD —induced rsFC change and behavioral measures.
The “red” pattern was marginally associated with change in negative mood measured
with PANAS (Spearman r=-0.47,p<0.06)

rsFC-based state prediction using LOOCV

In order to examine the extent to which rsFC patterns reflect SD, we
applied a LOOCV procedure, so that for each subject s, group rsFC
matrices were calculated after s had been excluded from the data. The
analysis was performed 500 times using k=1 to 500 most differential
functional connections. Figure 7-3 shows the accuracy achieved using
subject-group Euclidean distance as a function of k. A maximum accuracy
of 85.29% (p=1.93*10°, Binomial distribution) was achieved using only 24
FCs as features. 8 out of 24 features were repeatedly selected in all 17

iterations, and these are listed in Table7-3 and shown in Figure7-4.
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Notably, only two of these features were identified in the previously
described univariate rsFC analysis seeded in parcel 148 (Centered in the
Thalamus). When examining the relationship between the “blue” (rsFC
decrease) features and “red” (rsFC increase) features, (Figure 7-4), we
detected a significant anti-correlation between them (r=-0.65, p=0.005). In
contrast to the rsFC alterations identified in the univariate analysis, here
we did not find any association between the extent of rsFC change across
features and affective measures (p>0.1) nor did we find such an

association with task performance.
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Figure 7-3: Accuracy rates of LOOCV analysis presented as a function of number of
used features (k). The red vertical line indicates k=24, the value for which the highest
accuracy (85.29%, p=1.93*10-5, Binomial distribution) was achieved.

Table 7-3: Parcel pairs that were selected as features in all 17 iterations
of LOOCV (k=24) analysis

ID 1 MNI center ID 2 MNI center SRrskFC | SDrskFC
11 (-63,-30,-3) 24 (-60,-27,15) -0.172 0.305
64 (27,-3,57) 65 (12,-45,66) 0.354 -0.086
17 (48,9,33) 90 (-27,12,54) -0.374 0.159
11 (-63,-30,-3) 119 (57,3,6) -0.223 0.256
34 (-51,6,33) 127 (30,18,51) -0.226 0.245
104 (-9,63,12) 148 (0,-6,6) 0.319 -0.148
139 (12,63,9) 148 (0,-6,6) 0.427 -0.048
119 (57,3,6) 197 (-42,-30,15) 0.343 -0.204

95



Features rsFC increase

(B
2_
.
1_
a
@
g o .
S 2 \ 8
S 1]
(¥
b4
=2
"
[ -3 4
[T
4
5 |

Figure 7-4: (A) 8 parcel pairs that were selected as features in all 17 iterations of LOOCV
(k=24) analysis presented on a 3D brain image. Edge color indicates the direction of
change in rsFC across group (red=rsFC increase, blue=rsFC decrease), edge width is
proportional to the extent of change. Image was generated using Brain Net Viewer (Xia,
Wang et al. 2013). (B) A scatter plot showing the rsFC change across “blue” features
against rsFC change across “red" features in A. Each point represents one subject. A
significant anti correlation was identified (r=-0.65, p=0.005)

In addition to the above feature selection process, we conducted the same
LOOCYV analysis using all 28 parcel-pairs identified in the rsFC univariate
analysis as features. Classification accuracy was then raised to 94.1%
(p=3.47*108, Binomial distribution) with sensitivity =94.1% and specificity

=94.1%.

SD induced changes in rsFC modular organization
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To gain a broad perspective on changes in network organization following
SD, we applied modularity analysis on group-level graphs that were
generated by averaging state-specific matrices across subjects. This
analysis revealed 4 modules in each of the two state graphs. In order to
characterize the differences in modular organization in a statistically
sound manner, we analyzed the enrichment of 7 predefined functional
brain networks reported in (Yeo, Krienen et al. 2011) within each module.

The 7 networks are shown in Figure 7-5. Results are shown in Table 7-3.

Table 7-4: Modules identified via modularity analysis on group-level rsFC
matrices. Enrichment results are shown for each module, and include the FDR
corrected significance (g-value), the enrichment score and the size of overlap
between the module and the enriched network. Network name abbreviations:
VS=visual network, FPCN=fronto-parietal control network, DMN=default mode
network, SMN=somato-motor network, VAN=ventral attention network,
DAN=dorsal attention network, Limb=limbic

ID | SR | SD | Overlap | SR enrichments SD enrichments
size | size | (jaccard) | Network | gVvalue | No. of | Network | qValue | No. of
parcels parcels
1 26 |41 0.558 VN 4.8E12 23 VN 6.54E- | 24
2 |82 |48 0.547 FPCN 1.08E- 21 FPCN 1.12E7 | 19

DMN 5.27E 26 DMN 2.23E® | 19
Limb 0.0236 8

3 |60 |63 |0.732 SMN 0.0125 12 SMN 3.20E® | 19
VAN 5.27E 16 VAN 7.62E° | 16
4 |14 |30 |O DAN 7.19E4 5 LIMB 4.11E7 9
DMN 0.0329 10

Figure 7-5: Annotations
used in enrichment
analysis: 7 network
parcellation of the human
cerebral cortex based on
1,000 Subjects. Adapted
from (Yeo, Krienen et al.
2011)

M Purple (Visual)

. Blue (Somatomotor)
[ Green (Dorsal Attention)
& violet (Ventral Attention)
[ cream (Limbic)

EI Orange (Frontoparietal)
B Red (Default)
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Our analysis revealed several changes in the modular organization of the
brain following SD: following SD: first, the VN-enriched module (module 1)
showed an increase in size. Second, the DMN-FPCN-Limb enriched
module (module 2) showed a decrease in size due to DMN and Limb
parcels (including bilateral amygdala) that were reassigned to a separate
module that was enriched with Limbic and DMM parcels. Lastly, a module
that was enriched with DAN parcels (baseline module 4) was not detected
following SD. Instead DAN parcels were distributed among several
modules including VN enriched module and SMN_VAN- enriched module.

These changes are shown in Figure 7-6 A.

Following these finding we examined the change in connectivity strength
within modules that were enriched with Limbic-annotated parcels against
affective behavioral measures. We identified a significant anti-correlation
between the connectivity strength within SD module 4 and the change in
positive mood as measured by the PANAS questionnaire (Spearman r=-
0.67, p=0.0031), whereas the change in connectivity strength among
parcels of the same module was positively correlated with the change in
overall mood as measured by VAS (Spearman r=0.64, p=0.0056). In
addition a marginally significant association was found between change in
connectivity strength of baseline module 2 and change in negative mood
as measured by the PANAS questionnaire (Spearman r=0.46, p=0.06).

Results are shown in Figure7-6 B.
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Figure 7-6: (A) SD-induced module alterations shown as overlays in MRICroN visualization.
Baseline modules are shown in blue, SD modules are shown in red, overlaps are shown in purple.
Enrichment based functional association is presented on the right; VN=visual network,
DMN=default mode network, FPCN=fronto-parietal control network, LIMB=limbic network,
7 VAN=ventral attention network, SMN=somatomotor network (B) The changes in connectivity
" strength of baseline module2 (right plot) as well as SD module 4 (left plot) were associated with
change in reported mood across subjects.
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decrease in thalamo-cortical rsFC and increase in rsFC of the operculum with
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several cortical regions. These patterns were associated with changes in both
task performance and reported mood. The use of a two-stage univariate
analysis procedure assisted in overcoming the limitation of a relatively small
sample size, by decreasing the number of statistical tests. For that same
purpose we adopted, in this case, a relatively coarse parcellation of the brain
into ~200 parcels instead of the ~500 parcels that were used for the other two

datasets analyzed in this work.

The left frontal operculum is part of the left IFG, which is known for its role in
language comprehension and generation (Friederici, RUschemeyer et al. 2003,
Vigneau, Beaucousin et al. 2006). This region has also been implicated in
evaluating affective meaning of speech intonation (Wildgruber, Hertrich et al.
2004). However, its central involvement in SD induced neural modulations and
the relation of these modulations to change in subjective affective experience
is surprising. The thalamus is known for its central role in arousal regulation
(Schiff 2008) and in mediating the interaction of attention and arousal in
humans (Portas, Rees et al. 1998). Furthermore, reduced thalamo-cortical
rsFC following SD has already been reported in previous literature (Shao, Wang
et al. 2013). Modularity analysis performed on group-level rsFC matrices
provided additional insight on SD induced network reorganization, by
pinpointing the SD induced decomposition of a functional module involving
DMN, limbic and FPCN regions into two functional modules, one enriched with
DMN and FPCN parcels and the other enriched with limbic and DMN parcels.
That change was further associated with subjective affective measures.
Notably, this change was not revealed by our univariate analysis, which

demonstrates the advantage of such a combined analysis. A breakdown in
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connectivity within the DMN following SD has been documented before (De
Havas, Parimal et al. 2012). However, to the best of our knowledge, this is the

first time it has been associated with affective behavioral measures.

8. CONCLUDING DIscussION

8.1 OVERVIEW OF THE RESULTS
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In this work the sustained effect of several types of emotionally challenging
experiences on subsequent resting-state neural pattern was investigated, as
well as the way these patterns reflect inter-individual differences in emotion

processing and regulation.

The novel use of enrichment analysis introduced here for studying changes in
rsFC provides improved means for exploring experience-related neural
modulations in cases where the induced effect is large and distributed. This
type of distributed effect was found following acute social stress as well as
following SD. However, while acute stress induced an increase in thalamo-
cortical functional connectivity, and a decrease in functional connectivity among
various cortical regions, the opposite effect was identified following SD.
Notably, in both cases, the extent of rsFC increase correlated with the extent of
identified rsFC decrease, suggesting that these patterns are part of a joint

mechanism.

The central involvement of the thalamus in the identified large scale neural
modulations following stress and under SD may be attributed to its central role
in arousal regulation (Schiff 2008) and in mediating the interaction of attention

and arousal in humans (Portas, Rees et al. 1998).

The fundamental difference in the direction of rsFC modulation is in line with
the suggestion that SD acts as a chronic stressor resulting in allostatic load (i.e.
cumulative wear and tear on body systems), in which the system is low on
resources, and thus differs by nature from acute stress (McEwen 2006) in which
the saliency system is recruited at the expense of higher cognitive functions

(Hermans, Henckens et al. 2014). Interestingly, in both cases, the extent of the

102



two rskFC patterns (increase vs. decrease) was correlated across subjects,
suggesting that they are both part of a joint mechanism of dominance shift.
Furthermore, the extent of this change was associated with subjective

measures of affective experience.

In both SD and UG, trait anxiety was predictive of rsFC change effect.
Specifically a higher STAI-t was associated with a larger change in rsFC
following SD as well as UG. This indicates that individuals with a lower trait
anxiety were less affected by the different challenges in the neuronal level and
were thus more “resilient” to them. This finding extends previous literature on
the relation between trait anxiety and stress resilience (McFarlane 1990).
However, in contrast to our expectations, this indication was not found in the
case of social stress, where no association was found between state or trait

anxiety and the identified rsFC changes.

In all three cases examined, rsFC patterns of the amygdala seemed to underlie
individual differences in coping with the introduced challenges: (1) In the case
of anger provoking UG, the overall baseline rsFC of the amygdala predicted
gain as well as elicited anger. (2) Following acute stress, rsFC change between
the BLA and precuneus was associated with subjective affective recovery 20
minutes later. (3) Change in connectivity strength within a limbic-DMN
functional module, which includes amygdala, was associated with change in
affective state following SD. These findings extend previous literature by
demonstrating again the relation between amygdala FC and individual

differences in emotion processing and regulation.
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Our findings can be summarized in a model by which the conditions of the
environment (e.g. social conflict) as well as by individual tendencies effect the
interaction between the limbic system and regions of the default-mode network,
which in turn affects the emotional experience. This model is illustrated in

Figure 8-1.

Challenging

Individual g
conditions

tendencies

Ultimatum

:
v

Experienced
anger

Affective
experience

Decrease in Experienced
positive stress
mood sustainment

Figure 8-1: A model that summarizes our findings on rsFC changes that are associated
with individual differences in emotional response: challenging conditions (e.g. social
conflict) as well as by individual tendencies affect the interaction between the limbic
system and regions of the default-mode network, which in turn effects the emotional
experience

8.2. METHODOLOGICAL INSIGHTS AND CONTRIBUTIONS

Throughout this work we adopted a univariate approach for exploring changes
in patterns of rsFC. However, in the case of SD, due to small sample size, we
used an additional multivariate approach, which included LOOCYV analysis and

a graph modularity analysis. This integrated analysis produced new and

104



interesting findings that corresponded with inter-individual differences in
subjective affective measures, and would not have been revealed in full, had
we chosen only one of these approaches. In light of these results, we believe
that a combined univariate-multivariate analysis may be beneficial for studying

large-scale effects, as suggested in (Varoquaux and Craddock 2013).

The use of enrichment analysis to study patterns in fMRI, introduced in this
work, offers a novel perspective on functional neural connectivity. This method
addresses a basic problem in the field, by rigorously seeking the main signal
within large-scale effects. In addition to providing an improved and more reliable
mechanism of interpretation, extracting the main signal allows one to seek
association with behavioral measures as well as other physiological measures
with a low number of statistical tests, thus increasing statistical power of the
analysis. To the best of our knowledge, enrichment analysis has not been used

before for this purpose.

8.2. STUDY LIMITATIONS

In this study we examined the effect of different types of emotional challenges
on patterns of neural coactivation at rest. Notably, this type of analysis
overlooks region/parcel activity levels (amplitude). rsfMRI activity patterns have
been shown to hold valuable information (Tian, Jiang et al. 2008, Wang, Jiang
et al. 2008, Han, Wang et al. 2011, Liu, Hu et al. 2012), which in the context of
the current study was overlooked. In addition, by using resting-state fMRI
recorded immediately after an emotionally challenging task, our results provide
a partial picture and do not reveal information on the chronometry of these

modulations.
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Our analysis was based on a predefined functional parcellation of the gray
matter in order to reduce dimensionality. Though this parcellation has been
tested and validated, the selection of parcellation template has been shown to
effect subsequent results. Specifically high resolution templates provide
reduced statistical power due to large number of tests, while low resolution

templates may result in losing signals from small neural structures.

The use of enrichment analysis is always based on some previously
established mapping that is used as an annotation. For this purpose, it would
be ideal to use an established functional mapping of the brain that is accepted
and acknowledged in the field as “common ground”. Such annotation systems
exist in other fields for this type of analysis. E.g. the Gene Ontology system
(Consortium 2004) or the KEGG pathway database (Kanehisa and Goto 2000)
that are used as gene annotations in computational genomics analysis.
However, due to the lack of such a common-ground in neuroscience, we
adopted a functional annotation that was based on a previously published
study, conducted on the 1000 connectomes data, and an anatomic annotation
of lobe-laterality information that was based on the TD atlas. We believe that
established mapping systems will be available in the near future, which will

encourage and improve the use of enrichment analysis in the field.
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