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Supplementary Figure 1 

 

Supplementary Figure 1 Illustration of the DICER algorithm local search; A) An edge (u,v) in 

G is used as a starting point to form two sets U and V, which are the neighbors of u and v in H, 

respectively. B) Nodes are removed if they are not densely connected to their set in H or not 

densely connected to the other set in G. The final result after removing these nodes is shown – a 

pair of modules in H that are strongly linked in G. 
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Supplementary Figure 2 

 

Supplementary Figure 2 Possible pitfalls of local improver that can be solved by the global 

improver.  Edges of H are colored black; edges of G are colored blue. The number of a node is 

the module it belongs to. The initial solution that is provided to the improver is encircled by a 

dashed line. A) Given an initial solution that contains modules 0 and 2, a new module cannot be 

formed by the local improver. Hence, module 1 cannot be detected. B) Given an initial solution 

that partitions module 0 and links each part to a different module, the local improver cannot 

merge the two parts of module 0 since module 1 and module 2 are not linked. 
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Supplementary Figure 3 

 

A) Un-weighted

 
 

B) Weighted

 
Supplementary Figure 3 Performance of module map algorithms on simulated data with 1000 

nodes. A) Unweighted graphs. B) Weighted graphs. The 1000-node graphs contain an embedded 

module-map of six modules in a tree structure. In addition, random cliques and bicliques are 

embedded in the graphs. Module, clique, and biclique size is chosen uniformly at random 

between 10 and 20. In the un-weighted model each edge is replaced by a non-edge with 

probability p, and vice versa. In the weighted model edge weights are sampled from the normal 

distribution N(1,σ), and non-edge weights are sampled from the normal distribution N(-1, σ). A-

B) The top four performing algorithms are presented. The y-axis shows the Jaccard coefficient 

between the output of the algorithms and the known modules. 
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Supplementary Figure 4 

 

 

 
 

Supplementary Figure 4 Comparison of DICERk variants for different values of k on simulated 

unweighted data with 1000 nodes and 20 modules. A) Performance. B) Running times. The 1000-node 

graphs contain an embedded module-map of 20 modules in a tree structure. In addition, random cliques 

and bicliques are embedded in the graphs. Module, clique, and biclique size is chosen uniformly at 

random between 10 and 20. Each edge is replaced by a non-edge with probability p, and vice versa. The 

results show that using k=5 gives better performance than k<5, and that k>5 does not improve 

performance. Running times are very similar for k>3.  Based on these results, since we expect biological 

data to contain both large and small modules, we concluded that using k=5 gives a good balance of quality 

and considering small modules, and used it in subsequent analyses. 
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Initiators 

We tested five different initiators. Three are based on previous methods and two are novel. The 

three extant initiators contained the DICER algorithm (23) and two clustering algorithms. We 

developed two additional initiators. The first is a modification of the DICER initiator, and is 

called DICERk. The second utilizes an exhaustive solver for the maximal biclique problem 

(24,25) and is called MBC-DICER. 

The DICERk initiator 

The DICER initiator (23) starts from a positive edge (u,v) in G, and defines two node sets (U,V), 

where U is the set of (high weight) neighbors of u in H, and V is the set of neighbors of v in H. 

The goal is to remove nodes from U and V such that the resulting sets will constitute heavy sub-

graphs of H and the weight of edges between U and V will be high in G. A simple example is 

shown in Supplementary Figure 1. Nodes that appear both in U and V are removed. In the next 

step, nodes in U and V are removed if this improves the score of the module map link in G or the 

module scores in H. 

DICER works greedily, by iteratively removing a “bad” node, that is, a node that either has a 

negative sum of edge weights in H with its own group, or has a negative sum of weights in G 

with the other group. The total score of a node is the sum of the two scores. Nodes for which both 

G and H scores are negative are removed first, followed by other bad nodes, sorted by their total 

score. The process ends when there are no bad nodes. The resulting node sets U’ and V’ are 

accepted as modules only if each of them contains at least k nodes. In that case the nodes of U’ 

and V’ are removed from the graphs, and the process is repeated until no new module pair is 

found. In the original DICER algorithm we used k=2. Here we used k=5, which provided better 

results on real and simulated data (see Results). 

The MBC-DICER initiator 
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We now describe an alternative method for constructing initial node sets U and V. Define an un-

weighted graph G’= (V,E’) with the same node set as G, and edge (u,v) E’ if and only if 

WG(u,v)>0. Two disjoint node sets (U,V) are called fully connected or a biclique in G’ if every u 

  U is connected to every v   V. A biclique (U,V) is maximal if it is not a proper subset of 

another biclique. We search for maximal bicliques in G’ using an exhaustive solver (24,25), 

restricting the search to maximal bicliques (U,V) such that |U| k and |V| k. Each such pair 

(U,V) is then subjected to the node removal procedure. 

Since the number of maximal bicliques can be exponential (24,25) we use only the first 50,000 

discovered bicliques as candidates for the node removal stage of the DICERk algorithm. Let S be 

a heap that contains the current set of candidate bicliques. We select the biclique (U,V) in S of 

maximal size |U|+|V| as the next candidate. The node removal stage produces from (U,V) a 

module pair (U’,V’). If the latter is accepted, we remove the nodes of U’ and V’ from G’ and 

from all bicliques in S, and remove bicliques whose new size is less than 2k. When S is empty we 

try to run the solver again. If the solver fails to find additional bicliques then the process is 

terminated.  

Clustering algorithms 

We included in our tests two clustering algorithms. Both look for clusters in H and disregard 

information from G. The first is complete-linkage hierarchical clustering (26). The second, which 

we call NodeAddition, starts with all nodes as modules, and repeatedly adds a singleton (a 

module with a single node) to a module if the sum of edge weights between them is the largest 

among all singleton-module pairs. This process is repeated until no singletons remain or until the 

best sum is negative. 
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Proof of the guaranteed improvement during the iterations of the global improver  

Notations: The input to the problem is a pair of networks H=(V,E,WH) and G=(V,F,WG) defined 

on the same set of vertices. These networks can be weighted or un-weighted. The goal is to find a 

module-map that summarizes both networks. A module-map is a graph F=(M,L) where M is a 

collection of disjoint node sets, called modules, M={M1,…, Mp}, Mi   V, Mi   Mj =  , and L is a 

set of module pairs {(U1,V1), …, (Up,Vp)}, where each Ui and Vi are in M. These pairs are called 

the map links an express the set of significant links among modules according to some hypothesis 

testing function. In addition, each module must be linked to at least one other module. 

The global score of the solution is the total sum WH of edge weights within each Mi plus the total 

sum of WG edge weights between each linked node set: 

               

 

            

               

 

Where WH(Mi) is the total sum of weights within Mi in H, and WG(Mk, Ml) is the total sum of 

weights between Mk and Ml in G. The improvement stage merges a pair of node sets if the merge 

improves the global score. This process is done greedily: iteratively, the merge that yields the best 

improvement is performed until no possible merge can improve the global score. 

We perform multiple merge steps simultaneously in a single iteration in a way that guarantees 

that the global score improves. Let Li be the group of sets linked to Mi. Denote Mij as the set 

resulting from merging Mi and Mj. Let Lij be the group of sets linked to Mij after performing the 

merge. Consider a case where two possible merges can improve the global score of a given 

solution (M,L): Mi with Mj, and Ma with Mb. If there is no overlap between the union of the sets 

Mi,Mj, Li, Lj, Lij and the union of the sets Ma,Mb, La, Lb, and Lab then we say that {Mi,Mj} and 

{Ma,Mb} are gain-independent.  

Theorem: When two possible merge steps {Mi,Mj} and {Ma,Mb} are gain-independent, 

performing both merge operations will improve the global score. Moreover, if the gain of the first 

merge is gij and the gain of the second merge is gab then the gain of performing both merges is at 

least gij + gab. 

Proof:   Let M={M1,…, Mn} be the partition of the node set before the merge, and let L={ 

(U1,V1), …, (Up,Vp)} be the links, where each Ui and Vi are in M. The global score after merging 

Mi and Mj can be written as: 
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Thus, the gain can be written as:  

                          

     

              

     

              

      

   

Note that under our assumptions of gain-independence this term does not involve any of the sets 

Ma,Mb, La, Lb, and Lab. Therefore after merging Ma and Mb we get:  

                                                  

Where  =1 if Mij is linked to Mab and  =0 otherwise. Thus, performing the additional merge 

between Ma and Mb would add gab to the new global score. The total gain is at least gij+gab since 

we perform the merge steps without examining the possible link between Mij and Mab    

Corollary: A sequence of l merge steps can be performed simultaneously if the k’th merge in the 

sequence is gain-independent of merges 1 through k-1, for k=1,…,l.    

As a result of the theorem, instead of performing a single merge step and estimating the links on 

the new set we perform several merges, and evaluate the links between the new sets after 

merging. When we consider the merges in an iteration of the global improver, if many have a 

positive gain, we select the top B gains (we used B=1000). We then perform the set of merge 

steps ordered by their gain, skipping a merge if it is not gain-independent with all previous 

merges. We repeat this process until there is no merge that improves the global score.   

While the asymptotic worst-case running time of this procedure is similar to performing a single 

merge at a time, we discovered that in practice many merge steps are performed per iteration. For 

example, in the lung cancer differential correlation analysis the maximal number of merges per 

iteration was 20, and the average was 4. 
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Comparison of scores for module links in the global improver  

Our global improver used a statistical score to determine if two modules are linked. When the 

graphs are weighted, either the Wilcoxon rank-sum (WRS) test or the simpler hyper-geometric 

(HG) test can be used. We compared of the results of the global improver with each of the two 

scores using simulations. We generated weighted and unweighted graphs with 2000 nodes and 20 

modules (see the main text for details).  In each test, we ran the global improvers with both scores 

on the initial solution of DICER5. For graphs without any noise (i.e., the graph induces a perfect 

module map) the running times of the HG and WRS variants were 3 and 240 seconds 

respectively. Both variants perfectly discovered the planted module-map. On unweighted graphs, 

when the noise levels were increased to p=0.1, both algorithms reached the same performance of 

0.97 but the HG running time was 3.8 seconds and the running time of the WRS variant was 394 

seconds. We also applied the same test on weighted graphs with a standard deviation noise level 

of 0.8. The performance of the HG variant was 1 in 3.85 seconds. The performance of the WRS 

variant was 0.975 in 603 seconds. Our results show that the HG variant is much faster than the 

WRS variant, but achieves a similar performance. 
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Comparison to other weighted approaches 

In our analysis in the main text we used un-weighted PPI and GI networks and included 

algorithms that are akin to previous methods (1-4). Other extant methods make use of the 

probabilistic scores of each GI edge, and incorporate both positive and negative GIs (5,6). 

Leiserson et al. (6,7) developed a method called Genecentric, which looks for locally maximum 

cuts in the GI graph. On the data of Collins et al (8), this method was reported to outperform 

other methods, including algorithms that integrate GI and PPI information (9,10). We compared 

the performance of our methods to Genecentric and the graph compression method of Kelley and 

Kingsford (5), on the Collins data. Note that the other methods use all GIs while our algorithm 

uses only the negative GIs of the Collins data. Genecentric solution contained 116 modules of 

average size 10.75. These modules were paired, so that the map contains 58 links. Kelley and 

Kingsford reported 117 modules of average size 3, and the map contained 403 links. The results 

are summarized in the table below. Kelley and Kingsford reported many small modules that are 

not significantly enriched after FDR correction. Thus, the percent of enriched modules and links 

is not high. The solution of Genecentric covered 1248 genes, whereas the ModMap solution 

covered only 238 (in 32 modules). The total number of enriched GO terms in our solution was 53, 

compared to 39 in Genecentric’s solution. Finally, 79% of the links in our map were enriched, 

compared to only 43% in Genecentric. This comparison indicates that ModMap produces 

comparable or better maps than state of the art methods for analysis of GI data. 

 

Comparison of  ModMap to extant methods on the yeast PPI and GI data of Collins et al.  

Algorithm Number 

of 

modules 

Gene 

coverage 

Maximal 

module 

size 

Number 

of 

enriched 

GO terms 

Percent 

enriched 

modules 

Number 

of links 

Percent 

enriched 

links 

ModMap 32 238 20 53 84 67 79 

Genecentric 116 1248 25 39 63 58 43 

Kelley and 

Kingsford 

117 355 17 32 17 403 6 
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Differential correlation cross-validation analysis  

Our tests on human data utilized expression profiles of lung cancer and Alzheimer’s disease and 

matching controls in each dataset. The first tested dataset, GSE13255 (11), contained 256 

peripheral blood mononuclear cells gene expression profiles of patients with non-small cell lung 

cancer (NSCLC, n=150) and controls (n=106). The second tested dataset, GSE15222 (12), 

contained 363 post mortem cortex gene expression profiles of Alzheimer’s disease (AD) patients 

(n=176) and controls (n=187). Since the networks used in this analysis were completely different 

from these used in the yeast studies, we first re-evaluated the different algorithms on them, based 

on the ability to reveal major changes in co-expression between sick and healthy individuals.  

We used the method of Amar et al. (4) to compute two log-likelihood ratio scores for each gene 

pair: the consistent correlation (CC) score is positive if the gene pair is consistently correlated 

across phenotypes,  and the differential correlation (DC) score is positive if the correlation 

difference between the cases and controls is higher than expected by chance. These scores were 

then used as edge weights in networks H and G, respectively, on which a module map was 

learned.  

Given a module map constructed on a set of profiles (the training set) and a disjoint set of 

samples (the test set), the quality of the map prediction was evaluated on the test set as follows. 

For each pair of modules we calculated the absolute average DC between the modules on the test 

set data, and compared the DC values for links and non-links (i.e., two modules in the map that 

are not linked) using the Wilcoxon rank-sum test, where the null hypothesis is that there is no 

difference in DC between links and non-links. This measure is parameter-free and reflects all DC 

changes. As an additional test, in order to focus on major DC changes, we ignored all links with 

DC < 0.4, removed unlinked modules and calculated the proportion and number of remaining 

modules, links and the gene coverage. These parameters reflect the overall predictive quality of 

each reported map, and its ability to find strong DC signals. We used 2-fold cross-validation, that 

is, half of the data served as the training set, and the other half served as the test set. The process 

was repeated with the roles of test and training set switched and results were averaged.  

An important parameter in calculating the DC LLR scores is the prior probability of real DC 

changes. In (4) a parameter K controlled this prior probability. Given a value of K, the prior 

probability was set such that only DC scores that are distant from the mean of the random 

distribution by at least K standard deviations (of the random distribution) will get a positive LLR 

score. Informally, this process guarantees that if the difference between the real and random 
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distributions is minor, all LLR scores will be negative. In  (4) a stringent approach was taken and 

the K parameter was set to 2. In this study we take a different, more direct approach to set the 

prior probability, using the following simple procedure: given a fixed threshold η>0 we set the 

prior to the maximal probability for which the LLR of η is negative. The intuition is that only DC 

of at least η receives a positive LLR score. Thus, unlike the K parameter, our approach is easily 

interpretable: we are guaranteed that absolute correlation changes lower than η will be assigned a 

non-positive LLR score. We used η= 0.4,  which was equivalent to K2.3 on the tested datasets. 

Thus, our criterion was even slightly more conservative than (4). 

An important parameter of the global improver is α, which is used to determine if the link 

between two modules is significant. We tested several values for α: 1E-4, 1E-6, and 1E-8. For 

each combination of an initiator and a value of α, we evaluated the map using the Wilcoxon rank 

sum test as explained above. The performance of the different initiators as a function of α is 

shown in the table below. A clear advantage for α=1E-6 is observed. For this value, the p-values 

of all initiators except DICER remain significant after Bonferonni correction over all tests. In 

addition, a clear advantage for MBC-DICER (i.e., ModMap) is observed, achieving a p-value of 

1.54E-10 in the lung cancer data, and 9.06E-6 in the AD data. 

Algorithm -log10() Lung cancer AD 

DICER 4 0.029494 9.02E-07 

DICER5 4 0.003697 5.31E-07 

hierarchical 4 0.23858 1.48E-07 

ModMap 4 0.12515 4.69E-04 

NodeAddition 4 0.471779 4.31E-04 

DICER 6 1.38E-07 0.026652 

DICER5 6 7.23E-07 4.21E-04 

hierarchical 6 1.80E-10 1.57E-04 

ModMap 6 1.54E-10 9.06E-06 

NodeAddition 6 4.49E-05 0.00115 

DICER 8 0.067356 0.019777 

DICER5 8 0.021281 0.463172 

hierarchical 8 0.373946 0.014721 

ModMap 8 0.343799 0.110778 

NodeAddition 8 0.394908 0.334608 
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The full cross-validation results for α=1E-6 are shown in Supplementary Table 11 (NSCLC 

data) and Supplementary Table 12 (AD data). The maps produced by the local improver 

received a very low p-value in the Wilcoxon rank-sum test between DC of map links and non-

links, but suffered from low coverage. For example, for the MBC-DICER initiator, the local 

improver achieved a p-value of 4.43E-4 in the NSCLC data, and 3.31E-11 in the AD data. 

However, the map covered 197 genes in the NSCLC data, and 2197 genes in the AD data. In 

contrast, when applying ModMap (i.e., MBC-DICER with the global improver), the coverage 

was 1289 and 4955, respectively, with comparable p-values (1.54E-10, and 9.06E-6). Taken 

together, ModMap produces large maps that are robust when tested on independent datasets. 
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Supplementary Table 3: Performance of algorithms in the analysis of the yeast PPI and negative 

GI networks 

Initial 

algorithm 

improver Number 

of 

modules 

Mean 

module 

size 

Gene 

coverage 

Maximal 

module 

size 

Num 

enriched 

terms 

Percent 

enriched 

modules 

Mean 

raw p-

value 

Percent 

enriched 

links 

Num 

links in 

map 

DICER5 global 103 9.29 957 46 249 0.82 3.4E-08 0.74 438 

DICER global 104 8.05 837 34 192 0.67 1.1E-07 0.61 498 

hierarchical global 123 7.13 877 30 186 0.68 1.6E-07 0.59 394 

ModMap (global) 100 9.46 946 49 243 0.87 4.7E-08 0.8 430 

Node 

Addition 

global 102 9.31 950 49 240 0.83 4.2E-08 0.79 430 

DICER local 6 8.17 49 12 15 1 8.7E-07 1 3 

DICER5 local 28 6.86 192 9 54 0.82 1.3E-06 1 2 

hierarchical local 5 8 40 12 14 1 9.3E-07 1 3 

MBC-

DICER 

local 4 8 32 9 10 1 2.4E-14 1 2 

Node 

Addition 

local 2 7.5 15 9 5 1 8.5E-14 1 1 

DICER - 606 2.75 1667 9 

19 1 

5.9E-07 

- - 

DICER5 - 14 5.57 78 8 

75 0.07 

3.8E-07 

- - 

hierarchical - 1319 2.06 2722 10 

200 0.07 

1.4E-07 

- - 

MBC-

DICER 

- 4 6 24 8 

71 0.04 

6.4E-07 

- - 

Node 

Addition 

- 1044 2.49 2600 49 

7 1 

6.5E-11 

- - 
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Supplementary Table 9: Enrichment analysis results on the ModMap modules in the PPI and 

DNA damage-specific GI data 
 

Module Category p-

value 

Raw 

P-

value 

Gene IDs 

module_0 DNA repair - 
GO:0006281 

0.037 7.01E-
05 

[YJL092W, YDR092W, YCR066W, YLR032W] 

module_1 proteasome accessory 
complex - GO:0022624 

0.001 3.36E-
17 

[YOR117W, YKL145W, YFR052W, YDR394W, 
YGL048C, YPR108W, YBR272C, YDL007W] 

module_4 Rpd3L complex - 
GO:0033698 

0.001 1.79E-
21 

[YOL004W, YMR075W, YPL181W, YBR095C, 
YDR207C, YPL139C, YKL185W, YPR023C, 
YNL330C, YNL097C] 

module_5 cytoplasmic translation - 
GO:0002181 

0.001 6.80E-
22 

[YJL177W, YGL031C, YHR203C, YLR287C-A, 
YDL083C, YGL147C, YCR031C, YBR181C, 
YBL027W, YDR382W, YPL090C, YNL069C, 

YBL092W, YDR025W] 

module_6 nucleolus - GO:0005730 0.001 1.05E-
13 

[YLR009W, YLR197W, YER002W, YDR496C, 
YOR272W, YFL002C, YDL014W, YPR016C, 
YMR049C, YOL077C, YNL061W] 

module_6 preribosome - 

GO:0030684 

0.001 2.41E-

13 

[YLR009W, YLR197W, YER002W, YOR272W, 

YFL002C, YDL014W, YPR016C, YMR049C, 
YOL077C, YNL061W] 

module_6 ribosome biogenesis - 
GO:0042254 

0.001 4.50E-
13 

[YLR009W, YLR197W, YER002W, YDR496C, 
YOR272W, YFL002C, YDL014W, YPR016C, 
YMR049C, YOL077C, YNL061W] 

module_6 ribosomal large subunit 

biogenesis - 
GO:0042273 

0.001 3.86E-

12 

[YLR009W, YER002W, YDR496C, YOR272W, 

YFL002C, YPR016C, YMR049C, YOL077C] 

module_6 preribosome, large 
subunit precursor - 
GO:0030687 

0.001 7.40E-
11 

[YLR009W, YER002W, YOR272W, YPR016C, 
YMR049C, YOL077C, YNL061W] 

module_7 cullin-RING ubiquitin 
ligase complex - 
GO:0031461 

0.001 2.70E-
07 

[YLR320W, YJL047C, YHR154W, YPR164W] 

module_7 DNA-dependent DNA 
replication - 
GO:0006261 

0.005 5.72E-
06 

[YPR135W, YLR320W, YJL047C, YPR164W] 

module_7 response to DNA 
damage stimulus - 
GO:0006974 

0.016 1.72E-
05 

[YPR135W, YLR320W, YJL047C, YHR154W, 
YPR164W] 

module_8 Arp2/3 protein complex 
- GO:0005885 

0.001 1.34E-
09 

[YDL029W, YNR035C, YJR065C, YIL062C] 

module_8 actin cortical patch - 
GO:0030479 

0.001 1.69E-
09 

[YDL029W, YNR035C, YJR065C, YIL062C, 
YLR337C] 

module_9 DNA replication-
independent nucleosome 
assembly - GO:0006336 

0.001 4.99E-
13 

[YJR140C, YBR215W, YBL008W, YJL115W, 
YNL206C] 

module_11 Set3 complex - 

GO:0034967 

0.001 1.34E-

09 

[YBR103W, YCR033W, YGL194C, YKR029C] 

module_11 covalent chromatin 
modification - 
GO:0016569 

0.001 1.42E-
07 

[YBR103W, YCR033W, YHR119W, YGL194C, 
YKR029C] 
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Supplementary Table 10: The module links of the ModMap solution in the PPI and DNA 

damage-specific GI data 

Module A Module 

B 

module_1 module_0 

module_2 module_0 

module_3 module_2 

module_5 module_0 

module_5 module_4 

module_6 module_0 

module_6 module_3 

module_7 module_0 

module_7 module_1 

module_7 module_2 

module_7 module_6 

module_8 module_0 

module_8 module_7 

module_9 module_2 

module_9 module_3 

module_10 module_0 

module_11 module_0 
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Supplementary Table 11: Cross-validation results in the NSCLC data 

  Original solution Ignoring DC below 0.4 in the test set 

Initiator 
Improve
r 

Gene 

coverage 

Mean 

module 

size 

Median 

module 

size 

Number 

of map 

links 

Number of 

modules 

Max 

module 

size 

Gene 

coverage 

Number 

of 

modules 

Number 

of map 

links Pvalue 

DICER global 2446.5 15.75 8 1022.5 156 196.5 1578 90 
9.10E+0

1 1.38E-07 

DICER5 global 2101 19.24 9 853 111 200.5 1464.5 70.5 93 7.23E-07 

hierarchical global 2642 18.50 9.5 892 142.5 252 1677.5 77.5 90 1.80E-10 

ModMap (global) 1939.5 21.38 9 622 92 220.5 1289.5 57 67 1.54E-10 

Node 
Addition global 2617 20.44 8 788 128.5 260 1488.5 69.5 77.5 4.49E-05 

DICER local 1613 8.87 7 102 181.5 52.5 238.5 22.5 2 3.30E-07 

DICER5 local 1105 12.51 8.5 113 88 55.5 261.5 25 19 6.79E-06 

hierarchical local 535 14.87 11 32 36 59.5 160.5 11 8 0.013 

MBC-

DICER local 724 15.03 10.5 70.5 50 46.5 197 15.5 11 4.43E-04 

Node 
Addition local 331 15.52 16 24.5 22 45 29 3 2 0.065 
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Supplementary Table 12: Cross-validation results in the AD data 

  Original solution Ignoring DC below 0.4 in the test set 

Initiator 
Improve
r 

Gene 

coverage 

Mean 

module 

size 

Median 

module 

size 

Number 

of map 

links 

Number of 

modules 

Max 

module 

size 

Gene 

coverage 

Number 

of 

modules 

Number 

of map 

links Pvalue 

DICER global 

5219.5 62.26 16.5 787.5 84 534 4324 65 112 2.67E-02 

DICER5 global 

5214.5 64.03 14.5 783.5 82 544 4642.5 65 110 4.21E-04 

hierarchical global 

5703 55.48 14 1188.5 103.5 747.5 4770.5 74 142 1.57E-04 

ModMap (global) 

5360 70.55 22 908 76 649.5 4955.5 62.5 122.5 9.06E-06 

Node 

Addition global 

5610 64.57 10.5 781.5 87 1052 4969.5 60 112 1.15E-03 

DICER local 

4057.5 25.16 11 148.5 161.5 302.5 1934 52.5 55 0 

DICER5 local 

3980.5 30.00 12.5 216.5 134 318 2531 70.5 75.5 8.88E-16 

hierarchical local 

3709.5 34.82 16.5 225.5 106.5 250 2155 51 55.5 7.69E-12 

MBC-
DICER local 

3906.5 34.58 18 249.5 114 218 2197 60.5 62 3.31E-11 

Node 
Addition local 

1793.5 91.63 50 23 19.5 328 1161.5 11.5 7.5 7.30E-02 
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Supplementary Table 15: Enrichment analysis of the modules in the ModMap solution in the 
NSCLC data 
 

Module Term # genes Raw p-value Corrected P-value Genes 

KEGG  
module_11 Primary 

immunodeficiency 

4 8.13E-06 3.58E-04 [CD19, TNFRSF13C, 

CD79A, BLNK] 

module_11 B cell receptor 

signaling pathway 

6 3.03E-08 2.54E-06 [CR2, CD19, 

RASGRP3, CD79A, 

CD72, BLNK] 

module_12 T cell receptor 

signaling pathway 

4 1.37E-04 0.0161 [ITK, PRKCQ, 

RASGRP1, CD28] 

module_20 Glycolysis / 

Gluconeogenesis 

4 1.60E-05 0.00113 [HK3, ALDH2, FBP1, 

ALDH3B1] 

module_20 Pentose phosphate 

pathway 

2 0.00275 0.0961 [PGD, FBP1] 

module_3 mTOR signaling 

pathway 

2 6.43E-04 0.0392 [HIF1A, PIK3CB] 

miRNA 

module_11 mir-34a/34b-

5p/34c/34c-

5p/449/449abc/699 

5 8.45E-04 0.002 [ZDHHC23, CR2, 

E2F5, AFF3, 

CNTNAP2] 

module_11 mir-33/33ab 3 0.0114 0.0075 [BACH2, AFF3, 

STRBP] 

module_2 mir-125/351 9 0.053 0.0015 [PACS2, 

ST6GALNAC6, 

RABEP2, ARHGEF1, 

MED15, ULK3, 

MKNK2, LYPLA2, 

KLC2] 

module_2 mir-204/211 7 0.148 0.002 [GET4, AP2A2, 

BCL9L, BIN1, 

SDHAF1, DNM2, 

RIN3] 

module_3 mir-340/340-5p 3 0.048 0.011 [CDC42SE2, JAK1, 

HERC3] 

module_33 mir-124/506 3 0.0278 0.046 [NUMA1, ABHD4, 

BMF] 

 


