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Abstract. We prove that sorting by reciprocal translocations can be
done in O(n3/2

p
log(n)) for an n-gene genome. Our algorithm is an

adaptation of the Tannier et. al algorithm for sorting by reversals. This
improves over the O(n3) algorithm for sorting by reciprocal transloca-
tions given by Bergeron et al.

1 Introduction

In this paper we study the problem of sorting by reciprocal translocations (ab-
breviated SRT). Reciprocal translocations exchange non-empty tails between two
chromosomes. Given two multi-chromosomal genomes A and B, the problem of
SRT is to find a shortest sequence of reciprocal translocations that transforms A
into B. SRT that was first introduced by Kececioglu and Ravi [7] and was given
a polynomial time algorithm by Hannenhalli [3]. Bergeron, Mixtacki and Stoye
[2] pointed to an error in Hannenhalli’s proof of the reciprocal translocation dis-
tance formula and consequently in Hannenhalli’s algorithm. They presented a
new O(n3) algorithm, which to the best of our knowledge, is the only extant
correct algorithm for SRT1.

Reversals (or inversions) reverse the order and the direction of transcription
of the genes in a segment inside a chromosome. Given two uni-chromosomal
genomes π1 and π2, the problem of sorting by reversals (abbreviated SBR) is
to find a shortest sequence of reversals that transforms π1 into π2. Tannier,
Bergeron and Sagot [9] presented an elegant algorithm for SBR that can be
implemented in O(n3/2

√
log(n)) using a clever data structure by Kaplan and

Verbin [6]. This is currently the fastest algorithm for SBR.
In this paper we prove that SRT can be solved in O(n3/2

√
log(n)) for an

n-gene genome. Our algorithm for SRT is similar to the algorithm by Tannier et
al [9] for SBR. The paper is organized as follows. The necessary preliminaries are
given in Sect. 2. In Sect. 3 we give a linear time reduction from SRT to a simpler
restricted subproblem. In Sect. 4 we prove the main theorem and present the al-
gorithm for the restricted subproblem. In Sect. 5 we describe an O(n3/2

√
log(n))

1 Li et al. [8] gave a linear time algorithm for computing the reciprocal translocation
distance (without producing a shortest sequence). Wang et al. [10] presented an
O(n2) algorithm for SRT. However, the algorithms in [8, 10] rely on an erroneous
theorem of Hannenhali and hence provide incorrect results in certain cases.



implementation of the algorithm. Due to space constraints, most proofs are omit-
ted.

2 Preliminaries

This section provides a basic background for the analysis of SRT. It follows
to a large extent the nomenclature and notation of [3, 5, 2]. In the model we
consider, a genome is a set of chromosomes. A chromosome is a sequence of
genes. A gene is identified by a positive integer. All genes in the genome are
distinct. When it appears in a genome, a gene is assigned a sign of plus or
minus. For example, the following genome consists of 8 genes in two chromo-
somes: A = {(1,−3,−2, 4,−7, 8), (6, 5)}. The reverse of a sequence of genes
I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A reversal reverses a segment of genes
inside a chromosome. Two chromosomes, X and Y , are identical if either X = Y
or X = −Y . Therefore, flipping chromosome X into −X does not affect the
chromosome it represents.

A signed permutation π = (π1, . . . , πn) is a permutation on the integers
{1, . . . , n}, where a sign of plus or minus is assigned to each number. If A is
a genome with the set of genes {1, . . . , n} then any concatenation πA of the
chromosomes of A is a signed permutation of size n.

Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2,
Y1, Y2 are sequences of genes. A translocation cuts X into X1 and X2 and Y
into Y1 and Y2 and exchanges segments between the chromosomes. It is called
reciprocal if X1,X2, Y1 and Y2 are all non-empty. There are two ways to perform
a translocation on X and Y . A prefix-suffix translocation switches X1 with Y2

resulting in: (X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1,−X1). A prefix-prefix translo-
cation switches X1 with Y1 resulting in: (X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2).
Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation
by a flip of one of the chromosomes followed by a prefix-suffix (respectively,
prefix-prefix) translocation. As was demonstrated by Hannenhalli and Pevzner
[4], a translocation on A can be simulated by a reversal on πA in the following
way: (. . . , X1, X2, . . . , Y1, Y2, . . . ) ⇒ (. . . , X1,−Y1, . . . ,−X2, Y2, . . . ). The type
of translocation depends on the relative orientation of X and Y in πA (and not
on their order): if the orientation is the same, then the translocation is prefix-
suffix, otherwise it is prefix-prefix. The segment between X2 and Y1 may contain
additional chromosomes that are flipped and thus unaffected.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1,−xk}. Note that
flipping X does not change Tails(X). For a genome A1 define Tails(A1) =⋃

X∈A1
Tails(X). For example: Tails({(1,−3,−2, 4,−7, 8), (6, 5)}) = {1,−8, 6,

−5}. Two genomes A1 and A2 are co-tailed if Tails(A1) = Tails(A2). In par-
ticular, two co-tailed genomes have the same number of chromosomes. Note
that if A2 was obtained from A1 by performing a reciprocal translocation then
Tails(A2) = Tails(A1). Therefore, SRT is defined only for genomes that are co-
tailed. For the rest of this paper the word ”translocation” refers to a reciprocal
translocation and we assume that the given genomes, A and B, are co-tailed.



2.1 The Cycle Graph

Let N be the number of chromosomes in A (equivalently, B). We shall always
assume that both A and B contain genes {1, . . . , n}. The cycle graph of A and
B, denoted G(A, B), is defined as follows. The set of vertices is

⋃n
i=1{i0, i1}. For

every two genes, i and j, where j immediately follows i in some chromosome of
A (respectively, B) add a black (respectively, grey) edge (i, j) ≡ (out(i), in(j)),
where out(i) = i1 if i has a positive sign in A (respectively, B) and otherwise
out(i) = i0, and in(j) = j0 if j has a positive sign in A (respectively, B) and
otherwise in(j) = j1. There are n − N black edges and n − N grey edges in
G(A,B). A grey edge (i, j) is external if the genes i and j belong to different
chromosomes of A, otherwise it is internal.

Every vertex in G(A,B) has degree 2 or 0, where vertices of degree 0 (iso-
lated vertices) belong to Tails(A) (equivalently, Tails(B)). Therefore, G(A, B)
is uniquely decomposed into cycles with alternating grey and black edges. An
adjacency is a cycle with two edges.

2.2 The Overlap Graph

Place the vertices of G(A, B) along a straight line according to their order in πA.
Now, every grey edge can be associated with an interval of vertices of G(A,B).
Two grey edges overlap if the intersection of their intervals is not empty but
none contains the other. The overlap graph of A and B w.r.t. πA, denoted
OV (A,B, πA), is defined as follows. The set of vertices is {(i1, i2) : (i1, i2) is
a grey edge in G(A, B)}. Two vertices are connected if their corresponding grey
edges overlap. We shall use the word ”component” for a connected component
of the overlap graph. The set of components of OV (A,B, πA) can be computed
in linear time using an algorithm by Bader, Moret and Yan [1].

A vertex in an overlap graph is external if its corresponding edge is external,
otherwise it is internal. Note that the internal/external state of a vertex in
OV (A,B, πA) does not depend on πA (the partition of the chromosomes is known
from A). A component of OV (A,B, πA) is external if at least one of the vertices
in it is external, otherwise it is internal. A component is trivial if it corresponds
to an adjacency and hence always internal. A vertex in the overlap graph is
oriented if its corresponding edge connects two genes with different signs in πA,
otherwise it is unoriented.

The span of a component M is an interval of genes I(M) = [i, j] ⊂ πA, where
i = arg min{π−1

A (i1), π−1
A (i2) | (i1, i2) ∈ M} and j = arg max{π−1

A (j1), π−1
A (j2)

| (j1, j2) ∈ M}. Clearly, I(M) is independent of πA iff M is internal. Therefore,
the set of internal components in OV (A,B, πA) is independent of πA.

2.3 The Forest of Internal Components

(M1, . . . , Mt) is a chain of components if I(Mj) and I(Mj+1) overlap in exactly
one gene for j = 1, .., t − 1. For a chain of components C = (M1, . . . ,Mt) de-
fine I(C) =

⋃t
j=1 I(Mj). The forest of internal components, denoted F (A,B), is



defined as follows. The vertices of F (A,B) are (i) the non-trivial internal com-
ponents and (ii) every maximal chain of internal components that contains at
least one non-trivial component. Let M and C be two vertices in F (A,B) where
M corresponds to a component and C to a chain. M → C is an edge of F (A, B)
if M ∈ C. C → M is an edge of F (A,B) if I(C) ⊂ I(M) and I(M) is minimal.
We will refer to a component that is a leaf in F (A, B) as simply a leaf.

2.4 The Reciprocal Translocation Distance

Let c(A,B) denote the number of cycles in G(A, B). Let T (A,B) and L(A,B) de-
note the number of trees and leaves in F (A,B) respectively. Obviously T (A,B) ≤

L(A,B). Define fr(A,B) =





2 if T (A,B) = 1 and L(A,B) is even
1 if L(A,B) is odd
0 otherwise (T (A, B) 6= 1 and L(A,B) is even)

Theorem 1 [2, 3] The reciprocal translocation distance between A and B is
dr(A,B) = n−N − c(A,B) + L(A, B) + fr(A,B)

Let ∆c denote the change in the number of cycles after performing a translo-
cation on A. Then ∆c ∈ {−1, 0, 1} [3]. A translocation is proper if ∆c = 1 and
bad if ∆c = −1. A translocation ρ is valid if dr(A·ρ,B) = dr(A,B)−1. A translo-
cation is safe if it does not create any new non-trivial internal component. As
was demonstrated by Bergeron et al. [2] a safe translocation might be invalid if
the set of leaves is not empty. However, if there are no leaves, then a safe proper
translocation is necessarily valid. We define SRTNL as a special case of SRT
when there are no leaves (i.e. T (A, B) = L(A,B) = 0).

3 A Linear Reduction of SRT to SRTNL

A translocation is bad iff it cuts two black edges, b1 and b2, that belong to
different cycles [3]. Note that there are two bad translocations, either prefix-
prefix or suffix-prefix, cutting the black edges b1 and b2. A leaf M is eliminated
by performing a (bad) translocation that cuts one black edge incident to a grey
edge in M and one black edge in another chromosome of A. Observe that in this
case all the ancestors of M in F (A,B) are eliminated as well. Let L(X) denote
the number of leaves in chromosome X. Let NL(A,B) denote the number of
chromosomes of A containing at least one leaf. A translocation ρ is separating
if NL(A,B) = 1 but NL(A · ρ,B) > 1. It is easy to see that a translocation is
separating only if it cuts a black edge between two leaves.

Lemma 1 [2] There is a sequence of safe proper translocations that sorts all ex-
ternal components (i.e., after performing the sequence, every edge in an external
component becomes an adjacency).

Lemma 2 [2] Let S = (ρ1, . . . , ρk) be a sequence of safe proper translocations
that sorts all external components. If NL(A, B) = 1 but T (A,B) > 1 then S
contains a separating translocation ρl. Moreover, S′ = ρ1, . . . , ρl is a sequence
of valid translocations and NL(A · ρ1 · · · ρl, B) > 1.



Lemma 3 [3] Suppose that the following conditions are satisfied: (i) NL(A,B)
= 1, (ii) L(A,B) ≥ 2, and (iii) either L(A,B) is odd or T (A, B) = 1. Let ρ be
a (prefix-prefix) translocation that eliminates the second leaf from the left in A.
Then ρ is valid and if L(A · ρ,B) ≥ 2 then NL(A · ρ,B) ≥ 2.

Lemma 4 All the bad translocations in the algorithm in Fig. 1 are valid.

(1) if NL = 1 and L ≥ 2 :
(a) if T > 1 and L is even:

(i) Solve SRTNL on the set of external components until NL 6= 1.
(b) else: eliminate the second leaf from the left by a prefix-prefix translocation.

(2) Let Q1 be a queue of the chromosomes containing exactly one leaf.
Let Q2 be a queue of the chromosomes containing more than one leaf.

(3) while L > 0 (Invariant: L=1 or NL ≥ 2)
(a) if L = 1: eliminate the single leaf by a prefix-prefix translocation.
(b) else:

(i) For i = 1, 2
1. if Q2 6= ∅ then Xi ← pop(Q2), otherwise Xi ← pop(Q1).
2. if L(Xi) = 2 then li ← the second leaf from the left in Xi,

otherwise li ← the single leaf in Xi.
(ii) Eliminate l1 and l2 by a prefix-prefix translocation.
(iii) For i = 1, 2: if L(Xi) > 1 then push(Xi, Q2). if L(Xi) = 1 then

push(Xi, Q1).
(4) Solve SRTNL on A.

Fig. 1. A generic algorithm for solving SRT using an algorithm for SRTNL.

The generic algorithm in Fig. 1 and the preceding lemmas imply:

Theorem 2 SRT is linearly reducible to SRTNL.

4 An Algorithm for SRTNL

In this section we present an algorithm for SRTNL. We first define an extension
of the overlap graph and then prove the algorithm’s correctness. Fig. 3 provides
examples of the graphs used.

4.1 The Overlap Graph with Chromosomes

A chromosome X and an edge e overlap if X contains exactly one of the two end-
points of e. Hence, if edge e overlaps chromosome X of A then e must be an exter-
nal grey edge. We define the overlap graph with chromosomes, OV CH(A,B, πA)
based on OV (A,B, πA) as follows. We add to OV (A,B, πA) a vertex for each
chromosome of A. In order to prevent confusion, we will refer to the new ver-
tices as ”chromosomes” and reserve the word ”vertex” for the original vertices
of OV (A,B, πA) (that correspond to edges). A vertex and a chromosome are
connected if the corresponding grey edge overlaps the chromosome. There are
no edges between chromosomes.



Let H = OV CH(A, B, πA) and let v be any vertex in H. Denote by N(v) ≡
N(v, H) the set of vertices that are neighbors of v, including v itself (but not
including chromosome neighbors). Denote by CH(v) ≡ CH(v, H) the set of
chromosomes that are neighbors of v in H. Hence if v is external then |CH(v)| =
2, otherwise CH(v) = ∅.

Every external grey edge e defines one proper translocation that cuts the
black edges incident to e. (Out of the two possibilities of prefix-prefix or prefix-
suffix translocations, exactly one would be proper). For an external vertex v
denote by ρ(v) the proper translocation that the corresponding grey edge defines
on A. Two external vertices v1 and v2 in H are equivalent if they define the same
translocation, i.e. ρ(v1) ≡ ρ(v2). Let H · ρ(v) = OV CH(A · ρ(v), B, πA). Given
two sets S1 and S2 define S1

⊕
S2 = (S1

⋃
S2) \ (S1

⋂
S2).

Lemma 5 Let v be an oriented external vertex in H. Then H · ρ(v) is ob-
tained from H by the following operations. (i) Complement the subgraph in-
duced by N(v) and flip the orientation of every vertex in N(v). (ii) For every
vertex u ∈ N(v) such that the endpoints of u and v share at least one com-
mon chromosome, update the edges between u and CH(u)

⋃
CH(v) such that

CH(u) = CH(u)
⊕

CH(v).

Two overlap graphs with chromosomes are equivalent if one can be obtained
from the other by a sequence of chromosome flips. For a chromosome X let ρ(X)
denote a flip of chromosome X in πA. Let H · ρ(X) = OV CH(A, B, πA · ρ(X)).

Lemma 6 H ·ρ(X) is obtained from H by complementing the subgraph induced
by the set {u : X ∈ CH(u)} and flipping the orientation of every vertex in it.

4.2 The Main Theorem and Algorithm

In this section we give the main theorem and algorithm. Our algorithm is for-
mally very similar to the algorithm for SBR presented in [9]. Instead of per-
forming reversals on oriented edges in [9], we perform translocations on external
edges. Despite of the great similarity between the algorithms our validity proof
is completely new. We analyze an overlap graph with chromosomes of a multi-
chromosomal genome, while [9] analyze the overlap graph of a uni-chromosomal
genome. Like [9], we perform operations defined by oriented vertices (i.e. translo-
cations). However, in our case these vertices must also be external. If an external
vertex is unoriented, we can turn it into an oriented vertex by a flip of a chro-
mosome. Hence, we consider two types of operations in our analysis.

A sequence of vertices S = (v1, . . . , vk) from H is legal if vj is external
in H · ρ(v1) · · · ρ(vj−1) for j = 1, .., k. For a legal sequence S define ρ(S) =
ρ(v1) · · · ρ(vk). A legal sequence S is total if H ·ρ(S) contains only trivial compo-
nents. For H1, an overlap graph with chromosomes, let IN(H1) and EXT (H1)
denote the sets of vertices that are in non-trivial internal components and ex-
ternal components respectively. If S is a maximal legal sequence of vertices in
H then EXT (H · ρ(S)) = ∅. If in addition S is not total then IN(H · ρ(S)) 6= ∅.



Theorem 3 Let S = (v1, . . . , vk) be a maximal legal but not total sequence of
vertices in H. Let IN = IN(H · ρ(S)). Let vl be the first vertex in S satisfying
IN(H · ρ(v1, . . . , vl)) = IN , i.e. ρ(vl) is the last unsafe translocation in ρ(S).
Let S1 = (v1, . . . , vl−1) and S2 = (vl, . . . , vk). Then every maximal sequence of
vertices S′ = (w1, . . . , wm) in IN that satisfies (i) (S1, S

′) is legal and (ii) vl

is not an adjacency in H · ρ(S1, S
′) also satisfies: (iii) S′ is not empty and (iv)

(S1, S
′, S2) is a maximal legal sequence. Moreover, all the translocations in ρ(S2)

are safe.

Proof. Let v = vl, H0 = H · ρ(S1) and IN0 = EXT (H0) ∩ IN . Then IN0 6= ∅
and none of the vertices in IN0 is equivalent to v in H0 (otherwise it would
be an adjacency in H · ρ(S) and hence not in IN). Hence S′ is not empty. Let
A0 = A · ρ(S1) and CH(v) = {X, Y }. We choose π0 to be a concatenation of
the chromosomes in A0 in which X and Y are the first two chromosomes. We
can assume w.l.o.g. that H = OV CH(A,B, π0), hence H0 = OV CH(A0, B, π0).
For j = 1, .., m let Hj = H0 · ρ(w1, . . . , wj). Let INj = EXT (Hj)

⋂
IN . Then

for j = 1, . . . , m: (i) wj ∈ INj−1 and (ii) wj is not equivalent to v in Hj−1. Let
EXT = EXT (H0 · ρ(v)). The following conditions hold for Hj when j = 0 (see
Fig. 4-(a)):

(1) The subgraphs of Hj · ρ(v) and H0 · ρ(v) that are induced by EXT are
equivalent.

(2) Every w ∈ INj satisfies: CH(w) = CH(v) = {X,Y }.
(3) If v is oriented then N(v)

⋂
IN = INj .

(4) All the possible edges exist between N(v)
⋂

EXT and INj .
(5) There are no edges between IN \ INj and vertices outside IN .
(6) There are no edges between EXT \N(v) and vertices outside EXT .

We shall prove below that in Hm v is external and that all the above con-
ditions are satisfied. The first condition ensures that (S1, S

′, S2) is legal. The
rest of the conditions ensure that Hm · ρ(v) satisfies: (i) there are no external
vertices in IN and (ii)there are no edges between EXT and vertices outside
EXT . Hence (S1, S

′, S2) is maximal and every translocation in ρ(vl+1, . . . , vk)
is safe. ρ(vl) is safe in Hm since S′ is maximal. Therefore, all the translocations
in ρ(S2) are safe.

Assume that v is external in Hj and that the all above conditions hold for
a certain j. Since these conditions are true for every graph that is equivalent
to Hj we can assume that v is oriented. We now prove, using an induction on
j, that these conditions are satisfied for every Hi, i ∈ {1, . . . , m} in which v is
external, and that v is external in Hm.

Case 1: wj+1 is oriented in Hj . Let Hj+1 = Hj · ρ(wj+1) (see Fig. 4-(b)).
Then INj+1 = N(v, Hj)

⊕
N(wj+1,Hj). INj+1 6= ∅, otherwise v is an isolated

internal vertex in Hj+1 and hence equivalent to wj+1 in Hj . Hence m ≥ j + 2.
Case 1.a: wj+2 is oriented in Hj+1. Let Hj+2 = Hj+1·ρ(wj+2) (see Fig. 4-(c)).

Clearly, v is external in Hj+2. Let M = N(v, Hj)
⋂

EXT . Then N(wj+2,Hj+1)⋂
EXT = N(wj+1,Hj)

⋂
EXT = M . Hence the subgraphs of Hj+2 and Hj

that are induced by M are identical and the first condition is satisfied in Hj+2.



Case 1.b: wj+2 is unoriented in Hj+1. Let H ′
j+1 = Hj+1 · ρ(X) (H ′

j+1 and
Hj+1 are equivalent) (see Fig. 4-(d)). Hence wj+2 is oriented in H ′

j+1. Note that
v is an internal vertex in H ′

j . Let M ′ = N(wj+1,H
′
j+1)

⋂
EXT . Let Hj+2 =

H ′
j+1 · ρ(wj+2) (see Fig. 4-(e)). v is an oriented external vertex in Hj+2 and

N(v, Hj+2)
⋂

EXT = M ′. Therefore, the two subgraphs of Hj+2 · ρ(v) (see
Fig. 4-(f)) and H ′

j+1 (see Fig. 4-(d)) that are induced by EXT are identical. The
subgraphs of Hj+1 and Hj · ρ(v) that are induced by EXT are also identical.
Hence, the first condition is satisfied.

Looking at Figs. 4-(c) and 4-(e) it is easy to verify that the rest of the
conditions are also satisfied for Hj+2.

Case 2: wj+1 is unoriented in Hj . We define the three subsets of vertices
M1,M2,M3 ⊂ EXT in Hj as follows:

(1) M1 is the set of neighbors of wj+1 (equivalently, v) that are either internal
or external but does not overlap chromosome X.

(2) M2 is the set of neighbors of wj+1 (equivalently, v) that overlap chromosome
X. Hence M1

⋃
M2 = N(v, Hj)

⋂
EXT .

(3) M3 is the set of vertices that overlap chromosome X but are not neighbors
of wj+1 (equivalently, v).

For an illustration of Hj see Fig. 4-(g). Let H ′
j = Hj · ρ(X) (see Fig. 4-(h)). In

H ′
j : wj+1 is an oriented external vertex and is not a neighbor of v. Let Hj+1 =

H ′
j · ρ(wj+1) (see Fig. 4-(i)). Obviously, v remains intact in Hj+1. Let H ′

j+1 =
Hj+1 · ρ(X) (see Fig. 4-(j)). Then, the subgraphs of H ′

j+1 · ρ(v) (see Fig. 4-(k))
and Hj · ρ(v) that are induced by M1, M2 and M3 are equivalent (Compare the
subgraph induced by EXT in Hj in Fig. 4 (g) with the subgraph induced by
EXT in H ′

j+1 · ρ(v) · ρ(X) in Fig. 4 (l)). Hence the first condition is satisfied.
Looking at Fig. 4-(i), it is easy to verify that conditions (2)-(6) hold for Hj+1.

ut
The algorithm in Fig. 2 builds a sequence of translocations by a repeated ap-

plication of Theorem 3. It greedily removes external edges from an allowed subset
and performs the corresponding translocations (step (2).(a)). When the allowed
subset contains only internal edges, the algorithm repeats the last translocations
in a reverse order (thereby cancelling them) until another edge in the allowed
subset becomes external (step (2).(b)). Every translocation in the algorithm is
applied at most twice and so the algorithm performs at most 2n translocations.

5 An O(n3/2
√

log(n)) Time Implementation of the
Algorithm

The algorithm in Fig. 2 can be implemented in O(n2) time in a relatively simple
manner. We provide below an O(n3/2

√
log(n)) algorithm. The implementation

follows closely the ideas of [6] and [9].
Assume w.l.o.g. that πB is the identity permutation. Then every grey edge

is of the form (i, i+1). We identify a grey edge (i, i+1) by i and refer to (i +1)
as the remote end of i. The data structure we use for maintaining the genome A
is as follows.



(1) Let V be the set of edges in G(A, B) that are in non-trivial components.
Set S1 = S2 = ∅

(2) while V 6= ∅:
(a) while there exists an external edge v ∈ V in G(A, B):

(i) Remove v from V .
(ii) if v is not equivalent to the first element in S2:

1. Append ρ(v) to S1

2. A ← A · ρ(v)
(b) while all the edges in V are internal:

(i) Let ρ be the last translocation in S1

(ii) Remove ρ from S1

(iii) Prepend ρ to S2

(iv) A ← A · ρ
(3) return (S1, S2)

Fig. 2. An algorithm for SRTNL.

1. A doubly linked list of O(
√

n
log(n) ) blocks. We partition πA into continuous

blocks such that the size of every block is at least 1
2

√
n log(n) and at most

2
√

n log(n).
2. A balanced search tree for every block. The tree contains the edges in the

block ordered by the positions of their remote ends. We use balanced trees
that support split and concatenate operations in logarithmic time, such as
red-black trees or 2-4 trees. We use T [v] to denote the subtree rooted at v
and containing all its descendants.

3. An n-array of block pointers. The ith entry in the array points to the block
containing i.

We add the following fields to the above data structure.

1. For each edge we keep an external-bit. If the external-bit is on then the edge
is external, otherwise it is internal.

2. For each block we keep the following fields: (i) a counter of external edges
in V , (ii) a counter of chromosomes’ left tails, and (iii) a reverse-flag. If the
reverse-flag of a block is on then the order and signs of the elements in the
block are reversed.

3. For every subtree T [v] of each block’s search tree we keep the following fields
in its root v: (i) counters of external and internal edges in V , (ii) a direction-
flip-flag and (iii) an external-flip-flag. If the external-flip-flag of a vertex v
is on then in T [v] the external-bits of all the elements are flipped and the
counters of internal and external elements from V exchange their values. If
the direction-flip-flag of a vertex v is on then in T [v] the order of the elements
is reversed.

We can clear the direction-flip-flag of a node by reversing the order of its children
and flipping the direction-flip-flag in each of them. We can clear the external-flip-
flag in a node by exchanging the values of the counters of external and internal



edges in V , flipping the external-flip-flag in each of its children and flipping the
external-bit of the element residing at the node. One can view this procedure
as ”pushing down” the flags. An direction-flip-flag and an external-flip-flag that
are on are ”pushed down” whenever T [v] is searched.

We implement the algorithm using the above data structures. A search for
an external edge in V is done as follows. We traverse the list of blocks until we
reach a block that contains external edges from V . We then search the tree of
the block for an external edge i. We locate element i+1 (the remote end of edge
i) using the n-array and a search of its block.

Let ρ be a translocation on A operating on the chromosomes X = (X1, X2)
and Y = (Y1, Y2). Then ρ is performed in O(

√
n log(n)) time as follows:

(1) Split at most six blocks so that each of the four segments X1, X2, Y1 and
Y2 corresponds to a union of blocks. If ρ is a prefix-prefix translocation
exchange the blocks of X1 and Y1. Otherwise, reverse the order and flip the
reverse-flags of the blocks of X2 and Y1 and then exchange the blocks of X2

and Y1.
(2) We now have to modify the trees of each block to reflect the order and

direction changes. This is done as follows. Traverse all the blocks and for
each block:
(a) Let T be the balanced search tree of the block. If ρ is a translocation on

an edge i in V and i is contained in the block: decrease by 1 the counters
of external edges in V of the block and of every node in T that contains
i in its subtree.

(b) Split T into at most seven subtrees such that each of the segments X1,
X2, Y1 and Y2 has a corresponding subtree.

(c) If the block corresponds to a segment of X1, X2, Y1 and Y2 flip the
external-flip-flag at the roots of two subtrees according to Table 1.

(d) If ρ is a prefix-prefix translocation, exchange the subtrees of X1 and Y1.
Otherwise, exchange the subtrees of X2 and Y1 and flip the direction-
flip-flags of both.

(e) Concatenate the seven subtrees into T .
(3) If necessary, concatenate small blocks and split large blocks such that the

size of each block is at least 1
2

√
n log(n) and at most 2

√
n log(n).

Theorem 4 SRTNL can be solved in O(n3/2
√

log(n)). ut
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Fig. 3. Auxiliary graphs for A1 = {(1,−2, 3,−6, 7,−11, 10,−9,−8, 12), (5, 4)}, B1 =
{(1, . . . , 4), (5, . . . , 12)} (πA1 = (1,−2, 3,−6, 7,−11, 10,−9,−8, 12, 5, 4)).

Table 1. The subtrees for which the external-flip-flag is flipped as a function of translo-
cation type and block type.

Block X1 X2 Y1 Y2

prefix-prefix X2, Y2 X1, Y1 X2, Y2 X1, Y1

prefix-suffix X2, Y1 X1, Y2 X1, Y2 X2, Y1
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Fig. 4. Illustrations for the proof of Theorem 3.


