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Abstract. The perfect phylogeny model for haplotype evolution has been suc-
cessfully applied to haplotype resolution from genotype data. In this study we 
explore the application of the perfect phylogeny model to other problems in the 
design and analysis of genetic studies. We consider a novel type of data, xor-
genotypes, which distinguish heterozygote from homozygote sites but do not 
identify the homozygote alleles. We show how to resolve xor-genotypes under 
perfect phylogeny model, and study the degrees of freedom in such resolutions. 
Interestingly, given xor-genotypes that produce a single possible resolution, we 
show that the full genotype of at most three individuals suffice in order to de-
termine all haplotypes across the phylogeny. Our experiments with xor-
genotyping data indicate that the approach requires a number of individuals 
only slightly larger than full genotyping, at a potentially reduced typing cost.  
We also consider selection of minimum-cost sets of tag SNPs, i.e., polymor-
phisms whose alleles suffice to recover the haplotype diversity. We show that 
this problem lends itself to divide-and-conquer linear-time solution. Finally, we 
study genotype tags, i.e., genotype calls that suffice to recover the alleles of all 
other SNPs. Since most genetic studies are genotype-based, such tags are more 
relevant in such studies than the haplotype tags. We show that under the perfect 
phylogeny model a SNP subset of haplotype tags, as it is usually defined, tags 
the haplotypes by genotype calls as well.  
 
Keywords: SNPs, Haplotypes, Perfect Phylogeny, Tag SNPs, Graph Realiza-
tion. 

1   Introduction 

1.1   Background 

Genetic information in nature is usually stored as a linear sequence, written in a mo-
lecular DNA alphabet of four letters (nucleotides), A, C, G and T. Higher organisms 
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are diploid, i.e., have two near-identical copies of their genetic material arranged in 
paired molecules called chromosomes, one originating from each parent. Such chro-
mosomes are homologous, that is, contain essentially the same genes in altered vari-
ants. Changes between variants comprise mainly of Single Nucleotide Polymorphisms 
(SNPs), i.e., sequence sites where one of two letters may appear [1]. These SNPs are 
numerous and it is estimated that any two homologous human chromosomes sampled 
at random from the population differ on average once in every thousand letters, ac-
counting thus for a few million such differences along the entire genome. The variants 
of a SNP are called alleles. An individual is said to be homozygous for a SNP if both 
homologous chromosomes bear the same allele for this SNP and heterozygous other-
wise. The sequence of alleles along a chromosome is called a haplotype. At first ap-
proximation a chromosome can be considered as a patchwork of haplotypes along its 
length. A genotype along homologous chromosomes lists the conflated (unordered 
pair of) alleles for each SNP (see Fig. 1).  
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Fig. 1. An example of 6 SNPs along two homologous chromosomes of an individual. (a) This 
individual’s haplotypes. (b) This individual’s genotype. Here the Xor-genotype (set of het-
erozygous SNPs) would be {2,5}. (c) Another potential haplotype pair giving rise to the same 
genotype. 

Both genotype and haplotype data are used in genetic studies. Haplotypes are often 
more informative [6]. Unfortunately, current experimental methods for haplotype 
determination are technically complicated and cost prohibitive. In contrast, a variety 
of current technologies offer practical tools for genotype determination [26]. Given 
genotype data, the haplotypes must be inferred computationally, in a process called 
resolving, phasing or haplotyping [7,8,9,10,11,27]. A single genotype may be re-
solved by different, equally-plausible haplotype pairs (see Fig. 1), but the joint infer-
ence of a set of genotypes may favor one haplotype pair over the others for each indi-
vidual. Such inference is usually based on a model for the data.  Informally, most 
models rely on the observed phenomenon that over relatively short genomic regions, 
different human genotypes tend to share the same small set of haplotypes [2,3].  

1.2   The Perfect Phylogeny Model 

During sexual reproduction, only one homologous copy of each chromosome is trans-
mitted to the offspring. Moreover, that copy has alternating segments from the two 
homologous chromosomes of the parent, due to a segmental exchange process called 
(meiotic) recombination. Studies have shown that recombination occurs mainly in 
narrow regions called hotspots. The genomic segments between hotspots are called 
blocks. They show essentially no recombination [4] and their haplotype diversity is 
limited [2,3]. Within blocks, haplotypes evolve by mutations, i.e., replacement of one 
nucleotide by another at particular sites (other mutation types are not discussed here). 
Since mutations are relatively rare [5], it is often assumed, as we do here, that at most 
one mutation occurs in each site. The perfect phylogeny model for haplotype block 
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evolution assumes that all haplotypes in the population have a common ancestor, no 
recombination and no recurrent mutation.  

The Perfect Phylogeny Haplotyping problem (PPH) seeks to infer haplotypes that 
satisfy the perfect phylogeny model (we defer formal definitions to Section 1.5). PPH 
was first introduced by Gusfield [9], who presented an almost linear solution by re-
ducing PPH to the classical Graph Realization problem. Simpler, direct solutions 
were later given [10,11], which take O(nm2) for n haplotypes and m SNPs.  

1.3   Informative SNPs 

Many medical genetics studies first determine the haplotypes for a set of individuals 
and then use these results to efficiently type a larger population. Having identified the 
restricted set of possible haplotypes for a region, the identity of a subset of the SNPs 
in the region may suffice to determine the complete haplotype of an individual. Such 
SNPs are called tag SNPs, and typing them alone would lose no information on the 
haplotypes. More generally, we may be interested only in a subset S of all SNPs (e.g., 
coding and regulatory SNPs only) but can use all available SNPs to tag them. In this 
setting we call S the set of interesting SNPs, and seek a smallest possible informative 
SNP set, i.e., is a subset of all SNPs that captures all the information on S (see Fig. 2). 
Hence, the identification of few informative SNPs may lead to substantial saving in 
typing costs. For this reason, the computational problems of finding a minimal tag (or 
informative) set have been studied [2,13,18].  
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Fig. 2. Tag SNPs and informative SNPs. The set {1,2} is a tag SNP set. If {9,10,11} is the 
interesting SNP set, then the interesting set distinguishes the haplotypes 1, 2 and {3,4}, but 
does not distinguish between haplotypes 3 and 4. Therefore {1,2} and {6,8} are both informa-
tive SNPs sets but {4,5} and {2,3} are not. Notice that the same genotype A/C T/A is obtained 
for the tag SNP set {1,2} from the two pairs of haplotypes {1,2} and {3,4}. 

Finding the minimum set of tag SNPs within an unconstrained block is NP-hard 
[12]. When the perfect phylogeny model is assumed, in the special case of a single 
interesting SNP, a minimal set of informative SNPs was shown to be detectable in 
O(nm) time, for n haplotypes and m SNPs [13]. 

1.4   Contribution of This Work 

We study here several problems arising under the perfect phylogeny model during 
genetic analysis of a region, along the process from haplotype determination toward 
their utilization in a genetic study. Our analysis focuses on a single block. 
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Some experimental methods such as DHPLC [14] can determine whether an indi-
vidual is homozygous or heterozygous for each SNP, but cannot distinguish between 
the two homozygous sites. Typing SNPs in such manner will provide, for each indi-
vidual, a list of the heterozygous sites, which we refer to as the individual’s xor-
genotype. Xor-genotypes are less informative than regular ("full") genotypes; but their 
generation may be less costly. Therefore, it is of interest to infer the haplotypes based 
primarily on xor-genotypes instead of full genotypes. In Section 2 we introduce the 
Xor Perfect Phylogeny Haplotyping problem (XPPH), study the limitations of using 
only xor-genotypes, and the additional genotype information required. Section 2.2 
presents an efficient solution to XPPH based on the graph realization problem [15]. 
We implemented our solution and evaluated the XPPH strategy in Section 2.3. Our 
tests show that the method compares favorably with standard genotyping.  

Section 3 studies informative SNPs under the perfect phylogeny model. We gener-
alize the minimum informative set (and tag set) problems by introducing a cost func-
tion for SNPs, and seek minimum cost sets. The cost is motivated by the facts that 
typing some SNPs may be technically harder (e.g., those in repetitive or high GC 
regions), and that some SNPs are more attractive for direct typing (e.g., protein-
coding SNPs, due to prior assumptions on their functionality). In section 3.2 we find 
minimal cost informative SNP sets in O(m) time for any number of interesting SNPs, 
when the perfect phylogeny tree is given. This generalizes the result of [13]. Section 
3.3 discusses a practical variant of the tag SNPs set, i.e., the phasing tag SNPs set: As 
we usually have only genotypic (conflated) information on the SNPs, a practical goal 
would be to find a set of SNPs that give the same information as tag SNPs, but instead 
of knowing their haplotype we only know their genotype. We prove that the set of 
informative SNPs is guaranteed to have this quality, and that this is guaranteed only 
under the perfect phylogeny model. 

We conclude with a discussion in Section 4. Throughout the manuscript, many 
proofs are omitted, due to lack of space. 

1.5   Preliminaries 

We denote the two alleles for each SNP by 0 and 1. A haplotype is represented by a 
binary vector. A set of haplotypes is represented by a binary matrix H, where each 
row is a haplotype vector and each column is the vector of SNP alleles. We denote the 
allele of haplotype i for SNP j by Hij or by hj for the haplotype h=Hi. A genotype is 
the conflation (mixing) of two haplotypes. For example, the pair of haplotypes 00100 
and 10001 gives rise to the genotype {0,1}{0,0}{0,1}{0,0}{0,1}. 

The perfect phylogeny model is formalized as follows: Let Hn×m be a binary matrix 
of n distinct haplotypes over m SNPs. A perfect phylogeny for H is a pair (T,f) where 
T=(V,E) is a tree with {1,…,n}⊆V and f:{1,…,m}→E is an assignment of SNPs to 
edges such that (1) every edge of T is labeled at least once and (2) for any two rows k, 
l, Hkj≠Hlj iff the edge f(j) lies on the unique path from node k to node l in T. The 
analysis of this model is heavily based on a fundamental property (cf. [21]): 

Theorem 1: There is a perfect phylogeny for H iff H does not contain a 4×2 subma-
trix in which all four rows are different. Such a submatrix is called a four-gamete.  
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2   Xor Haplotyping 

In this section we formally define the problem of Xor Perfect Phylogeny Haplotyping, 
provide an algorithm for the problem and discuss how to handle ambiguity in the data. 
We then show how to obtain the actual haplotypes efficiently using a small amount of 
additional full genotypes. 

2.1   Problem Definition 

Definition: A xor-genotype of a haplotype pair {h,h’} is the set of their heterozygote 
SNPs, i.e., {s|hs≠h’s} (see Fig. 1). A set of haplotypes H explains a set of xor-
genotypes X if each member of X is a xor-genotype of a pair of haplotypes in H. 

Problem 1: Xor Perfect Phylogeny Haplotyping (XPPH) 

Input: A set X={X1,…,Xn} of xor-genotypes over SNPs S={s1,…,sm}, such that 

X1∪…∪Xn =S. 

Goal: Find a haplotype matrix H with a perfect phylogeny (T,f), such that H explains 
X, or determine that no solution exists. (See Fig. 3)  

Hereafter, we shall omit the term “or determine that no solution exists” from prob-
lem statements for brevity. This requirement is part of the goal of all the algorithms in 
this study. 
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Fig. 3. An example of a solution to XPPH. (a) X -The four xor-genotypes. (b) H - The inferred 
haplotypes. (c) (T,f) - A perfect phylogeny for H. Notice that H explains X  by taking the haplo-
type pairs {1,4},{3,4},{2,3} and {1,3}. Note that T includes a haplotype (0000) that is not in H. 

2.2   An Algorithm for XPPH 

2.2.1  Inference up to Bit Flipping 
A first step in understanding XPPH is the observation that the solution is never 
unique. Rather, flipping the alleles of SNPs in a solution yields yet another solution, 
as we now explain. 

Definition: Two haplotype matrices Hn×m and H’n×m are equivalent up to bit flipping 

(denoted H↔H’) if for any two rows k, l, Hkj≠Hlj ⇔ H’kj≠H’lj. H↔H’ iff one can be 
obtained from the other by exchanging the roles of 1 and 0 for some columns. Notice 
that ↔ is a set-theoretic equivalence relation. 
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Observation 1: If H↔H’ then X can be explained by H iff it can be explained by H’. 

Observation 1 implies that XPPH can only be solved up to bit flipping based on the 
data given by X.  

In some cases, however, there may be several alternative sets of haplotypes that 
explain X and are not ↔-equivalent. In that case, we will not be able to determine 
which of those sets is the one that really gave rise to X. Our only achievable goal is 
therefore to identify when the solution obtained is guaranteed to be the correct one. 
We will next show that this is guaranteed by the uniqueness of the solution. The 
analysis relies on the following property of perfect phylogenies: 

Key property: Let (T,f) be a perfect phylogeny for H. If Hij=0 then for all k, Hkj=0 iff 
nodes i and k are in the same component of T\f(j).  

Definition: (T,f) is a perfect phylogeny for X if (T,f) is a perfect phylogeny for some 
H that explains X.  

Proposition 1: When X has a unique perfect phylogeny then the haplotype matrix that 
explains it is unique up to bit flipping (i.e., up to ↔-equivalence). 

Proof: It suffices to prove that if (T,f) is a perfect phylogeny for H then there is no H’ 
such that (T,f) is a perfect phylogeny for H’ and ¬(H↔H’). First we observe that 
there is a unique correspondence between the nodes of T and the haplotypes in H. 
This correspondence is obtained as follows. We first identify the haplotype h∈H of an 
arbitrary leaf v. This is done by observing the SNPs that correspond to the edge 
incident on v. h is the only haplotype that is distinct from all others in these SNPs. 
The haplotypes of all other nodes are now readily determined by the key property. 
This generates the uniuqe correspondence. The actual haplotypes are set by fixing 
arbitrarily the haplotype vector of one node and setting all others according to the key 
property. � 

Proposition 1 motivates a new formulation of Problem 1’: 

Problem 1�: XPPH: 

Input: A set X={X1,…,Xn} of xor-genotypes over SNPs S={s1,…,sm}, such that 

X1∪…∪Xn =S. 

Goal: Find a unique perfect phylogeny (T,f) for X, or determine that there are multiple 
perfect phylogenies for X. 

Proposition 1 implies that a solution to Problem 1′ (if unique) is guaranteed to be a 
perfect phylogeny for the correct set of haplotypes, i.e., the haplotypes that actually 
gave rise to X. 

Gusfield's work [9] leads to an interesting and useful connection between xor-
genotypes and paths along the perfect phylogeny tree, as follows.  

Definition: We say that a pair (T,f) realizes Xi⊆S if Xi is the union of edge labels that 

constitute a path in T. (T,f) is said to realize a collection X of subsets if each Xi∈X is 
realized by (T,f). 

Proposition 2: (T,f) is a perfect phylogeny for X iff X is realized by (T,f).  
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The following formulation for XPPH is finally obtained: 

Problem 1�: XPPH: 

Input: A set X={X1,…,Xn} of xor-genotypes over SNPs S={s1,…,sm}, such that 

X1∪…∪Xn =S. 

Goal: Find the unique realization (T,f) for X, or determine that there are multiple 
realizations for X. 

Intuitively, the larger the number of typed SNPs, the greater the chances to have a 
unique realization. Occasionally, however, a dataset X may have multiple realizations 
even with many SNPS.. This is the case of the data including xor-equivalent SNPs: 

Definition: We say that s,s′∈S are xor-equivalent w.r.t. X and write s≈Xs′ if for all i: 
s∈Xi⇔s′∈Xi.  

Fortunately, xor-equivalent SNPs may be redundant. This is the case of the data in-
cluding haplotype-equivalent SNPs: 

Definition: We say that s,s′∈S are haplotype-equivalent w.r.t. H and write s≈Hs′ if for 
all i,j: His≠Hjs⇔His′≠Hjs′. Note that ≈H and ≈X are equivalence relations.  

Observation 3: Haplotype-equivalence implies xor-equivalence but not vice versa. 
(See Fig 4). 
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Fig. 4. Xor-equivalence and haplotype-equivalence. (a) X – The xor-genotypes. (b) H – The 
haplotypes matrix. Haplotypes 1 and 4 form the first xor-genotype, and haplotypes 2 and 3 
form the second. The pairs of xor-equivalent SNPs are {1, 4} and {3, 5}, while only 3 and 5 are 
haplotype-equivalent. (c) (T,f) – A realization for X that is a perfect phylogeny for H. (d) (T’,f’) 
– Another realization for X that is not a perfect phylogeny for H. 

We next show that haplotype-equivalent SNPs are redundant. 

Notation: Denote by SH⊆S the set that is obtained by taking one representative from 
each haplotype-equivalence class. Denote by HH the haplotype matrix that is obtained 
by restricting H to SH. 

Observation 4: (1) To obtain a perfect phylogeny (T,f) for H, one can obtain a perfect 
phylogeny (T,f’) for HH and then set f(s)=f’(sH) for every s∈S that is haplotype-
equivalent to sH. (2) (T,f’) is a unique perfect phylogeny for HH since SH contains no 
haplotype-equivalent SNPs. 

Observation 4 implies that haplotype-equivalent SNPs are redundant, hence may 
be merged to label a single edge in (T,f) (See Fig 4c); and by doing so, we discard the 
degrees of freedom that are due to haplotype-equivalent SNPs.  
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However, identifying haplotype-equivalent SNPs is not trivial when we only have 
xor-genotype information, which as Observation 3 implies may not suffice. In other 
words, the closest we can get to merging haplotype-equivalent SNPs is merging the 
xor-equivalent SNPs, which by Observation 3 may lead to information loss (See 
Fig 4d).  

Definition: Denote by SX⊆S the set that is obtained by taking one representative from 
each xor-equivalence class. Denote by XX the xor-genotypes that are obtained by 
restricting X to SX. XX is called the canonic version of X. 

We show next that when the canonic version of X has a unique realization, then 
there was no information loss in merging xor-equivalent SNPs, since xor-equivalence 
implies haplotype-equivalence in this particular case. 

Theorem 2: Let (T,f’) be a unique realization for XX. Extent the mapping f’ to S by 
setting f(s)=f’(sX) for every s that is xor-equivalent to sX. Then (T,f) is a perfect phy-
logeny for the correct haplotype matrix that gave rise to  X. 

Proof: By Proposition 2, (T,f’) is a unique perfect phylogeny for XX, and by Proposi-
tion 1 it is a perfect phylogeny for the correct haplotype matrix on SX. We will next 
show that in the special case where (T,f’) is unique, xor-equivalence implies haplo-
type-equivalence for the data set X. Then, by Observation 4, (T,f) is a perfect phylog-
eny for the correct haplotype matrix that gave rise to X. Suppose to the contrary that 
SNPs s1,s2∈S are xor-equivalent but not haplotype equivalent. Consider the unique 
perfect phylogeny (TS,fS) of HH. Since s1 and s2 are not haplotype-equivalent they 

label distinct edges, e1 and e2 respectively, in TS. Notice that f -1(e1)∪ f -1(e2) are xor-
equivalent. Let (TS

1,f
S
1) be obtained from (TS,fS) by contracting e1 (identifying e1’s 

nodes), and by taking fS1(s)=e2 for s∈f -1(e1). (T
S
2,f

S
2) is similarly obtained from (TS,fS) 

by contracting e2. Then both (TS
1,f

S
1) and (TS

2,f
S
2) realize XX, and (TS

1,f
S
1)≠(TS

2,f
S
2); in 

contradiction to the uniqueness of (T,f’).  � 

The formulation of Problem 1″ leads to a connection between XPPH and the graph 
realization problem: 

Problem 2: The Graph Realization Problem (GR) 

Input: A collection P={Pj} of subsets, P1,…,Pn⊆S.  

Goal: Find a pair (T,f) that realizes P. 

Observation 2: Problem 1″ is now exactly the graph realization problem (when re-
stricting the solution to GR to be unique). 

The graph realization problem was first defined in matroid theory by Tutte [16], 
who proposed an algorithm of O(mn2) time, where |P|=m and |S|=n. Gavril and Ta-
mari [17] subsequently solved it in time O(m2n). Later, Bixby and Wagner [15] pre-
sented an O( (m,n)mn) time algorithm, ( (m,n) is the inverse Ackermann function, 

(m,n)≤4 for all practical values of m,n). All three algorithms required linear space. 
These algorithms determine the existence of a graph realization and also the unique-
ness of such a solution, hence they can be applied to solve XPPH. 
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The above discussion implies that the following procedure solves XPPH: Let M be 
the incidence matrix of X and S, i.e., Mij=1 iff sj∈Xi. Find SX and XX. (This can be 
done by a radix-sort of the columns of M in O(nm) bitwise operations.) Then solve the 
graph realization problem on XX. If the solution is unique it implies a perfect phylog-
eny for X.  

In case that the xor-genotypes data cannot be augmented and there are several solu-
tions to the GR problem, we may wish to choose one of them as a perfect phylogeny 
for X. Additional considerations may help in the choice [9]. We have developed a 
method for efficiently representing all the solutions for the graph realization problem 
by extending the algorithm in [17]. This representation is intuitive and implementa-
tion is straightforward. Details are omitted in this abstract.  

2.2.2  Assigning Actual Haplotypes  
In the previous section we concluded that even when XPPH has a single solution, the 
assignment of haplotypes to the tree nodes can be done only up to bit flipping. In 
order to obtain a concrete assignment, the input data must be augmented by additional 
genotyping of a selected set of individuals. We will prove that it suffices to fully 
genotype at most three individuals, and show how to select them. First, we explain 
how the additional genotype data are used to resolve the haplotypes. Denote by Gi the 
genotype of individual i (whose xor-genotype is Xi). Hereafter, we consider only those 

individuals with Xi≠∅. 

Problem 3: Haplotyping on the Tree 

Input: (a) A collection of non-empty xor-genotypes X; (b) a perfect phylogeny (T,f) 
for X, which is unique up to haplotype-equivalent SNPs; and (c) complete genotypes 
of the individuals {i1,…,ip}. 

Goal: Infer the haplotypes of all the individuals. 

Haplotyping across the tree is based on the above key property, which determines 
the alleles of a SNP j for all haplotypes, based on its allele in some particular node. 
More specifically, all those alleles are determined given a genotype Gi, homozygote 
for SNP j, whose haplotypes correspond to identifiable nodes in T. Consequently, Gi 

resolves the bit-flip degree of freedom for each SNP s∈S\Xi. Hence: 

Proposition 3: The haplotypes can be completely inferred by G1,…,Gp iff  

X1∩…∩Xp=∅. 

The proposition brings about a criterion by which individuals should be selected for 
full genotyping. It motivates the following set-selection problem: 

Problem 4: Minimum Tree Intersection (MTI) 

Input: A collection of sets X={X1,…,Xn} and a perfect phylogeny (T,f) for X. 

Goal: Find a minimum subset of X whose intersection is empty. 
Note that the prefect phylogeny condition here is crucial: Without the condition that 
each Xi is a path in the tree, the problem is equivalent to the NP-hard set-cover prob-
lem. 
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Theorem 3: If X1∩…∩Xn=∅ then there is a minimum tree intersection set of size at 
most 3. 

Proof: Consider the path X1, and w.l.o.g. label the SNPs according to their order 

along that path as (1,…,k). For each i, the set X1∩Xi defines an interval in that order. 

If X1∩Xi=∅ for some i then {X1,Xi} are a solution. Otherwise all intervals overlap X1. 
Denote these intervals by [lj,rj] for j=2,...,n. Take the interval that ends first and the 

interval that begins last, i.e., L=argminj(rj) and R=argmaxj(lj). Since X1∩…∩Xn=∅ 

then [l2,r2]∩…∩[ln,rn]=∅, hence it follows that [lR,rR]∩[lL,rL]=∅. We get 

(X1∩XL∩XR)=∅.  � 

In case no SNP is present in all Xi-s, the above proof provides an algorithm for 
finding three individuals whose full genotypes solve MTI. A slight modification al-
lows finding two individuals instead of three when possible. The time complexity is 
O(nm). Let Y= X1∩…∩Xn. 

Corollary 1: There are at most three individuals whose genotypes can resolve all the 
haplotypes on the SNP set S\Y, and they can be found in O(nm) time. 

In case Y≠∅, the SNPs in Y can be inferred up to bit flipping. 

2.3   Experimental Results  

We implemented Gavril and Tamari’s algorithm for Graph Realization [17]. Although 
it is not the asymptotically fastest algorithm available, it is simpler to implement and 
modify than [15]. Moreover, as the block size is usually bounded in practice by m<30, 
the quadratic dependence of the algorithm on m is not a handicap. Our implementa-
tion, GREAL, was written in C++, and is available at http://www.cs.tau. ac.il/ 
~rshamir/greal. Another implementation due to Chung and Gusfield has recently been 
announced [19]. 

We used a standard population genetics simulator due to Hudson [22] to generate 
data samples under the perfect phylogeny model. In each run we generated c=2400 
chromosomes with a prescribed number of SNPs, preserving the default values for all 
other simulation parameters. An important parameter in the experiments was the mi-
nor allele frequency cutoff, denoted by : For a given value of , we only used SNPs 
whose less frequent allele occurred in ≥ c chromosomes. The resulting haplotypes 
were randomly paired to generate xor-genotypes of individuals. 

How many individuals are required to get a single solution?  
We evaluated this measure by randomly adding individuals one by one and reapply-
ing GR till the solution is unambiguous. The results (Fig. 5) show that for �����, the 
number of individuals required to obtain a single solution is roughly ��� -dependent 
constant, irrespective of the number of SNPs, and is practically bounded by 70. When 
rare alleles ( ����	) are present, the behavior is less predictable and the variance is 
very large. However, comprehensive sampling of the haplotypes is usually not 
achieved when rare alleles are present; fortunately, performance is satisfactory above 
the accepted  cutoff of 0.05.  
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Fig. 5. Conditions for uniqueness of the solution. The plots show the number of xor-genotypes 
(y-axis) needed for obtaining a single solution for a given number of SNPs (x-axis). Different 
lines (or least squares curves) correspond to different thresholds on the minor allele frequency 
cutoff . Note that the interpolated curve for =0.01 is an extremely rough estimate. 

XPPH vs. PPH 
Since xor-genotypes contain less information, they may have a potential economic 
advantage over full genotypes. However, the number of individuals required for ob-
taining the haplotypes is larger. We compared the number of individuals needed by 
XPPH and by PPH. Chung and Gusfield [23] evaluated experimentally the number of 
individuals required for obtaining a unique solution to PPH. We computed the same 
statistic for XPPH (Fig. 6a). For 50 SNPs, 50 xor-genotypes guarantee ~90% chance 
of uniqueness, and increasing the number of individuals has only a minor effect. Es-
sentially the same results hold for 100 SNPs. In comparison to [23], the chances for a 
unique XPPH solution with > 50 xor-genotypes is only a few percent lower than for 
PPH data with the same number of full genotypes.  

Fig. 6. The chance for a unique solution. (a) The frequency of a unique solution (y-axis) versus 
the number of individuals tested (x-axis). XPPH statistics are based on 5000 runs for 50 or 100 
SNPs after filtering with =0.05. PPH statistics from [23] are plotted for comparison. (b) The 
distribution of the number of non-unique solutions in deep coverage studies. Statistics were 
collected for 35 configurations of the number of SNPs (100-2000) and the number of individu-
als, which was at least 10 times the number of SNP equivalence classes. ( =0.05). 
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How high is the multiplicity of non-unique solutions? 
We further focused on outlier ambiguous datasets, i.e., those that are ambiguous de-
spite the examination of many individuals. For such datasets, the number of possible 
solutions is of much practical interest: If this number is limited, each solution may be 
tested separately. Indeed, the results (Fig. 6b) show that in this situation, when the 
solution is not unique, there are only a handful of solutions, usually only 2. Note that 
we assume equivalence of ≈H and ≈X for outlier datasets, which we confirmed for the 
datasets used here. 

3   Informative SNPs 

3.1   Problem Definition 

In this section we study informative SNPs under the perfect phylogeny model. We 
begin by introducing some terminology, concordant with [13]. 

Definition: Let H={H1,…,Hn} be a set of haplotypes over a SNP set S={s1,…,sm}. 

Let S"⊆S be a given subset of interesting SNPs. The set S’⊆S\S" is informative on H 
w.r.t. S" if for each 1≤k,l≤n, whenever there is a SNP s"∈S" for which Hks"≠Hls", there 

is a SNP s’∈S’ for which Hks’≠Hls’ .  

Note that that assumption that the informative and interesting SNPs are disjoint is 
made without loss of generality, since we can duplicate interesting SNPs as part of the 
candidates for the informative set. We generalize the Minimum Informative SNPs 
problem [13] by introducing a cost function, as follows: 
Problem 5: Minimum-Cost Informative SNPs (MCIS):  
Input: (a) A set of haplotypes H={H1,…,Hn} over a SNP set S={s1,…,sm} along with 
a perfect phylogeny (T,f) for H.  

(b) A set of interesting SNPs S"⊆S.  
(c) A cost function C:S→R+. 

Goal: Find a set S’⊆S\S" of minimum total cost that is informative w.r.t. S". 

(T,f) may already be known if H was found by solving XPPH. Alternatively, it can 
be computed in O(mn) time from haplotypes [21].  

A common task which is related to picking an informative SNP set is to describe 
all of the haplotype variation in the region [20]. Formally, we seek a tag set S’⊆S s.t. 
for each 1≤l,k≤n, there is t∈S’ for which Hkt≠Hlt. In order to find tag SNPs of mini-
mum cost, one could duplicate the SNP set S and define one of the copies as interest-
ing. A solution to MCIS on the duplicated instance is a tag SNP set of minimal cost. 
Hence we shall focus on the more general MCIS problem. 

3.2   An Algorithm for MCIS 

3.2.1  Problem Decomposition 
Recall that if T=(V,E) is a perfect phylogeny for Hn×m then {1,…,n}⊆V, i.e., the hap-
lotypes of H label nodes in the perfect phylogeny. If a node of T is labeled by a haplo-
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type from H we say it is observed. Otherwise we say it is ancestral. Ancestral nodes 
represent haplotypes that have been intermediate stages in evolution but did not sur-
vive to the present, or were not collected in the sample. It is easy to see that the leaves 
of T are always observed. The observed internal nodes in T can be used for a decom-
position of T as follows: 

Definition: An ancestral component is a subtree of T in which all the internal nodes 
are ancestral and all the leaves are observed. 

Since the leaves of T are observed, T can be represented as a union of edge-disjoint 
ancestral components, where each union step merges two components by identifying 
copies of the same observed node. Two different components can share at most one 
observed node, but do not share ancestral node. Partitioning T into ancestral compo-
nents is straightforward. We now show that in order to find informative SNPs we can 
divide the tree into ancestral components and find informative SNPs for each single 
component separately. The subproblem on a component is defined as follows: Denote 
an instance of MCIS by the input tuple I=(H,S,C,T,f,S”). Let T1,…,Tp be T’s ancestral 

components where Ti=(Vi,Ei). Denote by Si⊆S the SNPs that label Ei. The input tuple 
for Ti is Ii=(Hi,Si,Ci,Ti,fi,Si”)  where the sets and functions are the restriction of the 
original sets and functions to Si,  

Theorem 4: Suppose for every i, IS(Ii) solves Ii. Then IS(I)=IS(I1)∪…∪IS(Ip) 
solves I. 

Proof: We shall show that IS(I) is informative w.r.t. S" iff IS(Ii) is informative w.r.t. 
Si" for all i; The theorem then will follow by the additivity of the cost function. If 
haplotypes k,l belong to the same observed component Ti, and there is a SNP s such 

that Hks≠Hls, then by the key property it must be that s∈Si. Therefore, the informa-
tiveness of IS(I) implies the informativeness of IS(Ii) for all i. For the opposite direc-

tion, suppose there are t∈S" and 1≤l,k≤n such that Hkt≠Hlt. Let Ti be the subtree which 

contains the edge with label t (i.e., t∈Si). Then by the key property, there are l’,k’ in Ti 

such that Hk’t≠Hl’t, where l’,k’ are the observed nodes of Ti that are on the path from k 

to l in T. But then there is s’∈IS(Ii)⊆IS(I) such that Hk’s’≠Hl’s’ . Hence, by the key 

property, Hks’≠Hls’.  � 

3.2.2  Solving MCIS on an Ancestral Component 
In this section we solve MCIS restricted to a single ancestral component. We first 
reformulate it in terms of the tree edges, and then show how to solve it. We introduce 
the following notations:  Edges labeled by interesting SNPs are called target edges. 
The set of target edges is τ={e|f -1(e)∩S"≠∅}. It specifies the interesting information 
in terms of tree edges. An edge is allowed if it is labeled by some non-interesting 
SNP. The set of allowed edges is α={e|f -1(e)∩(S\S")≠∅}. These are the edge-analogs 
of potentially informative SNPs. Edges in τ\α are called forbidden. Forbidden edges 
cannot be used as informative, but edges in τ∩α can.  
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We now expand the definition of the cost function to edges: The cost of an edge e, 
denoted C(e), is the minimum cost of a non-interesting SNP that labels e. For e∈τ\α 
define C(e)=∞. This allows us to provide an equivalent formulation for MCIS: 

Problem 6: Minimum Cost Separating Set (MCSS)  

Input: The same input as for MCIS.  

Goal: Find E’⊆E of minimum cost, such that in G=(V,E\E’) there are no two observed 
nodes that are connected by a path containing a target edge. 

Proposition 4: MCIS and MCSS are equivalent. 

Proof: It suffices to show that an informative set for H w.r.t. S" separates those ob-
served nodes that are connected by a path containing edges from , and vice versa. 
Observed nodes of T, v1 and v2, have corresponding haplotypes of H, Hk and Hl, and 

vice versa. But then by the key property Hks≠Hls iff s labels an edge on the path from 
v1 to v2.  �  

We are now ready to outline a dynamic programming algorithm for MCSS. 
W.l.o.g. assume |V|>2. Take some internal node r∈V and root T at r. For v∈V denote 
by Tv=(Vv,Ev) the subtree of T that is rooted at v. For a solution Sv⊆Ev of the induced 
sub instance I(Tv), denote by Rv the connected component which contains v in 
Gv=(Vv,Ev\Sv). The algorithm will scan T from the leaves up and at each node v form 
an optimal solution for the subtree Tv based on the optimal solutions for the subtrees 
of its children. When combining such children solutions, we have to take into consid-
eration the possibility that the combination will generate new paths between observed 
haplotypes, with or without target edges on them. To do this, we distinguish three 
types of solutions: Sv is called empty if there are no observed haplotypes in Rv. It is 
called connected if some observed haplotypes in Rv are connected to v via target 
edges. Sv is called disconnected otherwise, i.e., if there are observed haplotypes in Rv 

but there is no path connecting an observed haplotype to v via target edges. Let Nv, Pv 
and Av denote the respective best empty, connected, or disconnected solutions. We 
define recursive formulae for their costs as follows: 

• For a leaf node v∈V we initialize: C(Nv)=∞, C(Pv)= ∞, C(Av)=0. 

• For an internal node v∈V with children {u1,…,uk(v)} we write: 

( ) ( ) ( ) ( ) ( ) ( ){ }min , , , ,
i i iu u i u iTear i C N C P C v u C A C v u= + +  (1) 

( ) ( )
( )
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The auxiliary value Tear(i) measures the cost of an empty solution for the subtree 
including  the edge (v,ui) and the subtree of ui. In computing C(Pv) we have to either 
pick the cheapest of two alternatives: (a) all the subtrees are empty except one which 
is connected (first term in (3)), (b) all the subtrees are empty except one that is dis-
connected but incident on v via a target edge (second term). In computing C(Av) we 
find the best disconnected subtree, and allow the remaining subtrees to be either dis-
connected or empty. These formulae are implemented in a dynamic program as fol-
lows: (1) Visit V in postorder, computing C(Nv), C(Pv) and C(Av) for each v∈V. Ob-
tain the minimal cost by min{C(Nr),C(Pr),C(Ar)}. (2) Compute Nv, Pv and Av by 
following the traceback pointers to get all those (v,uj) edges that were chosen by the 
minimal cost while taking ( ) ( ),

iu iC P C v u+  or ( ) ( ),
iu iC A C v u+ . The time complexity of 

this algorithm is O(|S|). 

3.3   Tag SNPs from Genotypes 

Up until now we have followed the standard assumption in the computational litera-
ture [13,24,25] that tag SNPs need to reconstruct the full binary haplotypes from bi-
nary haplotypes of the tag set. As experiments that provide haplotypes are expensive, 
most studies seek to obtain experimentally only genotypes. For such data, the problem 
of finding tag SNPs should be reformulated to reflect the fact that the input is geno-
types, rather than haplotypes: Recall that standard genotyping has three possible calls 
per site: {0,0}, {1,1} and {0,1}, where the first two are homozygous and the latter is 
heterozygote. (The calls are often abbreviated to 0,1, and 2 respectively, and the geno-
type is represented as a vector over {0,1,2}.)  The following question arises: Find a 
subset of SNPs given whose genotype calls one can completely identify the pair of 
haplotypes of an individual. We call such subset phasing tag SNPs. 

Formally, let H be a set of haplotypes over a set S of SNPs, and consider genotypes 
formed from haplotype pairs in H. Denote by g(k,l)S the genotype formed from Hk and 
Hl on the SNP set S. We say that {i1,i2} and {j1,j2} are distinct with respect to S if 

there is s∈S  such that g(i1,i2)s≠g(j1,j2)s. 

Definition: S’⊆S is a set of phasing tag SNPs if every two haplotype pairs from H are 
distinct with respect to S’. Hence, from the genotype calls of an individual for the set 
S’, one can uniquely determine the exact sequence of the complete set S for each of its 
two haplotypes.  
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In general, the definitions of phasing tag SNPs and tag SNPs differ (see Fig. 2). 
The former is stronger: 

Observation 5: If S’⊆S are phasing tag SNPs then they are also tag SNPs. 

Proof: All homozygous genotype-call vectors are distinct w.r.t. S’: for all i≠j, 

g(i,i)S’≠g(j,j)S’.  � 

We now show that, surprisingly, under the perfect phylogeny model, tag SNPs and 
phasing tag SNPs are equivalent. This identifies the commonly used definition with 
the more theoretically sound one, and therefore justifies the application of the current 
body of theory on tag SNPs to genotype data.  

Theorem 5: Suppose that the haplotypes in H satisfy the perfect phylogeny model on 
S. A set S’⊆S is a tag SNPs set if and only if S’ is a phasing tag SNPs set.  

Proof: It suffices to prove the “only if” direction. Suppose to the contrary that S’ are 
tag SNPs but not phasing tag SNPs. Let Gi={H1,H2} and Gj={H3,H4} be distinct hap-
lotype pairs with the same genotype call vector for S’, i.e., g(1,2)S’=g(3,4)S’. Since S’ 

is a tag SNP set, it distinguishes H1 and H3, so there must be s1∈S’ such that Gi and Gj 
are heterozygous to s1, and H1 and H3 have different alleles for s1. Similarly there 

must be s2∈S’ such that Gi and Gj are heterozygous to s2, and H1 and H4 have differ-
ent alleles for s2. Therefore Gi and Gj are oppositely phased on s1 and s2. Since H1, H2, 
H3, and H4 are distinct, they violate the 4 gamete rule on s1,s2, in contradiction to 
Theorem 1.  � 

4   Discussion 

We studied here several questions arising in haplotype inference under the perfect 
phylogeny model. We introduced the model of xor-genotypes, and showed results that 
lay the computational foundation for the use of such data: (i) Inference of the sample 
haplotypes (up to negation) by adapting graph realization algorithms. (ii) Only two or 
three additional full genotypes are needed to completely resolve the haplotypes.  

Simulations with genetic data show that xor genotypes are nearly as informative as 
full genotypes. Hence, genotyping methods that distinguish only between heterozy-
gotes and homozygotes could potentially be applied to large scale genetic studies. 
Xor-genotypes may have economical advantage over the complete genotypes com-
mon today, since the information in a xor-genotype is only a fraction of the informa-
tion given by a complete genotype. The feasibility and economic benefit of xor-
genotype data cannot be appreciated by currently available technologies, but this 
work lays the foundation for evaluating the cost-effectiveness of technologies for 
obtaining such data.  

The second part of the manuscript studied choosing a subset of the SNPs that fully 
describes the sample haplotypes. We provided efficient solutions to several optimiza-
tion problems arising in this topic: We generalized previous results by finding optimal 
informative SNP set for any interesting set, and more generally, showed how to han-
dle differential costs of SNPs. Finally, we have shown how to find tag SNPs for geno-
type data, which generalize the definition of tag SNPs to a more practical aspect. 
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