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Abstract  

 
The perfect phylogeny model for haplotype evolution has been successfully applied to 
haplotype resolution from genotype data. In this study we explore the application of the 
perfect phylogeny model to other problems in the design and analysis of genetic studies. 
We consider a novel type of data, xor-genotypes, which distinguish heterozygote from 
homozygote sites but do not identify the homozygote alleles. We show how to resolve 
xor-genotypes under perfect phylogeny model, and study the degrees of freedom in such 
resolutions. Interestingly, given xor-genotypes that produce a single possible resolution, 
we show that the full genotype of at most three individuals suffice in order to determine 
all haplotypes across the phylogeny. Our experiments with xor-genotyping data indicate 
that the approach requires a number of individuals only slightly larger than full 
genotyping, at a potentially reduced typing cost. 
We also consider selection of minimum-cost sets of tag SNPs, i.e., polymorphisms whose 
alleles suffice to recover the haplotype diversity. We show that this problem lends itself 
to divide-and-conquer linear-time solution. Finally, we study genotype tags, i.e., 
genotype calls that suffice to recover the alleles of all other SNPs. Since most genetic 
studies are genotype-based, such tags are more relevant in such studies than the haplotype 
tags. We show that under the perfect phylogeny model a SNP subset of haplotype tags, as 
it is usually defined, tags the haplotypes by genotype calls as well. 
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1. Introduction 

1.1. Background 
Genetic information in nature is usually stored as a linear sequence, written in a molecular DNA 

alphabet of four letters (nucleotides), A, C, G and T. Higher organisms are diploid, i.e., have two near-
identical copies of their genetic material arranged in paired molecules called chromosomes, one originating 
from each parent. Such chromosomes are homologous, that is, contain essentially the same genes in altered 
variants. Changes between variants comprise mainly of Single Nucleotide Polymorphisms (SNPs), i.e., 
sequence sites where one of two letters may appear [1]. These SNPs are numerous and it is estimated that 
any two homologous human chromosomes sampled at random from the population differ on average once 
in every thousand letters, accounting thus for a few million such differences along the entire genome. The 
variants of a SNP are called alleles. An individual is said to be homozygous for a SNP if both homologous 
chromosomes bear the same allele for this SNP and heterozygous otherwise. The sequence of alleles along 
a chromosome is called a haplotype. At first approximation a chromosome can be considered as a 
patchwork of haplotypes along its length. A genotype along homologous chromosomes lists the conflated 
(unordered pair of) alleles for each SNP (see Fig. 1).  

 

Fig. 1. An example of 6 SNPs along two 
homologous chromosomes of an individual. 
(a) This individual’s haplotypes. (b) This 
individual’s genotype. Here the Xor-genotype 
(set of heterozygous SNPs) would be {2,5}. 
(c) Another potential haplotype pair giving rise 
to the same genotype. 
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Both genotype and haplotype data are used in genetic studies. Haplotypes are often more informative 
[6]. Unfortunately, current experimental methods for haplotype determination are technically complicated 
and cost prohibitive. In contrast, a variety of current technologies offer practical tools for genotype 
determination [26]. Given genotype data, the haplotypes must be inferred computationally, in a process 
called resolving, phasing or haplotyping [7,8,9,10,11,27].  A single genotype may be resolved by different, 
equally-plausible haplotype pairs (see Fig. 1), but the joint inference of a set of genotypes may favor one 
haplotype pair over the others for each individual. Such inference is usually based on a model for the data.   
Informally, most models rely on the observed phenomenon that over relatively short genomic regions, 
different human genotypes tend to share the same small set of haplotypes [2,3].  

1.2. The Perfect Phylogeny Model 
During sexual reproduction, only one homologous copy of each chromosome is transmitted to the 

offspring. Moreover, that copy has alternating segments from the two homologous chromosomes of the 
parent, due to a segmental exchange process called (meiotic) recombination.  Studies have shown that 
recombination occurs mainly in narrow regions called hotspots. The genomic segments between hotspots 
are called blocks. They show essentially no recombination [4] and their haplotype diversity is limited [2,3]. 
Within blocks, haplotypes evolve by mutations, i.e., replacement of one nucleotide by another at particular 
sites (other mutation types are not discussed here). Since mutations are relatively rare [5], it is often 
assumed, as we do here, that at most one mutation occurs in each site.  The perfect phylogeny model for 
haplotype block evolution assumes that all haplotypes in the population have a common ancestor, no 
recombination and no recurrent mutation.  

The Perfect Phylogeny Haplotyping problem (PPH) seeks to infer haplotypes that satisfy the perfect 
phylogeny model (we defer formal definitions to Section 1.5). PPH was first introduced by Gusfield [9], 
who presented an almost linear solution by reducing PPH to the classical Graph Realization problem. 
Simpler, direct solutions were later given [10,11], which take O(nm2) for n haplotypes and m SNPs.  

1.3. Informative SNPs 
 Many medical genetics studies first determine the haplotypes for a set of individuals and then use these 

results to efficiently type a larger population. Having identified the restricted set of possible haplotypes for 
a region, the identity of a subset of the SNPs in the region may suffice to determine the complete haplotype 
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of an individual. Such SNPs are called tag SNPs, and typing them alone would lose no information on the 
haplotypes. More generally, we may be interested only in a subset S of all SNPs (e.g., coding and 
regulatory SNPs only) but can use all available SNPs to tag them. In this setting we call S the set of 
interesting SNPs, and seek a smallest possible informative SNP set, i.e., is a subset of all SNPs that captures 
all the information on S (see Fig. 2). Hence, the identification of few informative SNPs may lead to 
substantial saving in typing costs. For this reason, the computational problems of finding a minimal tag (or 
informative) set have been studied [2,13,18].  

Finding the minimum set of tag SNPs within an unconstrained block is NP-hard [12]. When the perfect 
phylogeny model is assumed, in the special case of a single interesting SNP, a minimal set of informative 
SNPs was shown to be detectable in O(nm) time, for n haplotypes and m SNPs [13]. 

1. 4 Contribution of this work 
We study here several problems arising under the perfect phylogeny model during genetic analysis of a 

region, along the process from haplotype determination toward their utilization in a genetic study. Our 
analysis focuses on a single block. 

Some experimental methods such as DHPLC [14] can determine whether an individual is homozygous 
or heterozygous for each SNP, but cannot distinguish between the two homozygous sites. Typing SNPs in 
such manner will provide, for each individual, a list of the heterozygous sites, which we refer to as the 
individual's xor-genotype. Xor-genotypes are less informative than regular ("full") genotypes; but their 
generation may be less costly. Therefore, it is of interest to infer the haplotypes based primarily on xor-
genotypes instead of full genotypes. In Section 2 we introduce the Xor Perfect Phylogeny Haplotyping 
problem (XPPH), study the limitations of using only xor-genotypes, and the additional genotype 
information required. Section 2.2 presents an efficient solution to XPPH based on the graph realization 
problem [15]. We implemented our solution and evaluated the XPPH strategy in Section 2.3. Our tests 
show that the method compares favorably with standard genotyping.  

Section 3 studies informative SNPs under the perfect phylogeny model. We generalize the minimum 
informative set (and tag set) problems by introducing a cost function for SNPs, and seek minimum cost 
sets. The cost is motivated by the facts that typing some SNPs may be technically harder (e.g., those in 
repetitive or high GC regions), and that some SNPs are more attractive for direct typing (e.g., protein-
coding SNPs, due to prior assumptions on their functionality). In section 3.2 we find minimal cost 
informative SNP sets in O(m) time for any number of interesting SNPs, when the perfect phylogeny tree is 
given. This generalizes the result of [13]. Section 3.3 discusses a practical variant of the tag SNPs set, i.e., 
the phasing tag SNPs set: As we usually have only genotypic (conflated) information on the SNPs, a 
practical goal would be to find a set of SNPs that give the same information as tag SNPs, but instead of 
knowing their haplotype we only know their genotype. We prove that the set of informative SNPs is 
guaranteed to have this quality, and that this is guaranteed only under the perfect phylogeny model. 

We conclude with a discussion in Section 4. Throughout the manuscript, many proofs are omitted, due 
to lack of space. 

1.5. Preliminaries 
We denote the two alleles for each SNP by 0 and 1. A haplotype is represented by a binary vector. A set 

of haplotypes is represented by a binary matrix H, where each row is a haplotype vector and each column is 
the vector of SNP alleles. We denote the allele of haplotype i for SNP j by Hij or by hj for the haplotype 
h=Hi. A genotype is the conflation (mixing) of two haplotypes. For example, the pair of haplotypes 00100 
and 10001 gives rise to the genotype {0,1}{0,0}{0,1}{0,0}{0,1}. 

The perfect phylogeny model is formalized as follows: Let Hn×m be a binary matrix of n distinct 
haplotypes over m SNPs. A perfect phylogeny for H is a pair (T,f) where T=(V,E) is a tree with {1,…,n}⊆ V 
and f:{1,…,m}→E is an assignment of SNPs to edges such that (1) every edge of T is labeled at least once 
and (2) for any two rows k, l, H

kj
≠H

lj
 iff the edge f(j) lies on the unique path from node k to node l in T. The 

analysis of this model is heavily based on a fundamental property (cf. [21]): 

Fig. 2. Tag SNPs and informative SNPs. The set {1,2} is a tag SNP set. If 
{9,10,11} is the interesting SNP set, then the interesting set distinguishes 
the haplotypes 1, 2 and {3,4}, but does not distinguish between 
haplotypes 3 and 4. Therefore {1,2} and {6,8} are both informative SNPs 
sets but {4,5} and {2,3} are not.  
Notice that the same genotype A/C T/A is obtained for the tag SNP set 
{1,2} from the two pairs of haplotypes {1,2} and {3,4}. 
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Theorem 1: There is a perfect phylogeny for H iff H does not contain a 4×2 submatrix in which all four 
rows are different. Such a submatrix is called a four-gamete.  

2. Xor Haplotyping 

In this section we formally define the problem of Xor Perfect Phylogeny Haplotyping, provide an 
algorithm for the problem and discuss how to handle ambiguity in the data. We then show how to obtain 
the actual haplotypes efficiently using a small amount of additional full genotypes. 

2. 1. Problem definition 
 

Definition: A xor-genotype of a haplotype pair {h,h’} is the set of their heterozygote SNPs, i.e., 
{s|hs≠h’s} (see Fig. 1). A set of haplotypes H explains a set of xor-genotypes X if each member of X is a 
xor-genotype of a pair of haplotypes in H. 

Problem 1: Xor Perfect Phylogeny Haplotyping (XPPH) 
Input: A set X={X1,…,Xn} of xor-genotypes over SNPs S={s1,…,sm}, such that X1∪ …∪ Xn =S. 
Goal: Find a haplotype matrix H with a perfect phylogeny (T,f), such that H explains X, or determine 
that no solution exists. (See Fig. 3)  
Hereafter, we shall omit the term “or determine that no solution exists” from problem statements for 

brevity. This requirement is part of the goal of all the algorithms in this study. 
 

Fig. 3. An example of a solution to XPPH. 
(a) X -The four xor-genotypes. (b) H - The 
inferred haplotypes. (c) (T,f) - A perfect 
phylogeny for H. Notice that H explains X  
by taking the haplotype pairs 
{1,4},{3,4},{2,3} and {1,3}.  Note that T 
includes a haplotype (0000) that is not in H. 
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2.2. An algorithm for XPPH 

2.2.1. Inference up to bit flipping 
 

A first step in understanding XPPH is the observation that the solution is never unique. Rather, flipping 
the alleles of SNPs in a solution yields yet another solution, as we now explain. 

Definition: Two haplotype matrices Hn×m and H’n×m are equivalent up to bit flipping (denoted H↔H’) if 
for any two rows k, l, H

kj
≠H

lj
 ⇔ H’

kj
≠H’

lj
. H↔H’ iff one can be obtained from the other by exchanging 

the roles of 1 and 0 for some columns. Notice that ↔ is a set-theoretic equivalence relation. 
Observation 1: If H↔H’ then X can be explained by H iff it can be explained by H’. 
Observation 1 implies that XPPH can only be solved up to bit flipping based on the data given by X.  
 
In some cases, however, there may be several alternative sets of haplotypes that explain X and are not 

↔-equivalent. In that case, we will not be able to determine which of those sets is the one that really gave 
rise to X. Our only achievable goal is therefore to identify when the solution obtained is guaranteed to be 
the correct one. We will next show that this is guaranteed by the uniqueness of the solution. The analysis 
relies on the following property of perfect phylogenies: 

 
Key property: Let (T,f) be a perfect phylogeny for H. If Hij=0 then for all k, Hkj=0 iff nodes i and k are 

in the same component of T\f(j).   
 
Definition: (T,f) is a perfect phylogeny for X if (T,f) is a perfect phylogeny for some H that explains X.  
 
Proposition 1: When X has a unique perfect phylogeny then the haplotype matrix that explains it is 

unique up to bit flipping (i.e., up to ↔-equivalence). 
Proof: It suffices to prove that if (T,f) is a perfect phylogeny for H then there is no H’ such that (T,f) is a 

perfect phylogeny for H’ and ¬ (H↔H’). First we observe that there is a unique correspondence between 
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the nodes of T and the haplotypes in H. This correspondence is obtained as follows. We first identify the 
haplotype h∈ H of an arbitrary leaf v. This is done by observing the SNPs that correspond to the edge 
incident on v. h is the only haplotype that is distinct from all others in these SNPs. The haplotypes of all 
other nodes are now readily determined by the key property. This generates the uniuqe correspondence. 
The actual haplotypes are set by fixing arbitrarily the haplotype vector of one node and setting all others 
according to the key property. ! 

 
Proposition 1 motivates a new formulation of Problem 1’: 
Problem 1′: XPPH: 
Input: A set X={X1,…,Xn} of xor-genotypes over SNPs S={s1,…,sm}, such that X1∪ …∪ Xn =S. 
Goal: Find a unique perfect phylogeny (T,f) for X, or determine that there are multiple perfect 

phylogenies for X. 
Proposition 1 implies that a solution to Problem 1′ (if unique) is guaranteed to be a perfect phylogeny for 

the correct set of haplotypes, i.e., the haplotypes that actually gave rise to X. 
 
Gusfield's work [9] leads to an interesting and useful connection between xor-genotypes and paths along 

the perfect phylogeny tree, as follows.  
 
Definition: We say that a pair (T,f) realizes Xi⊆ S if Xi is the union of edge labels that constitute a path in 

T. (T,f) is said to realize a collection X of subsets if each Xi∈ X is realized by (T,f). 
Proposition 2: (T,f) is a perfect phylogeny for X iff X is realized by (T,f).  
 
The following formulation for XPPH is finally obtained: 
Problem 1″: XPPH: 
Input: A set X={X1,…,Xn} of xor-genotypes over SNPs S={s1,…,sm}, such that X1∪ …∪ Xn =S. 
Goal: Find the unique realization (T,f) for X, or determine that there are multiple realizations for X. 
 
Intuitively, the larger the number of typed SNPs, the greater the chances to have a unique realization. 

Occasionally, however, a dataset X may have multiple realizations even with many SNPS.. This is the case 
of the data including xor-equivalent SNPs: 

Definition: We say that s,s′∈ S are xor-equivalent w.r.t. X and write s≈Xs′ if for all i: s∈ Xi⇔s′∈ Xi.  
Fortunately, xor-equivalent SNPs may be redundant. This is the case of the data including haplotype-

equivalent SNPs: 
Definition: We say that s,s′∈ S are haplotype-equivalent w.r.t. H and write s≈Hs′ if for all i,j: 

His≠Hjs⇔His′≠Hjs′. Note that ≈H and ≈X are equivalence relations.  
Observation 3: Haplotype-equivalence implies xor-equivalence but not vice versa. (See Fig 4). 
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Fig. 4. Xor-equivalence and haplotype-equivalence. (a) X – The xor-genotypes. (b) H – The haplotypes matrix. 
Haplotypes 1 and 4 form the first xor-genotype, and haplotypes 2 and 3 form the second. The pairs of xor-equivalent 
SNPs are {1, 4} and {3, 5}, while only 3 and 5 are haplotype-equivalent. (c) (T,f) – A realization for X that is a perfect 
phylogeny for H. (d) (T’,f’) – Another realization for X that is not a perfect phylogeny for H. 

We next show that haplotype-equivalent SNPs are redundant. 
Notation: Denote by SH⊆ S the set that is obtained by taking one representative from each haplotype-

equivalence class. Denote by HH the haplotype matrix that is obtained by restricting H to SH. 
Observation 4: (1) To obtain a perfect phylogeny (T,f) for H, one can obtain a perfect phylogeny (T,f’) 

for HH and then set f(s)=f’(sH) for every s∈ S that is haplotype-equivalent to sH. (2) (T,f’) is a unique perfect 
phylogeny for HH since SH contains no haplotype-equivalent SNPs. 

Observation 4 implies that haplotype-equivalent SNPs are redundant, hence may be merged to label a 
single edge in (T,f) (See Fig 4c); and by doing so, we discard the degrees of freedom that are due to 
haplotype-equivalent SNPs.  
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However, identifying haplotype-equivalent SNPs is not trivial when we only have xor-genotype 

information, which as Observation 3 implies may not suffice. In other words, the closest we can get to 
merging haplotype-equivalent SNPs is merging the xor-equivalent SNPs, which by Observation 3 may lead 
to information loss (See Fig 4d).  

Definition: Denote by SX⊆ S the set that is obtained by taking one representative from each xor-
equivalence class. Denote by XX the xor-genotypes that are obtained by restricting X to SX. XX is called the 
canonic version of X. 

 
We show next that when the canonic version of X has a unique realization, then there was no 

information loss in merging xor-equivalent SNPs, since xor-equivalence implies haplotype-equivalence in 
this particular case. 

Theorem 2: Let (T,f’) be a unique realization for XX. Extent the mapping f’ to S by setting f(s)=f’(sX) for 
every s that is xor-equivalent to sX. Then (T,f) is a perfect phylogeny for the correct haplotype matrix that 
gave rise to  X. 

Proof: By Proposition 2, (T,f’) is a unique perfect phylogeny for XX, and by Proposition 1 it is a perfect 
phylogeny for the correct haplotype matrix on SX. We will next show that in the special case where (T,f’) is 
unique, xor-equivalence implies haplotype-equivalence for the data set X. Then, by Observation 4, (T,f) is a 
perfect phylogeny for the correct haplotype matrix that gave rise to X. Suppose to the contrary that SNPs 
s1,s2∈ S are xor-equivalent but not haplotype equivalent. Consider the unique perfect phylogeny (TS,fS) of HH. 
Since s1 and s2 are not haplotype-equivalent they label distinct edges, e1 and e2 respectively, in TS. Notice 
that f -1(e1)∪  f -1(e2) are xor-equivalent. Let (TS

1,f
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2,f
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2); in contradiction to the uniqueness of (T,f’). ! 
 
The formulation of Problem 1″ leads to a connection between XPPH and the graph realization problem: 
Problem 2: The Graph Realization Problem (GR) 
Input: A collection P={Pj} of subsets, P1,…,Pn⊆ S.  
Goal: Find a pair (T,f) that realizes P. 
 
Observation 2: Problem 1″ is now exactly the graph realization problem (when restricting the solution 

to GR to be unique). 
 
The graph realization problem was first defined in matroid theory by Tutte [16], who proposed an 

algorithm of O(mn2) time, where |P|=m and |S|=n. Gavril and Tamari [17] subsequently solved it in time 
O(m2n). Later, Bixby and Wagner [15] presented an O(α(m,n)mn) time algorithm, (α(m,n) is the inverse 
Ackermann function, α(m,n)≤4 for all practical values of m,n). All three algorithms required linear space. 
These algorithms determine the existence of a graph realization and also the uniqueness of such a solution, 
hence they can be applied to solve XPPH. 

 
The above discussion implies that the following procedure solves XPPH: Let M be the incidence matrix 

of X and S, i.e., Mij=1 iff sj∈ Xi. Find SX and XX. (This can be done by a radix-sort of the columns of M in 
O(nm) bitwise operations.) Then solve the graph realization problem on XX. If the solution is unique it 
implies a perfect phylogeny for X.  

In case that the xor-genotypes data cannot be augmented and there are several solutions to the GR 
problem, we may wish to choose one of them as a perfect phylogeny for X. Additional considerations may 
help in the choice [9]. We have developed a method for efficiently representing all the solutions for the 
graph realization problem by extending the algorithm in [17]. This representation is intuitive and 
implementation is straightforward. Details are omitted in this abstract.  

2.2.2. Assigning actual haplotypes  
 

In the previous section we concluded that even when XPPH has a single solution, the assignment of 
haplotypes to the tree nodes can be done only up to bit flipping. In order to obtain a concrete assignment, 
the input data must be augmented by additional genotyping of a selected set of individuals. We will prove 
that it suffices to fully genotype at most three individuals, and show how to select them. First, we explain 
how the additional genotype data are used to resolve the haplotypes. Denote by Gi the genotype of 
individual i (whose xor-genotype is Xi). Hereafter, we consider only those individuals with Xi≠∅ . 
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Problem 3: Haplotyping on the Tree 
Input: (a) A collection of non-empty xor-genotypes X; (b) a perfect phylogeny (T,f) for X, which is 
unique up to haplotype-equivalent SNPs; and (c) complete genotypes of the individuals {i1,…,ip}. 
Goal: Infer the haplotypes of all the individuals. 
 
Haplotyping across the tree is based on the above key property, which determines the alleles of a SNP j 

for all haplotypes, based on its allele in some particular node. More specifically, all those alleles are 
determined given a genotype Gi, homozygote for SNP j, whose haplotypes correspond to identifiable nodes 
in T. Consequently, Gi resolves the bit-flip degree of freedom for each SNP s∈ S\Xi. Hence: 
 
Proposition 3: The haplotypes can be completely inferred by G1,…,Gp iff  X1∩…∩Xp=∅ . 
 
The proposition brings about a criterion by which individuals should be selected for full genotyping. It 
motivates the following set-selection problem: 
Problem 4: Minimum Tree Intersection (MTI) 
Input: A collection of sets X={X1,…,Xn} and a perfect phylogeny (T,f) for X. 
Goal: Find a minimum subset of X whose intersection is empty. 
Note that the prefect phylogeny condition here is crucial: Without the condition that each Xi is a path in the 
tree, the problem is equivalent to the NP-hard set-cover problem. 
 
Theorem 3: If X1∩…∩Xn=∅  then there is a minimum tree intersection set of size at most 3. 
Proof: Consider the path X1, and w.l.o.g. label the SNPs according to their order along that path as (1,…,k).  
For each i, the set X1∩Xi defines an interval in that order. If X1∩Xi=∅  for some i then {X1,Xi} are a solution. 
Otherwise all intervals overlap X1. Denote these intervals by [lj,rj] for j=2,...,n. Take the interval that ends 
first and the interval that begins last, i.e., L=argminj(rj) and R=argmaxj(lj). Since X1∩…∩Xn=∅  then 
[l2,r2]∩…∩[ln,rn]=∅ , hence it follows that [lR,rR]∩[lL,rL]=∅ . We get (X1∩XL∩XR)=∅ .! 

 
In case no SNP is present in all Xi-s, the above proof provides an algorithm for finding three individuals 

whose full genotypes solve MTI. A slight modification allows finding two individuals instead of three 
when possible. The time complexity is O(nm). Let Y= X1∩…∩Xn. 

Corollary 1: There are at most three individuals whose genotypes can resolve all the haplotypes on the 
SNP set S\Y, and they can be found in O(nm) time. 

In case Y≠∅ , the SNPs in Y can be inferred up to bit flipping. 

2.3 Experimental Results  
 

We implemented Gavril and Tamari’s algorithm for Graph Realization [17]. Although it is not the 
asymptotically fastest algorithm available, it is simpler to implement and modify than [15]. Moreover, as 
the block size is usually bounded in practice by m<30, the quadratic dependence of the algorithm on m is 
not a handicap. Our implementation, GREAL, was written in C++, and is available at 
http://www.cs.tau.ac.il/~rshamir/greal. Another implementation due to Chung and Gusfield has recently 
been announced [19]. 

We used a standard population genetics simulator due to Hudson [22] to generate data samples under the 
perfect phylogeny model. In each run we generated c=2400 chromosomes with a prescribed number of 
SNPs, preserving the default values for all other simulation parameters. An important parameter in the 
experiments was the minor allele frequency cutoff, denoted by α: For a given value of α, we only used 
SNPs whose less frequent allele occurred in ≥αc chromosomes. The resulting haplotypes were randomly 
paired to generate xor-genotypes of individuals. 

How many individuals are required to get a single solution?  
We evaluated this measure by randomly adding individuals one by one and reapplying GR till the 

solution is unambiguous. The results (Fig. 5) show that for α≥0.03, the number of individuals required to 
obtain a single solution is roughly an α-dependent constant, irrespective of the number of SNPs, and is 
practically bounded by 70. When rare alleles (α=0.01) are present, the behavior is less predictable and the 
variance is very large. However, comprehensive sampling of the haplotypes is usually not achieved when 
rare alleles are present; fortunately, performance is satisfactory above the accepted α cutoff of 0.05.  
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XPPH vs. PPH 
 Since xor-genotypes contain less information, they may have a potential economic advantage over full 

genotypes. However, the number of individuals required for obtaining the haplotypes is larger. We 
compared the number of individuals needed by XPPH and by PPH. Chung and Gusfield [23] evaluated 
experimentally the number of individuals required for obtaining a unique solution to PPH. We computed 
the same statistic for XPPH (Fig. 6a). For 50 SNPs, 50 xor-genotypes guarantee ~90% chance of 
uniqueness, and increasing the number of individuals has only a minor effect. Essentially the same results 
hold for 100 SNPs. In comparison to [23], the chances for a unique XPPH solution with > 50 xor-genotypes 
is only a few percent lower than for PPH data with the same number of full genotypes.  
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Fig. 6. The chance for a unique solution. (a) The frequency of a unique solution (y-axis) versus the number 
of individuals tested (x-axis). XPPH statistics are based on 5000 runs for 50 or 100 SNPs after filtering 
with α=0.05. PPH statistics from [23] are plotted for comparison. (b) The distribution of the number of non-
unique solutions in deep coverage studies. Statistics were collected for 35 configurations of the number of 
SNPs (100-2000) and the number of individuals, which was at least 10 times the number of SNP 
equivalence classes. (α=0.05). 

How high is the multiplicity of non-unique solutions? 
We further focused on outlier ambiguous datasets, i.e., those that are ambiguous despite the examination of 
many individuals. For such datasets, the number of possible solutions is of much practical interest: If this 
number is limited, each solution may be tested separately. Indeed, the results (Fig. 6b) show that in this 
situation, when the solution is not unique, there are only a handful of solutions, usually only 2. Note that we 
assume equivalence of ≈H and ≈X for outlier datasets, which we confirmed for the datasets used here. 

3. Informative SNPs 

3.1. Problem definition 
In this section we study informative SNPs under the perfect phylogeny model. We begin by introducing 

some terminology, concordant with [13]. 

Fig. 5. Conditions for uniqueness of the 
solution. The plots show the number of xor-
genotypes (y-axis) needed for obtaining a 
single solution for a given number of SNPs 
(x-axis). Different lines (or least squares 
curves) correspond to different thresholds 
on the minor allele frequency cutoff . Note 
that the interpolated curve for =0.01 is an 
extremely rough estimate. 

 
 

αα
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Definition: Let H={H1,…,Hn} be a set of haplotypes over a SNP set S={s1,…,sm}. Let S"⊆ S be a given 
subset of interesting SNPs. The set S'⊆ S\S" is informative on H w.r.t. S" if for each 1≤k,l≤n, whenever there 
is a SNP s"∈ S" for which Hks"≠Hls", there is a SNP s'∈ S' for which Hks'≠Hls'.  

 
Note that that assumption that the informative and interesting SNPs are disjoint is made without loss of 

generality, since we can duplicate interesting SNPs as part of the candidates for the informative set. We 
generalize the Minimum Informative SNPs problem [13] by introducing a cost function, as follows: 

Problem 5: Minimum-Cost Informative SNPs (MCIS):  
Input: (a) A set of haplotypes H={H1,…,Hn} over a SNP set S={s1,…,sm} along with a perfect phylogeny 

(T,f) for H.  
(b) A set of interesting SNPs S"⊆ S.  
(c) A cost function C:S→R+. 

Goal: Find a set S'⊆ S\S" of minimum total cost that is informative w.r.t. S". 
 
 (T,f) may already be known if H was found by solving XPPH. Alternatively, it can be computed in 

O(mn) time from haplotypes [21].  
A common task which is related to picking an informative SNP set is to describe all of the haplotype 

variation in the region [20]. Formally, we seek a tag set S'⊆ S s.t. for each 1≤l,k≤n, there is t∈ S’ for which 
Hkt≠Hlt. In order to find tag SNPs of minimum cost, one could duplicate the SNP set S and define one of the 
copies as interesting. A solution to MCIS on the duplicated instance is a tag SNP set of minimal cost. 
Hence we shall focus on the more general MCIS problem. 

3.2 An algorithm for MCIS 

3.2.1 Problem decomposition 
 
Recall that if T=(V,E) is a perfect phylogeny for Hn×m then {1,…,n}⊆ V, i.e., the haplotypes of H label nodes 
in the perfect phylogeny. If a node of T is labeled by a haplotype from H we say it is observed. Otherwise 
we say it is ancestral. Ancestral nodes represent haplotypes that have been intermediate stages in evolution 
but did not survive to the present, or were not collected in the sample. It is easy to see that the leaves of T 
are always observed. The observed internal nodes in T can be used for a decomposition of T as follows: 

Definition: An ancestral component is a subtree of T in which all the internal nodes are ancestral and all 
the leaves are observed. 
Since the leaves of T are observed, T can be represented as a union of edge-disjoint ancestral components, 
where each union step merges two components by identifying copies of the same observed node. Two 
different components can share at most one observed node, but do not share ancestral node. Partitioning T 
into ancestral components is straightforward. We now show that in order to find informative SNPs we can 
divide the tree into ancestral components and find informative SNPs for each single component separately. 
The subproblem on a component is defined as follows: Denote an instance of MCIS by the input tuple 
I=(H,S,C,T,f,S”). Let T1,…,Tp be T’s ancestral components where Ti=(Vi,Ei). Denote by Si⊆ S the SNPs that 
label Ei. The input tuple for Ti is Ii=(Hi,Si,Ci,Ti,fi,Si”)  where the sets and functions are the restriction of the 
original sets and functions to Si,  

Theorem 4: Suppose for every i, IS(Ii) solves Ii. Then IS(I)=IS(I1)∪ …∪ IS(Ip) solves I. 
Proof: We shall show that IS(I) is informative w.r.t. S" iff IS(Ii) is informative w.r.t. Si" for all i; The 

theorem then will follow by the additivity of the cost function. If haplotypes k,l belong to the same 
observed component Ti, and there is a SNP s such that Hks≠Hls, then by the key property it must be that s∈ Si. 
Therefore, the informativeness of IS(I) implies the informativeness of IS(Ii) for all i. For the opposite 
direction, suppose there are t∈ S" and 1≤l,k≤n such that Hkt≠Hlt. Let Ti be the subtree which contains the 
edge with label t (i.e., t∈ Si). Then by the key property, there are l’,k’ in Ti such that Hk’t≠Hl’t, where l’,k’ are 
the observed nodes of Ti that are on the path from k to l in T. But then there is s’∈ IS(Ii)⊆ IS(I) such that 
Hk’s’≠Hl’s’ . Hence, by the key property, Hks’≠Hls’.! 

3.2.2 Solving MCIS on an ancestral component 
 

In this section we solve MCIS restricted to a single ancestral component. We first reformulate it in terms of 
the tree edges, and then show how to solve it. We introduce the following notations:  Edges labeled by 
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interesting SNPs are called target edges. The set of target edges is τ={e|f -1(e)∩S"≠∅ }. It specifies the 
interesting information in terms of tree edges. An edge is allowed if it is labeled by some non-interesting 
SNP. The set of allowed edges is α={e|f -1(e)∩(S\S")≠∅ }. These are the edge-analogs of potentially 
informative SNPs. Edges in τ\α are called forbidden. Forbidden edges cannot be used as informative, but 
edges in τ∩α  can.  

We now expand the definition of the cost function to edges: The cost of an edge e, denoted C(e), is the 
minimum cost of a non-interesting SNP that labels e. For e∈ τ\α define C(e)=∞. This allows us to provide 
an equivalent formulation for MCIS: 

 
Problem 6: Minimum Cost Separating Set (MCSS)  
Input: The same input as for MCIS.  
Goal: Find E'⊆ E of minimum cost, such that in G=(V,E\E') there are no two observed nodes that are 

connected by a path containing a target edge. 
 
Proposition 4: MCIS and MCSS are equivalent. 
Proof: It suffices to show that an informative set for H w.r.t. S" separates those observed nodes that are 

connected by a path containing edges from τ, and vice versa. Observed nodes of T, v1 and v2, have 
corresponding haplotypes of H, Hk and Hl, and vice versa. But then by the key property Hks≠Hls iff s labels 
an edge on the path from v1 to v2.!  

 
We are now ready to outline a dynamic programming algorithm for MCSS.  W.l.o.g. assume |V|>2. Take 

some internal node r∈ V and root T at r. For v∈ V denote by Tv=(Vv,Ev) the subtree of T that is rooted at v. 
For a solution Sv⊆ Ev of the induced sub instance I(Tv), denote by Rv the connected component which 
contains v in Gv=(Vv,Ev\Sv). The algorithm will scan T from the leaves up and at each node v form an 
optimal solution for the subtree Tv based on the optimal solutions for the subtrees of its children. When 
combining such children solutions, we have to take into consideration the possibility that the combination 
will generate new paths between observed haplotypes, with or without target edges on them.  To do this, we 
distinguish three types of solutions: Sv is called empty if there are no observed haplotypes in Rv. It is called 
connected if some observed haplotypes in Rv are connected to v via target edges. Sv is called disconnected 
otherwise, i.e., if there are observed haplotypes in Rv but there is no path connecting an observed haplotype 
to v via target edges. Let Nv, Pv and Av denote the respective best empty, connected, or disconnected 
solutions. We define recursive formulae for their costs as follows: 
• For a leaf node v∈ V we initialize: C(Nv)=∞, C(Pv)= ∞, C(Av)=0. 
• For an internal node v∈ V with children {u1,…,uk(v)} we write: 

( ) ( ) ( ) ( ) ( ) ( ){ }min , , , ,
i i iu u i u iTear i C N C P C v u C A C v u= + +  (1)

( ) ( )
( )

1

k v

v
i

C N Tear i
=

=∑  
(2)

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
,

min min , min
j j

j
v u v u vj j v u
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ττ ii
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uvjiuv
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i

i

u
uvi

−=
∉ τ,

minarg  

(4)

The auxiliary value Tear(i) measures the cost of an empty solution for the subtree including  the edge 
(v,ui) and the subtree of ui. In computing C(Pv) we have to either pick the cheapest of two alternatives: (a) 
all the subtrees are empty except one which is connected (first term in (3)), (b) all the subtrees are empty 
except one that is disconnected but incident on v via a target edge (second term). In computing C(Av) we 
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find the best disconnected subtree, and allow the remaining subtrees to be either disconnected or empty. 
These formulae are implemented in a dynamic program as follows: (1) Visit V in postorder, computing 
C(Nv), C(Pv) and C(Av) for each v∈ V. Obtain the minimal cost by min{C(Nr),C(Pr),C(Ar)}. (2) Compute Nv, 
Pv and Av by following the traceback pointers to get all those (v,uj) edges that were chosen by the minimal 
cost while taking ( ) ( ),

iu iC P C v u+  or ( ) ( ),
iu iC A C v u+ . The time complexity of this algorithm is O(|S|). 

3.3 Tag SNPs from genotypes 
 
Up until now we have followed the standard assumption in the computational literature [13,24,25] that tag 
SNPs need to reconstruct the full binary haplotypes from binary haplotypes of the tag set. As experiments 
that provide haplotypes are expensive, most studies seek to obtain experimentally only genotypes. For such 
data, the problem of finding tag SNPs should be reformulated to reflect the fact that the input is genotypes, 
rather than haplotypes: Recall that standard genotyping has three possible calls per site: {0,0}, {1,1} and 
{0,1}, where the first two are homozygous and the latter is heterozygote. (The calls are often abbreviated to 
0,1, and 2 respectively, and the genotype is represented as a vector over {0,1,2}.)  The following question 
arises: Find a subset of SNPs given whose genotype calls one can completely identify the pair of 
haplotypes of an individual. We call such subset phasing tag SNPs. 

Formally, let H be a set of haplotypes over a set S of SNPs, and consider genotypes formed from 
haplotype pairs in H. Denote by g(k,l)S the genotype formed from Hk and Hl on the SNP set S. We say that 
{i1,i2} and {j1,j2} are distinct with respect to S if there is s∈ S  such that g(i1,i2)s≠g(j1,j2)s. 

Definition: S’⊆ S is a set of phasing tag SNPs if every two haplotype pairs from H are distinct with 
respect to S’. Hence, from the genotype calls of an individual for the set S’, one can uniquely determine the 
exact sequence of the complete set S for each of its two haplotypes.  

 
In general, the definitions of phasing tag SNPs and tag SNPs differ (see Fig. 2). The former is stronger: 
Observation 5: If S’⊆ S are phasing tag SNPs then they are also tag SNPs. 
Proof: All homozygous genotype-call vectors are distinct w.r.t. S’: for all i≠j, g(i,i)S’≠g(j,j)S’.! 
 
We now show that, surprisingly, under the perfect phylogeny model, tag SNPs and phasing tag SNPs are 

equivalent. This identifies the commonly used definition with the more theoretically sound one, and 
therefore justifies the application of the current body of theory on tag SNPs to genotype data.  

Theorem 5: Suppose that the haplotypes in H satisfy the perfect phylogeny model on S. A set S’⊆ S is a 
tag SNPs set if and only if S’ is a phasing tag SNPs set.  

Proof: It suffices to prove the “only if” direction. Suppose to the contrary that S’ are tag SNPs but not 
phasing tag SNPs. Let Gi={H1,H2} and Gj={H3,H4} be distinct haplotype pairs with the same genotype call 
vector for S’, i.e., g(1,2)S’=g(3,4)S’. Since S’ is a tag SNP set, it distinguishes H1 and H3, so there must be 
s1∈ S’ such that Gi and Gj are heterozygous to s1, and H1 and H3 have different alleles for s1. Similarly there 
must be s2∈ S’ such that Gi and Gj are heterozygous to s2, and H1 and H4 have different alleles for s2. 
Therefore Gi and Gj are oppositely phased on s1 and s2. Since H1, H2, H3, and H4 are distinct, they violate the 
4 gamete rule on s1,s2, in contradiction to Theorem 1.! 

4. Discussion 

We studied here several questions arising in haplotype inference under the perfect phylogeny model. We 
introduced the model of xor-genotypes, and showed results that lay the computational foundation for the 
use of such data: (i) Inference of the sample haplotypes (up to negation) by adapting graph realization 
algorithms. (ii) Only two or three additional full genotypes are needed to completely resolve the 
haplotypes.  

Simulations with genetic data show that xor genotypes are nearly as informative as full genotypes. 
Hence, genotyping methods that distinguish only between heterozygotes and homozygotes could 
potentially be applied to large scale genetic studies. Xor-genotypes may have economical advantage over 
the complete genotypes common today, since the information in a xor-genotype is only a fraction of the 
information given by a complete genotype. The feasibility and economic benefit of xor-genotype data 
cannot be appreciated by currently available technologies, but this work lays the foundation for evaluating 
the cost-effectiveness of technologies for obtaining such data.  

 



11 

The second part of the manuscript studied choosing a subset of the SNPs that fully describes the sample 
haplotypes. We provided efficient solutions to several optimization problems arising in this topic: We 
generalized previous results by finding optimal informative SNP set for any interesting set, and more 
generally, showed how to handle differential costs of SNPs. Finally, we have shown how to find tag SNPs 
for genotype data, which generalize the definition of tag SNPs to a more practical aspect. 
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