A Plasma Membrane E-MAP Reveals Links Between the Eisosome, Sphingolipid Metabolism and Endosomal Trafficking

Pablo S. Aguilar^{1,#}, Florian Fröhlich^{2,#}, Michael Rehman^{2,#}, Mike Shales^{3,#}, Igor Ulitsky⁴, Agustina Olivera-Couto^{1,} Hannes Braberg³, Ron Shamir⁴, Peter Walter⁵, Matthias Mann⁶, Christer S. Ejsing⁷, Nevan J. Krogan^{3*}, Tobias C. Walther^{2*}

1 Institut Pasteur de Montevideo, Uruguay

2 Max Planck Institute of Biochemistry, Organelle Architecture and Dynamics, Martinsried, Germany

3 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA

4 The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

5 Department of Biochemistry and Biophysics, University of California and Howard Hughes Medical Institute, San Francisco, CA, USA

6 Max Planck Institute of Biochemistry, Proteomics and Signal Transduction, Martinsried, Germany

7. University of Southern Denmark, Department of Biochemistry and Molecular Biology, Odense, Denmark

[#] These authors, listed in alphabetical order, contributed equally

^{*} Correspondence to:

<u>Nevan Krogan</u> Department of Cellular and Molecular Pharmacology University of California, San Francisco 1700 4th Street, Beyers Hall 208D San Francisco, CA 94158 USA krogan@cmp.ucsf.edu

or

<u>Tobias C. Walther</u> Max Planck Institute of Biochemistry Organelle Dynamics and Architecture Am Klopferspitz 18 82152 Martinsried/Munich Germany twalther@biochem.mpg.de

Supplementary Figure 1 - Receiver operating characteristic (ROC) curves gauging the power of pairwise genetic profile correlations to predict physical interactions between pairs of proteins. The predictive power of the plasma membrane E-MAP (blue) is comparable to that of previously published E-MAPs, focused on chromosome biology (¹, red) and the early secretory pathway (², green). The slope of the initial portion of the curve serves as a measure of the predictor's discriminatory power at its minimal false positive rate. Physical interaction definitions were collected from ³, imposing a threshold of PE score > 2.

Supplementary Figure 2 - Functional modules identified using the plasma membrane E-MAP data and protein-protein interactions. Modules were identified as described in ⁴. White lines separate modules, which are ordered by size. Missing values are in grey. The protein-protein interaction sub-network is shown next to each module with at least three genes.

	は載
	計算
	Ĥ
	j.
and a line we all a line and a line	

Supplementary Figure 3 - Functional modules identified using the plasma membrane E-MAP data for pairs without PPIs. Modules were identified as described in ⁴, but without requiring PPI network connectivity. White lines separate modules, which are ordered by size. Missing values are in grey. The *PIL1-EMP70* module is marked by a red bar.

Supplementary Figure 4 - Map of type I TGMs in the plasma membrane E-MAP. Overview of all Type I TGMs found in the plasma membrane E-MAP. *PIL1, YMR031c* and *EMP70* are highlighted in red.

b

а

Supplementary Figure 5 - Emp70 localization in respect to

endosomes. (a) Strains expressing Emp70-GFP and Vps5-RFPmars from the endogenous locus were imaged by confocal microscopy. Representative images are shown. (b) FM4-64 uptake experiment was performed at 16°C and representative confocal midsections are shown. Bar = $2.5 \mu m$.

Module #	Gene symbols	ORFs
1	CLA4,ABP1	YNL298W,YCR088W
2	EDE1,SYP1,SLA1	YBL047C,YCR030C,YBL007C
3	SLT2,BCK1	YHR030C,YJL095W
4	CAP1,CAP2	YKL007W,YIL034C
5	RTG3,RTG1	YBL103C,YOL067C
6	ENT3,GGA2,ENT5	YJR125C,YHR108W,YDR153C
7	PEX15,PEX6	YOL044W,YNL329C
8	GET1,GEF1,GET3	YGL020C,YJR040W,YDL100C
9	SYS1,ARL3	YJL004C,YPL051W
10	IMH1,MON2,ARL1	YLR309C,YNL297C,YBR164C
11	SNC2,TLG2	YOR327C,YOL018C
12	VPS17,VPS35,PEP8,VPS29	YOR132W,YJL154C,YJL053W,YHR012W
13	VPS41,APM3,APL5	YDR080W,YBR288C,YPL195W
14	COG8,COG7,COG5,COG6	YML071C,YGL005C,YNL051W,YNL041C
15	VPS21,VPS9	YOR089C,YML097C
16	HOG1,SSK22,SSK1,PBS2	YLR113W,YCR073C,YLR006C,YJL128C
	TSC10,DPL1,SUR2,LAC1,	YBR265W,YDR294C,YDR297W,YKL008C,
17	LCB3,SUR4,LAG1	YJL134W,YLR372W,YHL003C
18	ERG5,ERG3,ERG2	YMR015C,YLR056W,YMR202W

Supplementary Table 3 - List of modules with PPIs found in the plasma membrane EMAP.

		0.05
IVIODUIE #	Gene symbols	OKFS
1	INP52,ERG3,ERG2	YNL106C,YLR056W,YMR202W
2	SRO77,FUI1,SHO1,BOI2,RGD1	YBL106C,YBL042C,YER118C,YER114C,YBR260C
3	MYO3,YCK3,YAP1801,TOR2	YKL129C, YER123W, YHR161C, YKL203C
4	GYP5,PRM9,DAL5	YPL249C,YAR031W,YJR152W
	AIP1,BNR1,IST2,ECM33,YBR108W,	YMR092C, YIL159W, YBR086C, YBR078W, YBR108W,
5	CLA4,HSE1,ABP1,PMP3,MYO5	YNL298W,YHL002W,YCR088W,YDR276C,YMR109W
6	YOL019W,SRN2,INP54,FTH1,VPS4, ATG21,GUP1,VPS27	YOL019W,YLR119W,YOL065C,YBR207W,YPR173C, YPL100W,YGL084C,YNR006W
7	FIG4,LEM3	YNL325C, YNL323W
8	SPO14,SNC1	YKR031C,YAL030W
		YBL047C,YHR030C,YKL007W,YJL020C,YJL099W,
	EDE1,SLT2,CAP1,BBC1,CHS6,ARC18,	YLR370C, YIL034C, YBL007C, YKL079W, YLR332W,
9	CAP2,SLA1,SMY1,MID2,BCK1	YJL095W
		YLL043W,YDR080W,YEL065W,YBL103C,YBR131W,
	FPS1,VPS41,SIT1,RTG3,CCZ1,SAC6,	YDR129C,YOL067C,YEL013W,YNL076W,YOR043W,
10	RTG1,VAC8,MKS1,WHI2,SST2,MID1	YLR452C,YNL291C
	DUR3,GGA2,SKM1,WSC4,WSC3,	YHL016C, YHR108W, YOL113W, YHL028W, YOL105C,
11	YPT53,ARN1,ARN2	YNL093W,YHL040C,YHL047C
	CRN1,SRO7,YNL208W,SIP2,RAS2,	YLR429W,YPR032W,YNL208W,YGL208W,YNL098C,
12	YDC1	YPL087W
13	BCH1,YPT52,SYN8,RGT2	YMR237W,YKR014C,YAL014C,YDL138W
14	PEX15 BSP1 PEX6 RSR1	YOI 044W YPR171W YNI 329C YGR152C
	KIN2.JSN1.SSK22.YDR357C.	YLR096W,YJR091C,YCR073C,YDR357C,YOR284W,
15	HUA2, YNL086W, YPT35, PRM8	YNL086W,YHR105W,YGL053W
16	SFK1.BZZ1.SNQ2	YKL051W.YHR114W.YDR011W
	YKL061W.OSH2.YDL012C.AIF1.	YKL061W,YDL019C,YDL012C,YNR074C,YJR040W.
17	GEF1,ALP1,SKN7,YEH2	YNL270C, YHR206W, YLR020C
	VPS17,ENT3,GOT1,APM3,SAC1,	YOR132W, YJR125C, YMR292W, YBR288C, YKL212W,
	VPS21,MON2,GET1,LCB5,CSG2,	YOR089C, YNL297C, YGL020C, YLR260W, YBR036C,
	VPS29,GET3,VPS9,TLG2,SFT2,	YHR012W, YDL100C, YML097C, YOL018C, YBL102W,
	SNC2, VPS35, RCY1, SWA2, CUP5,	YOR327C,YJL154C,YJL204C,YDR320C,YEL027W,
18	PEP8,VPS8,TPM1,APL5	YJL053W,YAL002W,YNL079C,YPL195W
	HOG1,IMH1,SYS1,ELM1,COG8,CCH1,	YLR113W,YLR309C,YJL004C,YKL048C,YML071C,
	IPT1,ENT5,ARL1,COG5,COG6,SUR1,	YGR217W,YDR072C,YDR153C,YBR164C,YNL051W,
	ARL3,TCB2,PIB2,ATO3,COG7,INP53,	YNL041C,YPL057C,YPL051W,YNL087W,YGL023C,
19	GSC2,CRZ1	YDR384C,YGL005C,YOR109W,YGR032W,YNL027W
20	YLR073C,SMF1,YPS3	YLR073C, YOL122C, YLR121C
_	TSC10,DPL1,SUR2,LCB3,SUR4,FAT1,	YBR265W,YDR294C,YDR297W,YJL134W,
21	LAG1	YLR372W,YBR041W,YHL003C
22	PMP1,ERS1,HXT10,NHA1,HSP30	YCR024C-A,YCR075C,YFL011W,YLR138W,YCR021C
23	HSP12,PSR1,SCP1	YFL014W,YLL010C,YOR367W
24	ROD1,RSB1,PEP12,STD1,AKR2	YOR018W,YOR049C,YOR036W,YOR047C,YOR034C
25	YPL150W,STV1,STL1,TWF1	YPL150W,YMR054W,YDR536W,YGR080W
		YKR053C,YIL002C,YML052W,YGR086C,YML008C,
26	13R3,111431,3UR7,41L1,EKG0,EMP7U	
27	YMR086W,WSC2,LCB4,ERP1	YAR002C-A
28	MDG1,SKN1,YIR044C	YNL173C,YGR143W,YIR044C
29	GGA1,TOR1,GAP1,HOR7.SSK1	YDR358W,YJR066W,YKR039W,YMR251W-A.YLR006C

Supplementary Table 4 - List of modules without PPIs found in the plasma membrane E-MAP.

		PM E-MAP (this study)	ESP E-MAP (Schuldiner et al.,
		07.1	2005,)
E-MAP size (genes)		374	423
PPI-based	Number of modules	19	16
modules	Genes in module (% of the E- MAP)	14%	22.4%
	% of modules enriched with GO "biological process" set (FDR<0.01)	63%	79.4%
Modules identified	Number of modules	29	36
without using PPIs	Genes in module (% of the E- MAP)	72.4%	62.5%
	% of modules enriched with GO "biological process" set (FDR<0.01)	19.4%	23.2%
% of GO "biological process" sets enriched in at least one module		23.2%	23.0%

Supplementary Table 5 - Comparison of modules detected in the plasma

membrane (PM) E-MAP and ESP E-MAP².

Lipid lass (Normalized by levels in wild-type BY4742)	wт	sur2∆	sur4∆	lcb3∆	csg2∆	rom2∆	rom2∆ sur2∆	rom2∆ lcb3∆	rom2∆ csg2∆
LCB	1	65.78	270.22	16.60	0.97	100.40	409.41	14.07	261.34
Cer	1	0.84	0.49	0.80	0.81	0.30	0.20	1.09	0.32
IPC	1	0.19	0.96	0.77	2.48	0.64	0.10	0.86	1.03
MIPC	1	3.80	0.00	1.26	0.00	1.10	0.78	2.10	0.00
M(IP)2C	1	1.81	0.16	0.63	0.04	0.67	0.81	1.06	0.03
PA	1	1.03	1.61	0.64	0.75	1.12	0.98	1.09	1.55
PS	1	0.88	0.26	0.89	0.76	0.75	0.64	0.80	0.38
PE	1	1.07	0.73	1.18	1.06	0.73	0.54	1.12	0.64
PC	1	0.80	0.71	0.74	0.85	0.66	0.60	0.81	0.69
PI	1	1.00	1.11	1.12	1.06	1.07	1.14	1.03	1.10
DAG	1	0.89	0.73	0.72	0.89	0.72	0.58	0.82	0.74
TAG	1	1.24	1.30	1.42	1.28	1.87	1.53	1.31	1.49
SE	1	0.84	3.06	0.84	1.43	1.11	1.89	1.18	1.96

Abbreviations: PC (phosphatidylcholine), PE (phosphatidylethanolamine), PA (phosphatidic acid), PS (phosphatidylserine), PI (phosphatidylinositol) DAG (diacylglycerol), TAG (triacylglycerol), SE (sterol ester) Cer (ceramide), LCB (long-chain base),

IPC (inositolphosphoceramide), MIPC (mannosyl-inositolphosphoceramide), $M(IP)_2C$ (mannosyl-diinositolphosphoceramide)

Supplementary Table 6 - Lipidomic data for *rom2* and mutants in the sphingolipid synthesis pathway as shown in Figure 8b

Strain	Genotype	Reference	
TWY1194	Mat <u>a</u> KEX2-RFPmars::NAT ^K , EMP70-GFP::KAN ^K ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1044	Mat <u>a</u> EMP70-GFP::KAN ^K SNF7-RFPmars::NAT ^K ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1063	Mat <u>a</u> EMP70-GFP::KAN ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY871	Mat α EMP70-GFP::KAN ^R , LSP1-RFPmars::NAT ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1319	Mat <u>a</u> YLR413w-RFPmars::NAT ^R , EMP70-gfp::KAN ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1320	Mat <u>a</u> YLR413w-RFPmars:.NAT ^R , EMP70-gfp::KAN ^R , pil1 <i>∆</i> ::KANR ura3-1 trp1-1 leu2 his3- 11,15 ade2-1 can1-100	This study	
TWY1195	Mat <u>a</u> KEX2-GFP::KAN ^R , emp70 Δ ::NAT ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY138	Mat <u>a</u> ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1360	Mat <u>a</u> emp70∆::NAT ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1223	Mat <u>a</u> vps1∆::HPH ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1230	Mat <u>a</u> tmn1 Δ ::NAT ^R tmn2 Δ ::HPH ^R tmn3 Δ ::HPH ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1- 100	This study	
TWY1183	Mat <u>a</u> VPS5-RFPmars::NAT ^R , EMP70-GFP::KAN ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
	Mat α his3 $\Delta 1$; leu2 $\Delta 0$; met15 $\Delta 0$; ura3 $\Delta 0$; can1 Δ ::MATaPr-HIS3; lyp1 Δ ::MAT α Pr-LEU2	Fiedler et al., 2009	
TWY1770	Mat <u>a</u> rom2Δ::KAN ^R csg2Δ::NAT ^R his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; can1Δ::MATaPr-HIS3; lyp1Δ::MATαPr-LEU2	This study	
TWY1771	Mat <u>a</u> rom2 Δ ::KAN ^R sur2 Δ ::NAT ^R his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0; can1 Δ ::MATaPr-HIS3; lyp1 Δ ::MAT α Pr-LEU2	This study	
TWY1772	Mat <u>a</u> rom2 Δ ::KAN ^R lcb3 Δ ::NAT ^R his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0; can1 Δ ::MATaPr-HIS3; lyp1 Δ ::MAT α Pr-LEU2	This study	
	Mat α lcb3 Δ ::KAN ^R his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	Winzeler et al., 1999	
	Mat α sur4 Δ ::KAN ^R his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	Winzeler et al., 1999	
	Mat α csg2 Δ ::KAN ^R his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	Winzeler et al., 1999	
	Mat α rom2 Δ ::KAN ^R his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	Winzeler et al., 1999	
	Mat α sur2 Δ ::KAN ^R his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	Winzeler et al., 1999	
TWY1122	Mat <u>a</u> PIL1-TEV-GFP::HIS his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	This study	
TWY70	Mat <u>a</u> his3 $\Delta 1$; leu2 $\Delta 0$; ura3 $\Delta 0$; lys2 $\Delta 0$	Walther et al., 2006	
TWY790	Mat <u>a</u> pil1 <i>Δ</i> ::NAT ^R LSP1-GFP::HIS his3 <i>Δ</i> 1; leu2 <i>Δ0</i> ; ura3 <i>Δ0</i> ; lys2 <i>Δ0</i>	This study	
TWY791	Mat <u>a</u> pil1 Δ ::NAT ^R YMR031C-GFP::HIS his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	This study	
TWY726	Mat <u>a</u> PIL1-GFP::HIS his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	This study	
TWY787	Mat α ymr031c Δ ::KAN ^R PIL1-GFP::HIS his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	This study	
TWY788	Mat α ymr031c Δ ::KAN ^R LSP1-GFP::HIS his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	This study	
	Mat α ymr031c Δ ::KAN ^R his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	Winzeler et al., 1999	
TWY743	Mat <u>a</u> YMR031C-GFP::HIS PIL1-RFPmars::KAN ^R his3 <i>Δ1;</i> leu2 <i>Δ0;</i> ura3 <i>Δ0;</i> lys2 <i>Δ0</i>	This study	
TWY727	Mat <u>a</u> YMR031C-GFP::HIS his3Δ1; leu2Δ0; ura3Δ0; lys2Δ0	This study	
TWY786	Mat <u>a</u> Lsp1-GFP::HIS his3 Δ 1; leu2 Δ 0; ura3 Δ 0; lys2 Δ 0	This study	
TWY637	Mat <u>a</u> LSP1-TAP::KAN ^R his3 <i>∆1;</i> leu2 <i>∆0;</i> ura3 <i>∆0;</i> met15 <i>∆0</i>	This study	
TWY642	Mat <u>a</u> YMR031C-TAP::KAN ^R his3 <i>∆1;</i> leu2 <i>∆0;</i> ura3 <i>∆0;</i> met15 <i>∆0</i>	This study	
TWY450	Mat α pil1 Δ :: KAN ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1184	Mat <u>a</u> tmn2 Δ :: HPH ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1182	Mat α tmn3 Δ :: HPH ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1207	Mat α emp70 Δ :: NAT ^R , tmn3 Δ :: HPH ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1206	Mat <u>a</u> emp70 Δ :: NAT ^R , tmn2 Δ :: HPH ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1814	Mat <u>a</u> tmn2 Δ :: HPH ^R , tmn3 Δ ::NAT ^R ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
TWY1064	Mat <u>a</u> EMP70-GFP :: KAN ^K , LSP1-RFPcherry::HIS ura3-1 trp1-1 leu2 his3-11,15 ade2-1 can1-100	This study	
1		1	

Supplementary Table 7- List of strains used in this study

Supplementary Material References

- 1. Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. *Nature* **446**, 806-10 (2007).
- 2. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. *Cell* **123**, 507-19 (2005).
- 3. Collins, S.R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. *Mol Cell Proteomics* **6**, 439-50 (2007).
- 4. Ulitsky, I., Shlomi, T., Kupiec, M. & Shamir, R. From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. *Mol Syst Biol* **4**, 209 (2008).