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ABSTRACT
Motivation: The search for genetic regions associated with
complex diseases, such as cancer or Alzheimer’s disease, is
an important challenge that may lead to better diagnosis and
treatment. The existence of millions of DNA variations, primar-
ily single nucleotide polymorphisms (SNPs), may allow the fine
dissection of such associations. However, studies seeking dis-
ease association are limited by the cost of genotyping SNPs.
Therefore, it is essential to find a small subset of informative
SNPs (tag SNPs) that may be used as good representatives
of the rest of the SNPs.
Results: We define a new natural measure for evaluating the
prediction accuracy of a set of tag SNPs, and use it to develop a
new method for tag SNPs selection. Our method is based on a
novel algorithm that predicts the values of the rest of the SNPs
given the tag SNPs. In contrast to most previous methods, our
prediction algorithm uses the genotype information and not
the haplotype information of the tag SNPs. Our method is very
efficient, and it does not rely on having a block partition of the
genomic region.

We compared our method with two state-of-the-art tag SNP
selection algorithms on 58 different genotype datasets from
four different sources. Our method consistently found tag
SNPs with considerably better prediction ability than the other
methods.
Availability: The software is available from the authors on
request.
Contact: kgad@tau.ac.il

1 INTRODUCTION
Most of the genetic variation among different people can be
characterized by single nucleotide polymorphisms (SNPs),
which are mutations at single nucleotide positions that
occurred during human history and were passed on through
heredity. Most of these SNPs are biallelic, i.e. only two
bases (alleles) are observed across the population at such
sites. It has been estimated that there are about 7 million

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint first Authors.

common SNPs (i.e. SNPs with minor allele frequency of at
least 5%) in the human genome (Kruglyak and Nickerson,
2001; Botstein and Risch, 2003). Alleles of SNPs in close
physical proximity to each other are often correlated, and
the variation of the sequence of alleles in contiguous SNP
sites along a chromosomal region (haplotype) is known to
be of limited diversity. The identification and analysis of
haplotypes, currently a major effort of the international com-
munity (http://www.hapmap.org/), is expected to play a key
role in trait and disease association studies (Martinet al., 2000;
Morris and Kaplan, 2002).

The objective of disease association studies is to find genetic
factors correlated with complex disease. In these studies, the
DNA of individuals from two populations (healthy individuals
and carriers of the disease) is sampled. Then, discrepancies in
the haplotype structure of the two populations are revealed by
various statistical tests. These discrepancies serve as evidence
for the correlation of the genomic region studied with the
disease.

Clearly, the statistical significance of the study is directly
affected by the number of individuals typed. The total cost
of the study is also affected by the number of SNPs typed.
Therefore, to save resources, one wishes to reduce the num-
ber of SNPs typed per individual. This is usually done by
choosing an appropriate small subset of the SNPs, called tag
SNPs, that could predict the rest of the SNPs with a small error.
Thus, when performing a disease association study, the genet-
icist would experimentally test for association by considering
only the tag SNPs, thereby considerably saving resources (or
increasing the power of the statistical tests by increasing the
number of individuals). Hence, a key problem is to find a set of
tag SNPs of minimum size that would have a very good predic-
tion ability. In this paper, we propose a new method, selection
of tag SNPs to maximize prediction accuracy (STAMPA) that
finds a set of tag SNPs given a genotype sample taken from a
set of unrelated individuals.

Finding a high-quality set of tag SNPs is a challenging task
for several reasons. One of the main challenges is that the
haplotype information is usually not given, and instead we
get the genotypes. As opposed to haplotypes, the genotypes
give bases at each SNP in both copies of the chromosome,
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but lack the phase, i.e. information as to the chromosome on
which each base appears. Owing to technology constraints,
most sequencing techniques provide the genotypes and not
the haplotypes. There are however, computational tools that
use the correlations between neighboring SNPs in order to
predict the phase information. Their accuracy depends on the
proximity and correlation of the tagged SNPs. When a set of
tag SNPs is chosen and then tagged, the rest of the SNPs are
not measured and instead must be predicted from this inform-
ation. The accuracy of such prediction is limited, since the
correlation between the tag SNPs is not necessarily as strong
as the correlation between SNPs that are in close proximity
to each other. One of the advantages of our tag SNPs pre-
dictor is that it only uses the genotype information and does
not require knowledge of the haplotypes of the tag SNPs. We
use the phase information in a reference training set to select
the tag SNPs, and subsequently predict the other SNP values
in a test individual on the genotype of that individual for the
tag SNPs only. To the best of our knowledge, all extant pro-
grams that aim to explicitly predict individual SNPs use the
haplotypes of the tag SNPs.

Another issue that is crucial in the search for tag SNPs is
the definition of an adequate measure of the prediction qual-
ity. Many of the current tag SNP selection methods partition
the region into blocks of limited diversity (e.g. Zhanget al.,
2002, 2003, 2004), and find a set of tag SNPs that aims to pre-
dict the common haplotypes of each block. There are various
disadvantages to such methods, most apparent is the lack of
cross-block information and the dependency of the tag SNPs
choice on the block definition. We propose here a new nat-
ural measure, prediction accuracy, which directly evaluates
the average SNP prediction quality.

There is a large body of research on finding a highly pre-
dictive set of tag SNPs (Zhanget al., 2002; Avi-Itzhaket al.,
2003; Bafnaet al., 2003; Carlsonet al., 2004; Pe’eret al.,
2004). In contrast to most previous methods, our method uses
the genotype information for the tag SNP selection. Zhang
et al. (2004) have also used genotypes information for tag
SNP selection. However, their study selects the SNPs so as to
maximize haplotype diversity, and given the genotypes of the
tag SNPs in a tested individual it infers blocks and common
haplotypes, but does not predict the individual SNPs. Another
key difference between our method and previous ones is that
we do not rely on any block partition.

We performed extensive tests ofSTAMPA on genotypes
from a variety of sources. Our tests covered 58 datasets
from four sources: HapMap project http://www.hapmap.org,
ENCODE project http://www.hapmap.org, Dalyet al. (2001),
and Gabrielet al. (2002). We show that usingSTAMPA, very
accurate results are achieved. For example, only 17 tag SNPs
out of 103 SNPs (16.5%) suffice to attain prediction accuracy
of 95% in the data of Dalyet al. (2001). Our method is also
very efficient: runs on a regular PC required seconds to several
minutes on all datasets.

We compared our algorithm with two state-of-the-art tag
SNP selection algorithms: ldSelect (Carlsonet al., 2004) and
HapBlock (Zhanget al., 2004). Our experiments show that
STAMPA consistently outperforms both these methods. On the
average ldSelect uses ten times more tag SNPs thanSTAMPA

in order to achieve prediction accuracy of 90%. Our algorithm
was also more accurate than HapBlock on each of the 58
datasets, sometimes by>15%. Moreover, the running time
of STAMPA was much less than HapBlock. For example, on
chromosome 5q31 dataset,STAMPA was faster by a factor of
97. Such advantage will be more prominent on future larger
datasets.

2 PROBLEM FORMULATION
In order to present our method, we first formalize the problem
of tag SNPs prediction. We first need to introduce some nota-
tions and definitions. Since we are only interested in biallelic
SNPs, we assume that each haplotype is represented by a bin-
ary string. Thus, a haplotype of lengthm is a sequence over
{0, 1}m. A genotype of lengthm is represented by a{0, 1, 2}
sequence, where 0 and 1 stand for the homozygous types{0, 0}
and{1, 1}, respectively, and 2 stands for a heterozygous type.
We are given a set ofn genotypesg1, . . . ,gn of length m

each. We usegi,j to denote thej -th component (0, 1 or 2)
of the vectorgi . A phasing of a genotypegi is a pair of hap-
lotypes,h1

i ,h2
i ∈ {0, 1}m, such thath1

i,k �= h2
i,k if gi,k = 2 and

h1
i,k = h2

i,k = gi,k if gi,k ∈ {0, 1}. We also use the notationg(j)

to denote thej -th SNP in genotypeg.
Consider a genomic region that spans a set ofm SNPs.

The frequencies of the genotypes in that region across the
entire populations are given by some unknown distribution
function Pr(gi ∈ G), where G is the sample space of all
genotypes in the population. A prediction algorithm is a func-
tion f : {0, 1, 2}t → {0, 1, 2}m. Informally, the prediction
algorithm uses the genotype values of the tag SNPs in order
to predict the values of the rest of the SNPs. For a given vec-
tor q ∈ {0, 1, 2}t of tag SNPs values, letfj (q) denote thej -th
component of that vector. Note thatfj refers to the com-
ponents of the predicted vector of allm SNPs, given the
tag genotypesq. Finally, let zT : {0, 1, 2}m → {0, 1, 2}t be
the restriction of the genotype to the tag SNPs position. For
instance, for a set of tag SNPsT = {1, 3, 5, 6} the restriction
of the genotypegi = 0122010 iszT (gi) = 0201.

Our goal is to find a minimum size set of tag SNPs and a
prediction algorithm, such that the prediction error is minim-
ized. Formally, for a givent , our objective is to find a set of
tag SNPsT of size t and a prediction functionf , such that
the following expression is minimized.

η =
m∑

j = 1

Pr[fj (zT (g)) �= g(j)], (1)

where the probability is over the sample space given by
Pr(g ∈ G). In other words, for a randomly picked individual
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ALGORITHM Predict(i,j1,j2,a1,a2)

Input: i, j1, j2 ∈ {1, . . . ,m}, anda1,a2 ∈ {0, 1, 2}.
Output: An integerv ∈ {0, 1, 2} which is a predicted value of a SNP in positioni, given that in positionj1 andj2 the values are
a1 anda2 respectively.

1. For every(x,y, z) ∈ {0, 1}3 we let C(x,y, z) = {(j ,p) | h
p

jj1
= x,hp

jj2
= y,hp

ji = z} be the set of haplotypes having the
valuesx,y, z in positionsj1, i andj2 respectively.

2. LetA(x,y) = z ∈ {0, 1}, where|C(x,y, z)| ≥ |C(x,y, 1− z)| breaking ties arbitrarily.

3. Letc(x,y) = |C(x,y, 0)| + |C(x,y, 1)|.
4. We compute the values of two variablesx,y using the following case analysis.

• If a1 < 2 anda2 < 2, then we setx = y = A(a1,a2).

• If a1 = 2, a2 = 2 andc(0, 0) · c(1, 1) ≥ c(0, 1) · c(1, 0), thenx = A(0, 0) andy = A(1, 1).

• If a1 = 2, a2 = 2 andc(0, 0) · c(1, 1) < c(0, 1) · c(1, 0), thenx = A(0, 1) andy = A(1, 0).

• If a1 = 1, a2 = 2 (a2 = 1, a1 = 2), then we setx = A(1, 1) andy = A(1, 0) (y = A(0, 1)).

• If a1 = 0, a2 = 2 (a2 = 0, a1 = 2), then we setx = A(0, 0) andy = A(0, 1) (y = A(1, 0)).

5. If x �= y output 2, else outputx.

Fig. 1. The procedure Predict. We implicitly assume that the training set and its phase are given. The variablesx andy computed by the
case analysis represent the majority votes for the two haplotypes induced by the valuesa1 anda2. Note that the output value is determined by
simply counting the frequencies of different partial haplotypes in the training set that matcha1 anda2 and taking the majority vote.

from the population, we want to minimize the expected
number of prediction errors.

The main problem in achieving this goal is that the fre-
quencies of the genotypes in the population are unknown.
Therefore, we use a training dataset of genotypes,g1, . . . ,gn

in order to learn the distribution of genotypes in the data.
For a given prediction algorithmf : {0, 1, 2}t → {0, 1, 2}m,
we are interested in finding a set of tag SNPsT of size
t , such that expression (1) is minimized when the geno-
type is randomly picked from the training set. Formally, if
XT = |{(i, j) | gi,j �= fj (zT (gi))}|, wheregi,j is thej -th SNP
of gi , then we are looking for a setT of SNPs of sizet such
thatXT is minimized. The resulting prediction rate of the tag
SNPs depends both on the prediction functionf and on the
choice of the tag SNPs.

3 THE PREDICTION ALGORITHM
In this section we present our prediction algorithm. The
algorithm is based on the observation made by several biolo-
gical studies, that the correlation between SNPs tends to decay
as the physical distance increases (Gabrielet al., 2002; Bafna
et al., 2003; Dalyet al., 2001; Kimmel and Shamir, 2004). We
assume that given the genotypes values of two SNPs, the prob-
abilities of the values at any intermediate SNPs do not change
by knowing the values of additional distal ones. Formally, this
assumption can be stated as:

∀s: a < s < b, ∀q: q < a or q > b, ∀v ∈ {0, 1, 2}, ∀i:

Pr[gi,s = v|gi,a ,gi,b] ≈ Pr[gi,s = v|gi,a ,gi,b,gi,q ].
(2)

Thus, our prediction function predicts an SNP value using
only the values of the two closest tag SNPs to this SNP.
To be precise,fi(zT (g)) = f (gj1,gj ,gj2), wherej1 and j2

are the closest tag SNPs toj , on both sides, if possible.
Although many biological studies support this assumption,
it clearly does not hold for all SNPs or in all datasets.
However, the assumption is a rather faithful approximation
of the reality in most cases. As we shall show in Section 5,
using this assumption we achieve very high-prediction
rates.

Given a set of tag SNPsT = (s1, . . . , st ), we use the pro-
cedure Predict given in Figure 1 to predict the value of
SNP i given the value of the tag SNPs. We assume that we
are given the training set of genotypesg1, . . . ,gn together
with their corresponding haplotypesh1

1,h2
1,h1

2, . . . ,h2
n, where

h
j

i = (h
j

i1, . . . ,hj

im) ∈ {1, 2}m for j = 1, 2. The haplotypes
can be computed from the genotypes using a variety
of available algorithms (Kimmel and Shamir, 2005; Eskin
et al., 2003; Stephens and Donnelly, 2003; Greenspan and
Geiger, 2003).

Let j1 andj2, j1 < i < j2 be the positions of the tag SNPs
closest to positioni on both sides. If there is no tag SNP in
positionj2 > j , thenj1 andj2 are the last two SNPs, and if
there is no tag SNP in positionj1 < j thenj1 andj2 are the
first two SNPs. The procedure Predict(i, j1, j2,a1,a2) uses a
majority vote in order to determine which value is more likely
to appear in positioni given that positionsj1 andj2 have the
valuesa1 ∈ {0, 1, 2} anda2 ∈ {0, 1, 2}, respectively. In order
to use the phased information given by the model, we use
two majority votes to determine the two different alleles. For
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instance, ifa1 = 0 anda2 = 2, we find the most likely allele
given that the alleles in positionsj1 andj2 are both 0, and
another allele given that the alleles in positionsj1 andj2 are
0 and 1, respectively. Further details are given in Figure 1.
Note that predicting SNPi using the procedure Predict makes
no use of most of the tag SNPs—we simply ignore all the tag
SNPs except for the ones closest toi.

4 ALGORITHMS FOR TAG SNP SELECTION
Recall that our goal is to find a set of tag SNPsT of
size t , such thatXT is minimized, whereXT = |{(i, j) |
gi,j �= Predict(j , j1, j2,gi,j1,gi,j2)}|. We give two algorithms
for selecting the tag SNPs. Both algorithms use the prediction
algorithm as a subroutine. The first is a polynomial algorithm
that guarantees an optimal solution. The second is a simpler
and faster random sampling algorithm. We shall discuss their
performance in Section 5.

4.1 An exact algorithm
We now describe an algorithm that solves this problem
to optimality. The algorithm, STAMPA, uses dynamic
programming.

Let X
i,j
T = 1 if gi,j �= Predict(j , j1, j2,gi,j1,gi,j2) and let

X
i,j
T = 0 otherwise. Clearly,XT = ∑

i,j X
i,j
T . For every pair

of SNPsm1 < m2 we next define three auxiliary score func-
tions, score(m1,m2), score1(m1,m2) and score2(m1,m2),
which will be used in the dynamic program recursion. These
score functions evaluate the expected number of errors in a
subregion (a contiguous set of SNPs), given a partial set of
the tag SNPs. We assume thatm1,m2 ∈ T and that for each
m1 ≤ j ≤ m2, j /∈ T . Then, we define

score(m1,m2) =
n∑

i = 1

m2−1∑
j = m1

X
i,j
T .

Thus, score(m1,m2) is the total number of prediction errors
in SNPsm1, . . . ,m2 − 1, given thatm1 andm2 are tag SNPs,
and that there are no tag SNPs betweenm1 andm2. Since
the procedure Predict infers an SNP value by considering
only its neighboring tag SNPs, we can readily compute the
score, while disregarding the information on all the other
tag SNPs.

For score1(m1,m2), we assume thatm1 andm2 are the last
two tag SNPs. Then, the score is defined as

score1(m1,m2) =
n∑

i = 1

m∑
j = m1

X
i,j
T .

Thus, score1(m1,m2) is the the total number of prediction
errors in SNPsm1, . . . ,m when the last two SNPs are in
positionsm1,m2. Again, since Predict only uses the closest
tag SNPs in order to compute the SNP values, we can compute
score1 independently of the locations of the rest of the SNPs.

Similarly, for score2(m1,m2) we assume thatm1 andm2

are the first two tag SNPs, and define

score2(m1,m2) =
n∑

i = 1

m2−1∑
j = 1

X
i,j
T .

In this case, score2(m1,m2) is the total number of prediction
errors in SNPs 1,. . . ,m2 − 1 when the first two SNPs are in
positionsm1,m2.

We next define the functionf that will be used in the
dynamic programming recursion.f (m∗, l) is defined forl ≥ 2
and 1≤ m∗ ≤ m. For l < t , the functionf (m∗, l) rep-
resents the minimum number of prediction errors in SNPs
1, 2,. . . ,m∗, given that thel-th tag SNP is in positionm∗. For
l = t , the functionf (m∗, t) represents the minimum number
of prediction errors in all SNPs 1, 2,. . . ,m given that the last
tag SNP is in positionm∗. Formally, we definef (m∗, l) in the
following way:

• Forl = t , f (m∗, t) = ∑n
i = 1

∑m
j = 1 X

i,j
T when the last tag

SNP is in positionm∗.

• For t > l ≥ 2, f (m∗, l) = ∑n
i = 1

∑m∗−1
j = 1 X

i,j
T when the

l-th tag SNP is in positionm∗.

It is easy to verify by the definitions off and of score, score1

and score2, that the following recurrence relation holds:

f (m∗, l) =




min1≤ m′<m∗ score2(m′,m∗), l = 2,
minl−1≤ m′<m∗ {f (m′, l − 1),

+ score(m′,m∗)}, 2 < l < t

mint−1≤ m′<m∗ {f (m′, t − 1)

+ score1(m′,m∗)}, l = t .
(3)

We now apply dynamic programming in order to find the value
of f (m∗, t) for everyt ≤ m∗ ≤ m, using the above recurrence
relation. Sincef (m∗, t) is the total number of prediction errors
given that the last tag SNP is in positionm∗, it is clear that the
minimum value ofXT over all possible sets of tag SNPs of
sizet is min{m∗|t ≤ m∗ ≤ m} f (m∗, t). Using back pointers in the
process, one can also find a set of tag SNPs minimizingXT .

4.1.1 Complexity analysis We first compute the three
scores for all

(
m
2

)
possible pairs of SNPs. For every pair the

running time isO(mn). Hence, the total running time for
this stage isO(m3n). We keep the scores in a matrix and we
use that matrix in order to computef . Given the computed
scores, for everym∗ ≤ m, computingf (m∗, 2) takesO(m∗),
so doing this for allm∗ takesO(m2). Similarly, computing
f (m∗, i) for everyi < t ,m∗ < m takesO(m2t). Finally, com-
putingf (m∗, t) for everym∗ ≤ m takesO(m2). Sincet ≤ m

the total running time isO(m3n).
If the number of SNPs is large (even in the hundreds), a run-

ning time ofO(m3n) is very expensive. However, in practice,
the correlation between SNPs is decaying when the phys-
ical distance between the SNPs increases. Put differently, tag
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SNPs tend to predict well other SNPs in the same or neigh-
boring block, but not farther away. Thus, having a very large
distance between neighboring tag SNPs yields poor prediction
power. Hence, in most practical cases one can use a boundc on
the maximal distance in SNPs between neighboring tag SNPs.
c will depend on the SNP typing density and will typically
not exceed 20 or 30. In such a case, computing score(m1,m2)

takeO(mc2n) and computing score1 and score2 takeO(c3n).
Computingf (m∗, i) for eachi takesO(mtc). Thus, the total
running time isO(mtc + mc2n) = O(mc(cn + t)).

4.2 Random sampling
In some cases we are interested in finding quickly a very small
number of tag SNPs that roughly predict the rest of the SNPs,
i.e. we are willing to give up some of the prediction power if
we can get a very small number of tag SNPs. In these cases,
the assumption that the tag SNPs are close to each other cannot
be made, sincec is very large, and the exact algorithm may be
too slow. We therefore suggest a very simple and much more
efficient algorithm that does not guarantee optimal results.

The algorithm is as follows: We generate 100 sets of tag
SNPs,T1,T2, . . . ,T100, each generated by randomly picking
t positions out of them possible positions. We then compute
XTi

for i = 1, 2,. . . , 100, and we choose the set of tag SNPs
Ti that minimizesXTi

. This algorithm is very naive, but we
show that it gives reasonable results in practice.

5 RESULTS ON BIOLOGICAL DATASETS
5.1 Description of the datasets
We used four datasets encompassing 58 different genomic
regions.

• A dataset from the works of Dalyet al. (2001). In this
study, genotypes for 103 SNPs, from a 500 kb region
of chromosome 5q31, were collected from 129 mother,
father and child trios from European derived population
in an attempt to identify a genetic risk for Crohn’s disease.
We only used the population of children in this dataset.

• Population D from the study of Gabrielet al. (2002). The
data consist of 51 sets of genotypes from various genomic
regions, with number of SNPs per region ranging from 13
to 114. The sets contained 30 mother, father, child trios
that were taken from a Yoruba’s population, from which
we only used the 60 genotypes of the parents.

• Regions ENm013, ENr112 and ENr113 of the ENCODE
project (http://www.hapmap.org). These are 500 kb
regions of chromosomes 7q21.13, 2p16.3 and 4q26,
which were collected from 30 trios. The number of SNPs
genotyped in each region is 361, 412 and 515, (thus,
the density of the sample is 3–5 times greater than the
density of Dalyet al., 2001). We used the 60 genotypes
corresponding to the parents from each dataset.

• Genotypes from the HapMap project (http://www.
hapmap.org). We used three sets of SNPs spanning
the three genes PP2R4, STEAP and TRPM8. For each
of these genes we took the HapMap SNPs that are
spanned by the gene plus 10 kb upstream and down-
stream. The resulting sets contain 39, 23 and 102
SNPs. In this dataset we used the genotypes of the
parents.

5.2 Implementation
STAMPA was implemented in C. All reported runs used a
Linux operating system on a 4 Ghz PC using 500 M cache.
Running times are discussed below (Fig. 3 and Table 2).

The Predict procedure requires a phased training set.
To obtain that solution when applyingSTAMPA, we used
the GERBIL algorithm (Kimmel and Shamir, 2005). Run-
ning times for phasing using GERBIL were almost always
<1 min. The dataset of Dalyet al. (2001) required the most
time, ∼2 min. These times are not included in the reporting
below.

5.3 Exact solution versus random sampling
algorithm

We first measured the prediction accuracy of the two
algorithms in Section 4. ForSTAMPA, we usedc = 30 as the
upper bound of distance between tag SNPs. The experiments
were performed in a leave-one-out manner: We repeatedly
removed one of the genotypes from the set, used the remain-
ing genotypes as the training set in order to find a set of tag
SNPs, and used these tag SNPs in order to predict the other
SNPs in the removed genotype.

The results show thatSTAMPA uses very few tag SNPs in
order to predict the other SNPs with high confidence. For
example, in chromosome 5q31 dataset (Dalyet al., 2001),
typing 2 SNPs suffices to predict all the 103 SNPs with 80%
accuracy, 6 SNPs are needed to achieve 90% and only 17 SNPs
need to be typed for 95%.

The results of the comparison of the two algorithms are sum-
marized in Figure 2. As expected, in most cases,STAMPA

was more accurate than the random sampling algorithm.
However, when the number of tag SNPs is small, there is
a clear advantage for the random sampling algorithm. For
example, in Encode region ENr113, when less than 15 tag
SNPs are required, the prediction accuracy of the random
sampling algorithm was high. This gap can be explained
by the fact that when the number of tag SNPs is small, the
upper bound for the distance between tag SNPs is too restrict-
ive for STAMPA. It is important to emphasize, that each of
the two algorithms has a parameter, that can be increased
to obtain more accurate results, but at the expense of lar-
ger running times. Such is the parameterc in STAMPA, and
the number of samples in the random sampling algorithm.
Although in our experiments we saw a clear advantage to
STAMPA, in some situations we expect the opposite to be true,

i199

http://www.hapmap.org
http://www


“bti1021” — 2005/6/10 — page 200 — #6

E.Halperin et al.

Chromosome 5q31 ENCODE ENm013 ENCODE ENr112

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 20  40  60  80  100

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 50  100  150  200  250  300  350

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50  100  150  200  250  300  350  400

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

ENCODE ENr113 genePP2R4 geneSTEAP

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100  200  300  400  500

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 5  10  15  20  25  30  35

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 5  10  15  20

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

gene TRPM8

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10  20  30  40  50  60  70  80  90  100

P
re

di
ct

io
n 

ac
cu

ra
cy

Number of tag SNPs

Fig. 2. Prediction accuracy as a function of the number of tag SNPs used in the two selection algorithms. Blue X,STAMPA, red circles,
random sampling algorithm.

e.g. when SNPs are genotyped with high density in a very
long region and the number of tag SNPs is required to be very
small.

5.4 Comparisons to extant methods
We chose to compare our algorithm with two recent algorithms
for tag SNP selection that are widely used: ldSelect, an
algorithm suggested by Carlsonet al. (2004), which uses a
greedy approach, and HapBlock suggested by Zhanget al.
(2004), which uses dynamic programming and a partition-
ligation EM subroutine to phase subintervals in the recur-
sion. Two additional tag SNP selection algorithms that were
reported in the literature (Bafnaet al., 2003; Pe’eret al.,
2004) could not be included in the comparisons since their
implementations were not available.

In order to evaluate the prediction accuracy of a tag SNP
selection algorithm, one has to provide a prediction algorithm
such as Predict. Unfortunately, ldSelect and HapBlock do not

provide a prediction algorithm. Hence, in order to evaluate
the prediction accuracy of these algorithms, we had to choose
a prediction algorithm for each of them.

ldSelect requires phased genotypes as input. We used
PHASE (Stephens and Donnelly, 2003) to obtain the phas-
ing solution, since it is a widely used and highly accurate
phasing program (Kimmel and Shamir, 2005). The output of
the program is sets of SNPs and for each one a subset of its
tag SNPs. SNPs in a set are not necessarily contiguous. We
used a majority vote of the tag SNPs inside each set as the
prediction method of SNPs in this set. (This rule is equivalent
to that of Predict in the case of two tag SNPs, with the key
difference that Predict assumes a specific order of the two tag
SNPs and the predicted one.)

HapBlock gets as input a genotype matrix and outputs the
tag SNPs. There are several input parameters for this soft-
ware, such as the algorithm for block partitioning and the
method of tag SNP selection. Additional numeric parameters
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Table 1. Performance ofSTAMPA and ldSelect. The number of tag SNPs needed in order to reach accuracies of 80 and 90% by each algorithm is listed

Dataset 80% accuracy 90% accuracy Total number of SNPs
STAMPA ldSelect STAMPA ldSelect

5q31 2 64 6 91 103
Gabrielet al. 3.4 (1.8) 41.6 (14.8) 12.1 (6.3) 51 (17.8) 55.6 (20.2)
ENm013 5 84 12 189 360
ENr112 9 97 17 169 411
ENr113 11 83 18 325 514
PP2R4 2 6 2 6 38
STEAP 2 20 2 22 22
TRPM8 3 38 6 53 101

For the data of Gabrielet al. (2002) the first number is the average over all 51 datasets, followed by the standard deviation in parentheses. See Figure 3 for more detailed results on
these datasets.
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Fig. 3. Performance ofSTAMPA, ldSelect and HapBlock on each of the 51 genotyped regions in Gabrielet al. (2002). Thex-axis is the
51 datasets in an arbitrary order; blue cross—STAMPA, red circles—the other algorithm. Comparison with ldSelect: the number of tag SNPs
found by the algorithm to reach an accuracy of 80% (a) and 90% (b). Comparison with HapBlock: prediction accuracy (c) and running times
(d) of the algorithms on each dataset.

are required, e.g. a threshold for common haplotypes. We
used the default values presented in the software manual
(http://www.cmb.csu.edu/∼msms/HapBlock). Since the input
to this program is unphased genotypes and no predic-
tion algorithm was suggested, we used our own prediction
algorithm (Section 3) to measure the accuracy of tag SNPs
chosen by the algorithm.

In Table 1 and in Figure 3 we give a summary of the com-
parison ofSTAMPA with ldSelect. In each of the methods,
we searched for the minimal number of tag SNPs needed

in order to reach accuracies of at least 80 and 90%. Since
the input format of ldSelect does not allow specifying the
number of tag SNPs, but rather the Pearson correlation value
between the tag SNPs and the predicted SNPs, we searched
for the minimal Pearson correlation value needed in order
to reach 80% (or 90%) accuracy. Reducing the value of the
Pearson correlation results in a smaller number of tag SNPs.
Our experiments show thatSTAMPA consistently outperforms
ldSelect. On average, ldSelect uses 10 times more tag SNPs
thanSTAMPA in order to reach an accuracy of 90%.
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Table 2. Prediction accuracy and running times ofSTAMPA and HapBlock

Dataset Number of Prediction accuracy Running times (s)
tag SNPs STAMPA HapBlock STAMPA HapBlock

5q31 17 0.949 0.889 179 17 311
ENm013 15 0.929 0.759 78 8710
ENr112 33 0.939 0.822 87 3810
STEAP 3 0.951 0.763 3 5
TRPM8 12 0.942 0.811 34 140
Gabrielet al. 16.9 (6.5) 0.932 (0.019) 0.88 (0.04) 1282 20 131

The number of tag SNPs is determined according the output of HapBlock software, using its default parameters. No comparison could be performed on ENr113 since HapBlock gave
no solution due to memory overload. The gene PP2R4 was dropped since HapBlock outputs only one tag SNP for that gene, so comparison was meaningless. For the data of Gabriel
et al. (2002) the first number is the average over all 51 datasets, followed by the standard deviation in parentheses; running times are totals over all 51 datasets. See Figure 3 for more
detailed results on these datasets.

In Table 2 and Figure 3 we give a summary of the compar-
ison of STAMPA and HapBlock . We used the same number
of tag SNPs generated by HapBlock to select tag SNPs with
STAMPA. In all the 58 datasetsSTAMPA was more accur-
ate. Moreover, the running time ofSTAMPA was much less
than HapBlock. For example, on chromosome 5q31 dataset,
STAMPA was faster by a factor of 97. Such advantage will be
more prominent on future larger datasets.

6 DISCUSSION
In this paper, we have defined a novel measure for evaluating
the quality of tag SNP selection. The measure we use, pre-
diction accuracy, has a very simple and intuitive meaning: it
aims to maximize the expected accuracy of predicting untyped
SNPs, given the unphased (genotype) information of the tag
SNPs. The prediction itself is done using a simple majority
vote. By making an additional natural approximate assump-
tion that SNP values can be determined best based on the
values of their nearest tag SNPs on each side, the prediction
becomes quite simple, and the optimal selection of tag SNPs
can be done in polynomial time.

We presented a method for tag SNPs selection and for SNP
prediction based on the genotype values of the tag SNPs. Our
selection method, calledSTAMPA, is unique in its treatment
of the prediction part. Most extant methods for tag SNP selec-
tion (Zhanget al., 2002; Avi-Itzhaket al., 2003; Bafnaet al.,
2003; Carlsonet al., 2004; Pe’eret al., 2004) rely on haplo-
type information that is often not readily available in real life
scenarios. One exception is the HapBlock algorithm (Zhang
et al., 2004), which selects the tag SNPs based on the geno-
types and not on the haplotypes. However, HapBlock selects
the tag SNPs in order to maximize diversity of the common
haplotypes in blocks, and it is not clear whether this method
could be easily extended to an SNP prediction algorithm using
genotype data for the tag SNPs.

Another difference betweenSTAMPA and HapBlock is in the
use of phasing: Although both methods employ the dynamic

programming approach, HapBlock solves many phasing sub-
problems in the dynamic programming recursion, determines
the blocks and selects the tag SNPs in each block. In contrast,
STAMPA uses phased data for the training set and then employs
only the much simpler and faster prediction algorithm in the
recursion. This is the reason the latter algorithm is much faster.

We presented two tag SNP selection algorithms, one based
on dynamic programming and the other based on random
sampling. The dynamic programming algorithm guarantees
an optimal solution in polynomial time, but may be prohibit-
ively slow in practice when the number of tag SNPs is large.
A practical compromise that we used is to limit the distance
between neighboring tag SNPs. Under this restriction optim-
ality is not guaranteed anymore, but our results using over
50 different genotype sets show that accuracy is very good in
most cases even with a modest distance bound (c = 30). The
distance-bounded dynamic programming approach usually
provides better results than the random sampling approach.
These findings are consistent with the report in Zhanget al.
(2004), where a different criterion (power) was used to
evaluate random sampling and HapBlock performance on
simulated data. However, the random sampling algorithm is
very efficient, and therefore we believe that it may be useful
in some specific situations, e.g. on large datasets where a very
sparse set of tag SNPs is sought.

In comparison with another tag SNP selection algorithm,
ldSelect (Carlsonet al., 2004),STAMPA consistently obtained
higher accuracy. This is not surprising, since ldSelect uses
a simple greedy approach. Interestingly, even the random
sampling approach outperformed ldSelect (data not shown).
ldSelect has the added flexibility to select tag SNPs for non-
contiguous sets of SNPs, and thus may have an advantage
overSTAMPA in the cases where the LD does not decay with
distance.

What is the best measure for selecting tag SNPs? The
answer is still not clear, and also depends on the context.
We propose here the expected prediction accuracy, and show
that under reasonable assumptions it yields an efficient and
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accurate method for selection. All the same, other criteria
have been proposed. If the ultimate goal is to detect disease
association, the power of a selection method may be evaluated
using this criterion. We intend to explore the power ofSTAMPA

in disease association in the future. Another objective may be
to maximize the distinction between common haplotypes in
blocks. STAMPA does not provide common haplotypes and
does not assume any block structure, which simplifies the
algorithmics but may be viewed as a disadvantage. Our work
shows that if the expected number of errors is of interest, then
our algorithms provide more accurate prediction compared
with the existing algorithms.
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