
LETTERS

Regulatory networks define phenotypic classes of
human stem cell lines
Franz-Josef Müller1,2, Louise C. Laurent1,3, Dennis Kostka4{, Igor Ulitsky5, Roy Williams6, Christina Lu1,
In-Hyun Park7, Mahendra S. Rao8,9, Ron Shamir5, Philip H. Schwartz10,11, Nils O. Schmidt12 & Jeanne F. Loring1,6

Stem cells are defined as self-renewing cell populations that can
differentiate into multiple distinct cell types. However, hundreds
of different human cell lines from embryonic, fetal and adult
sources have been called stem cells, even though they range from
pluripotent cells—typified by embryonic stem cells, which are
capable of virtually unlimited proliferation and differenti-
ation—to adult stem cell lines, which can generate a far more
limited repertoire of differentiated cell types. The rapid increase
in reports of new sources of stem cells and their anticipated value
to regenerative medicine1,2 has highlighted the need for a general,
reproducible method for classification of these cells3. We report
here the creation and analysis of a database of global gene express-
ion profiles (which we call the ‘stem cell matrix’) that enables the
classification of cultured human stem cells in the context of a wide
variety of pluripotent, multipotent and differentiated cell types.
Using an unsupervised clustering method4,5 to categorize a collec-
tion of 150 cell samples, we discovered that pluripotent stem cell
lines group together, whereas other cell types, including brain-
derived neural stem cell lines, are very diverse. Using further
bioinformatic analysis6 we uncovered a protein–protein network
(PluriNet) that is shared by the pluripotent cells (embryonic stem
cells, embryonal carcinomas and induced pluripotent cells).
Analysis of published data showed that the PluriNet seems to be
a common characteristic of pluripotent cells, including mouse
embryonic stem and induced pluripotent cells and human oocytes.
Our results offer a new strategy for classifying stem cells and
support the idea that pluripotency and self-renewal are under tight
control by specific molecular networks.

Cultured cell populations are traditionally classified as having the
qualities of stem cells by their expression of immunocytochemical or
PCR markers7. This approach can often be misleading if these mar-
kers are used to categorize novel stem cell preparations or predict
inherent multipotent or pluripotent features8. To develop a more
robust classification system, we created a framework for identifying
putative novel stem cell preparations by their whole-genome mes-
senger RNA expression phenotypes (Fig. 1). The core reference data
set, which we call the ‘stem cell matrix’, includes cultures of human
cells that have been reported to have either stem cell or progenitor
qualities, including human embryonic stem cells, mesenchymal stem
cells and neural stem cells. To provide the context in which to place
the stem cells, we included non-stem-cell samples such as fibroblasts
and differentiated embryonic stem cell derivatives. To avoid biasing

the classification methods, it was critical that we designated the input
cell types with terminology that carried as little preconception about
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Figure 1 | Sample collection and analysis for the stem cell matrix. Cell
preparations for the stem cell matrix are cultured in the authors’ laboratories
or collected from other sources worldwide. Samples are assigned source
codes that capture their biological origin and a relatively unbiased
description of the cell type (such as BNLin for brain-derived neural lineage).
Samples are collected and processed at a central laboratory for microarray
analysis on a single Illumina BeadStation instrument. The genomics data are
processed by unsupervised algorithms that are capable of grouping the
samples based on non-obvious expression patterns encoded in
transcriptional phenotypes. For pathway discovery, existing high-content
databases with experimental data (for example, protein–protein interaction
data or gene sets) are combined with our transcriptional database, a priori
assumed identity of cell types and bootstrapped sparse non-negative matrix
factorization (sample clustering) to produce metadata that can be mined
with GSA software and topology-based gene set discovery methods (systems-
wide network analysis). Web-based, computer-aided visualization
methodologies can be used by researchers to formulate testable hypotheses
and generate results and insights in stem cell biology. Two exemplary results
we report in this paper are the classification of novel stem cell types in the
context of other better understood stem cell preparations, and a molecular
map of interacting proteins that appear to function together in pluripotent
stem cells.

Vol 455 | 18 September 2008 | doi:10.1038/nature07213

401

 ©2008 Macmillan Publishers Limited. All rights reserved

www.nature.com/doifinder/10.1038/nature07213
www.nature.com/nature
www.nature.com/nature


their identity as possible. Our nomenclature (‘source code’) has two
components: the first is the tissue or cultured cell line of origin. The
second term captures a description of the culture itself.
Supplementary Tables 1–8 summarize the descriptions of the core
samples and their assigned source codes.

To sort the cell types we used an unsupervised machine learning
approach to cluster transcriptional profiles of the cell preparations
into stable distinct groups. Sparse non-negative matrix factorization
(sNMF) was adjusted for this task by implementing a bootstrapping
algorithm to find the most stable groupings (see also Supplementary
Discussion 1)4,5. The stability of the clustering9 indicated that the data
set most likely contained about 12 different types of samples (Fig. 2a
and Supplementary Methods 2). The composition of the stable clus-
ters revealed both predictable and unpredicted groupings of a priori
designations (Fig. 2b and Supplementary Fig. 1). The 20 samples
identified as undifferentiated human pluripotent stem cell (PSC)
preparations were grouped together in one dominant cluster
(Fig. 2, cluster 1) and one secondary cluster (Fig. 2, cluster 5).
Sixty-two of the samples were brain-derived cells that were described
as neural stem or progenitor cells based on their source, culture
methods and classical markers. Most of the designated neural stem
cells were distributed among multiple clusters, indicating a great deal
of diversity in neural stem cell preparations. But one group of the
brain-derived lines, those derived from surgical specimens from liv-
ing patients (HANSE cells, see below), remained together throughout
the iterative clusterings (Fig. 2, cluster 6; see also Supplementary Fig.
3 and Supplementary Methods 1). The HANSE cell group consisted
of transcriptional profiles that were derived from neurosurgical spe-
cimens following published protocols for multipotent neural pro-
genitor derivation and propagation10,11. These cells expressed
markers that are commonly used to identify neural stem cells12 (see
Supplementary Fig. 4), but the clustering clearly separated them from
the other samples that had been derived from post-mortem brains of
prematurely born infants (SC23 and SC30, see Fig. 2b)10,11.

We tested the ability of our data set to categorize additional pre-
parations by adding 66 samples comprising new cultures derived
from PSC lines that were already in the matrix, preparations that
were not yet included (but their presumptive cell type was already
represented), or new cell types. We chose two new types of cells: a
differentiated cell type (umbilical vein endothelial cells (HUVECs))
and a recently developed new source of pluripotent cells called
induced pluripotent stem cells13–16 (iPSCs, Supplementary Table 9).
iPSCs have been generated from somatic cells, including adult fibro-
blasts, by genetic manipulation of certain transcription factors13,15–17.
We re-computed clustering results including the test data set
(Supplementary Table 10). All of the HUVEC samples clustered
together and formed a distinct group. Most of the additional PSC
lines (human embryonic stem cells (embryonic PSCs; ePSCs) and
iPSCs) from several different laboratories were placed into a context
that contained solely PSC lines. Three additional germ cell tumour
lines clustered together with the tumour-derived pluripotent stem
cell (tPSC) line 2102Ep and samples of three human embryonic stem
(ES) cell lines: BG01v (ref. 18), Hues7 (ref. 19) and Hues13 (ref. 19).
BG01v is an established aneuploid variant line and the two Hues lines
are aneuploid variants of the originally euploid lines (not shown).

We used a combination of analysis tools to explore the basis of the
unsupervised classification of the samples in the core data set. Gene
Set Analysis20 (GSA) is a means to identify the underlying themes in
transcriptional data in terms of their biological relevance.

GSA uses lists of genes20 that are related in some way; the common
criterion is that the relationships among the genes in the lists are
supported by empirical evidence20. GSA highlighted numerous sig-
nificant differences among the computationally defined categories.
(See Supplementary Fig. 2, Supplementary Table 11, Supplementary
Methods and http://www.stemcellmatrix.org).

Although GSA is valuable for discovering specific differences among
sample groups, it is limited to curated gene lists and cannot be used to

discover new regulatory networks. The MATISSE algorithm6 (http://
acgt.cs.tau.ac.il/matisse) takes predefined protein–protein interac-
tions (for example, from yeast two-hybrid screens) and seeks con-
nected subnetworks that manifest high similarity in sample subsets.
The modified version used in this analysis is capable of extracting
subnetworks that are co-expressed in many samples but also signifi-
cantly upregulated or downregulated in a specific sample cluster.
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Figure 2 | Clusters of samples based on machine learning algorithm.
Samples were distributed on the basis of their transcriptional profiles into
consensus clusters using sNMF. a, Consensus matrix from consensus
clustering results (centre matrix plot). The consensus matrix is a visual
representation of the clustering results and the separation of the sample
clusters from each other. Blue indicates no consensus; red indicates very
high consensus. The numbers (1–12) on the diagonal row of clusters indicate
the number assigned to the cluster by sNMF. These numbers (cluster 1 to
cluster 12) are used throughout the text to indicate the group of samples in
that cluster. The bar graph above the consensus matrix plot shows the
summary statistics assessing the overall quality of each cluster. The cluster
consensus value (0–1) is plotted above the corresponding cluster in the
matrix plot. Note that most clusters (clusters 10, 12, 6, 4, 9, 1, 8, 11, 7 and 2)
have a high-quality measurement. To the left of the consensus matrix is
another view of the consensus data, visualized as a dendrogram. This is a
representation of the hierarchical clustering tree of the consensus matrix.
b, The content of the sample clusters resulting from the same sNMF run are
displayed. Numbers are the same cluster numbers assigned by the consensus
clustering algorithm that are used throughout the text and figures. For more
information on samples, source code and references see Supplementary
Tables 1–10. No., number of samples. The symbol ‘"’ indicates that samples
were derived from adult brain specimens.
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Figure 3 | Pluripotent stem-cell-specific protein–protein interaction
network detected by MATISSE. Clusters from the sNMF k 5 12 analysis
were used in combination with the transcriptional database to identify
protein–protein interaction networks enhanced in PSCs. A, A large
differentially expressed connected subnetwork (PluriNet) shows the
dominance of cell cycle regulatory networks in PSCs (see legend). All of the
dark blue symbols are genes that are highly expressed in most PSCs
compared to the other cell samples in the data set. Front nodes, as
represented by stem cell matrix expression data, and back nodes, as inferred
by MATISSE, are displayed with different colour shades6. Highlighted in red
are the interactions of a group of proteins associated with pluripotency in
murine ePSCs21. This subnetwork shows a significant enrichment in genes
that are targeted in the genome by the transcription factors NANOG
(P 5 5.88 3 1024), SOX2 (P 5 0.058) and E2F (P 5 1.29 3 10216, all
P-values are Bonferroni corrected). For an interactive visualization of
PluriNet, see http://www.stemcellmatrix.org. B, Heat-map-like visualization
of PluriNet genes for samples from the test data set: HUVECs (UC-EC,
a–c, derived from three independent individuals), germ cell tumour-derived
pluripotent stem cells (tPSC-UN, d–f, lines GCT-C4, GCT-72, GCT-27X,

derived from three independent individuals), induced pluripotent stem cells
(iPSC-UN, g–i, BJ1-iPS12, MSC-iPS1, hFib2-iPS5, three independently
derived lines from different somatic sources) and embryonic stem cells
(ePSC-UN, j–l, lines Hues22, HSF6, ES2, derived from three independent
blastocysts in three independent laboratories). Most PluriNet genes are
markedly upregulated in iPSC-UN and ePSC-UN cells. tPSC-UN cells show a
less consistent expression pattern. UC-EC cells show lower expression levels
of most PluriNet genes. See Supplementary Fig. 5 for a larger version of the
same heat maps. C, Analysis of genes from PluriNet in the context of
phenotypes that have been reported to result from specific genetic
manipulations (for example, gene knockout) in mice in the MGI 3.6
phenotype ontology database (http://www.informatics.jax.org/). We find
significant over-representation of phenotypes ‘lethality (perinatal/
embryonic)’, ‘tumorigenesis’, ‘cellular’, ‘embryogenesis’, ‘reproductive
system’ and ‘lifespan and ageing’ among the genes in PluriNet. Although
these broad categories might be rather unspecific surrogate markers for PSC
function in mammals, this analysis might point towards PluriNet’s role in
vivo. For more details, see also Supplementary Fig. 6 and Supplementary
Table 12.
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Because the PSC preparations were consistently clustered together we
used MATISSE to look for distinctive molecular networks that might
be associated with the unique PSC qualities of pluripotency and self-
renewal. A Nanog-associated regulatory network has been outlined in
mouse embryonic PSCs21, and we looked for the elements of this
network in human PSCs using our unbiased algorithm. We found
that the algorithm predicts that human PSCs possess a similar
NANOG-linked network (Fig. 3A; elements labelled in red).
However, we also discovered that the human NANOG network seems
to be integrated as a small component of a much larger protein–
protein interaction network that is upregulated in human PSCs
(Fig. 3). Notably, this PSC-specific network (termed pluripotency-
associated network, PluriNet) contains key regulators that are
involved in the control of cell cycle, DNA replication, DNA repair,
DNA methylation, SUMOylation, RNA processing, histone modifica-
tion and nucleosome positioning (see also Supplementary Discussion
2 and http://www.openstemcellwiki.org). Many of the genes in the
PluriNet have been linked to embryogenesis, tumorigenesis and age-
ing (Fig. 3C and Supplementary Fig. 6). We further explored the

hypothesis that pluripotency is closely linked to PluriNet expression
by analysing published gene expression data sets from human oocytes,
various types of PSCs and murine embryos (see Table 1 for a summary
of our findings in various model systems). Analysis of a microarray
data set22 that spans development from murine oocytes to the late
blastocyst stage revealed that the PluriNet expression is dynamic
and upregulated during early mammalian embryogenesis (Table 1
and Supplementary Figs 7–9)23. Also, our preliminary analyses indi-
cate that the PluriNet is strongly upregulated in mouse PSCs, mouse
iPSCs and mouse epiblast-derived stem cells24 when compared to
somatic cells. Therefore the PluriNet may be useful as a biologically
inspired gauge for classifying both murine and human PSC pheno-
types (Table 1 and Supplementary Figs 10–13).

Our data indicate that an unbiased global molecular profiling
approach combined with a transcriptional phenotype collection using
suitable machine learning algorithms can be used to understand and
codify the phenotypes of stem cells4,5,25. Although it is more extensive
than any stem cell data set reported so far, we consider our database
and the PluriNet to be a work in progress. As more direct evidence for
protein–protein interactions in human cells becomes available, it will
be possible to refine the networks we have defined and make them
more useful for testing hypotheses about the nature of stem cell plur-
ipotency and multipotency. Also, our sample collection is limited to
pluri- and multipotent stem cell types that grow well in culture, and
does not include some of the most well studied lineages, such as
haematopoietic stem cells. Resolution and reliability of a context-
based unsupervised classification can be expected to grow with the
breadth and depth of the database content26. Even with these limita-
tions, we have shown that the data set and PluriNet have already
proved useful for categorizing cell types using unbiased criteria. As
more stem cell populations become available, cultured by new meth-
ods, isolated from new sources, or induced by new methods, we will
use the PluriNet and the stem cell matrix as a reference system for
phenotyping the cells and comparing them with existing cell lines.

METHODS SUMMARY

For an overview of the general workflow, please also refer to Fig. 1. A detailed list

of the samples, culture methods and reference publications is provided in

Supplementary Information11. Generally, RNA from each sample was prepared

from approximately 1 3 106 cultured cells. Sample amplification, labelling and

hybridization on Illumina WG8 and WG6 Sentrix BeadChips were performed

for all arrays in this study according to the manufacturer’s instructions (http://

www.illumina.com) at a single Illumina BeadStation facility. We used the

Consensus Clustering framework9 to cluster transcription profiles and to assess

stability of the results. As the algorithm, we used sparse non-negative matrix

factorization5. For data perturbation, 30 subsampling runs were performed for

each considered number of clusters (k). In each run, 80% of the data was sub-

jected to ten random restarts. The R-script can be downloaded at http://

www.stemcellmatrix.org. Details on the application of GSA20, PAM27,

MATISSE6 as well as publicly available data sets used in this study can be found

in the Methods section. We modified the MATISSE6 computational framework

to fit the goals of this study. For the present analysis we used the human physical

interaction network that we had previously assembled6 and augmented it with

additional interactions from recent publications21,28,29. The 64 interactions in ref.

21 were mapped to the corresponding human orthologues using the NCBI

HomoloGene database.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Compilation of type collection. Samples were either grown in our own labor-

atory or provided by collaborators. Each sample was prepared from approxi-

mately 1 3 106 cultured cells, which were mechanically harvested, pelleted and

snap frozen in liquid nitrogen. Biological replicates were produced for almost all

samples. Details on the included cell lines and culture methods can be found in

the Supplementary Tables 3–8.

Neural progenitor cultures (HANSE) from neurosurgical specimens. Brain

tissue samples were obtained from patients who underwent surgery for intract-

able temporal lobe epilepsy at the Department of Neurosurgery, University
Medical Center Hamburg-Eppendorf, Germany (n 5 6; 4 males and 2 females;

mean age 33). All procedures were performed with informed consent and in

accordance with institutional human tissue handling guidelines. We used mod-

ifications of reported protocols for establishing neural progenitor cultures from

fetal and postmortem brain tissue10,30. A more detailed description can be found

in Supplementary Methods 1.

Whole-genome gene expression. All RNA was purified in our laboratory using

standard methods. Sample amplification, labelling and hybridization on

Illumina WG8 and WG6 Sentrix BeadChips were performed for all arrays in

this study according to the manufacturer’s instructions (Illumina) using an

Illumina BeadStation (Burnham Institute Microarray Core).

Microarray data pre-processing. Raw data extraction was performed with

BeadStudio v1.5 and probes with a detection score of less than 0.99 in all of

the samples were discarded. The resulting probes were then quantile-normalized

to correct for between-sample variation31. The sample data were quality con-

trolled before normalization using the quality parameters provided by

BeadStudio software. Before and after normalization the arrays were inspected

with signal distribution box plots and by using the maCorrPlot package32.
Parameters for unsupervised classification. The data sets and the sparseness

factor l were adjusted for the unsupervised clustering task following previous

reports4,5. Parameters we have used for this study are: SCM core data set (153

samples), l 5 0.01; SCM test data set (219 samples), l 5 0.1. The pre-processed

data sets used can be downloaded at http://www.stemcellmatrix.info.

Gene expression and gene set analysis. To screen for differentially expressed

groups of genes between computationally defined sample clusters we used the

Gene Set Analysis (GSA) methods proposed previously33,34. GSA was chosen

because it uses a stringent max-mean algorithm to identify significantly differ-

entially regulated gene sets. The cutoff P-value was adjusted to accommodate a

false discovery rate (FDR) of 10%. A translation file was built to use GSA with

Illumina expression data. We collected gene lists from recent publications and

public repositories (MolSigDB2, Stanford repository). These files can be down-

loaded from http://www.stemcellmatrix.org. To screen for differentially

expressed genes between computationally defined sample clusters we used stand-

ard t-test-based methods implemented in the R Bioconductor package35. The

cutoff P-value was adjusted to accommodate a FDR of 5%.

Detection of cluster-specific subnetworks using MATISSE. MATISSE6 (http://
acgt.cs.tau.ac.il/matisse) was adjusted to detect differentially expressed con-

nected subnetworks (DECSs), corresponding to connected subnetworks in a

physical interaction network that show a significant co-expression pattern.

The physical network used by MATISSE contains vertices corresponding to

genes and edges corresponding to protein–protein and protein–DNA interac-

tions. For the present analysis we used the human physical interaction network

that we had previously assembled6 and augmented it with additional interactions

from recent publications21,28,29. In total, the network contained 34,212 interac-

tions among 9,355 proteins.

Originally, MATISSE used the Pearson correlation coefficient as a measure of

similarity between the expression patterns of gene pairs. These similarity values

serve as a starting point for the computation of pair-wise weights using a prob-

abilistic model. The Pearson correlation between a pair of genes captures a global

similarity trend between their expression patterns. In this work we were inter-

ested in extracting groups of genes that are not only similar across the experi-

mental conditions, but also show significantly high or significantly low

expression values in a specific subset of the samples, identified using the

sNMF clustering scheme. To this end we devised a hybrid similarity score that
captures two features: (1) both genes show differential expression; (2) the genes

have similar expression patterns, regardless of their differential expression.

We denote the expression pattern of gene i by xi~(xi
1,xi

2,:::,xi
m). Assume that

we are interested in DECSs upregulated in a condition subset A(f1,:::,mg. To

address goal (1), we use an ‘ideal’ expression profile p 5 (p1,p2,…,pm) where

pi 5 1 if i[A and pi 5 21 otherwise. The signs are reversed if we are interested

in a DECS downregulated in A. rkp is the Pearson correlation coefficient between

xk and p. Intuitively, rkp is close to 1 if the corresponding transcript is strongly

upregulated in A compared to the other conditions, and close to 21 if it is

strongly downregulated in A. This measure has been suggested as an aparametric

differential expression score36. Note that the Pearson correlation is invariant

under normalization of the patterns to zero mean and standard deviation of 1.

For every gene pair (i,j) we compute Sdiff(i,j) 5 (rip 1 rjp)/2. To address goal (2)

we use the partial correlation coefficient between the gene patterns conditioned

on the ideal profile. Formally, Spart(i,j)~
rxi ,xj {rxi ,prxj ,pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{r2
xi ,p

)(1{r2
xj ,p

)
q , where ryz is the

Pearson correlation coefficient between the profiles y and z. Intuitively, Spart

conveys the information about how similar xi and x j are, regardless of their

differential expression in A. Finally, we use the similarity score S 5 lSdiff 1 Spart,

where l is a trade-off parameter setting the relative importance of the differential

expression in the similarity score. We used l 5 3 for the analysis described in this

paper. These S scores are then modelled using the probabilistic model described

previously6. The advantage of using this pair-wise scoring scheme over the use of

gene-specific differential expression scores, such as those proposed by others37, is

that it will prefer gene groups that are not only differentially expressed in the

specified condition subset, but also have coherent expression profiles.

To diminish the effect of the size difference between the clusters, we reduced

the number of conditions in clusters 1, 2, 3, 6, 9, 10 and 12, by including fewer

replicates. Overall, 105 samples were used in the MATISSE analysis and can be

downloaded at http://www.stemcellmatrix.org. We executed this MATISSE vari-

ant iteratively, each time setting A to contain all the samples of a single cluster or

a cluster pair. The upper bound on module size was set to 300 and the rest of the

parameters were as previously reported6. We then filtered the resulting networks

by removing DECSs that overlapped more than 50% with other, higher scoring

DECSs. The full set of the DECSs is available at http://www.stemcellmatrix.org.

Visualization. For visualization of the selected DECS we used Cytoscape 2.5 (ref.

38) and Cerebral 2.0 (ref. 39). Localization data from HRPD and the GO-

Molecular function categories were also used29. NANOG, POU5F1/OCT4 and

SOX2 promoter binding information was used to code the ESC-specific regu-

lation of nodes40. Permutmatrix was used for heat maps41. Data for the analysis of

human oocytes were accessed on the authors’ or the journals’ website42. For

analysis of iPSCs induced with LIN28, OCT4, NANOG and SOX2, the data set

was obtained from the Thomson laboratory15.

Classification based on PluriNet. We used the 299 genes from DECS

(Up(1,5)A) (PluriNet) with the PAM20 software package. Class probabilities

were re-computed 10,000 times; average scores are reported in Supplementary

Figs 10 and 12. We translated the human genes into their murine orthologues

from PluriNet using the NCBI HomoloGene database for re-analysing murine

expression profiles. The expression array data from murine fibroblasts, induced

pluripotent cells, epiblast-derived stem cells and murine embryonic stem cells

were downloaded from NCBI GEO21–24.
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