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Abstract 

Improved methods for integrated analysis of heterogeneous large-scale omic data are direly 

needed. Here we take a network-based approach to this challenge. Given two networks, 

representing different types of gene interactions, we construct a map of linked modules, where 

modules are genes strongly connected in the first network and links represent strong inter-module 

connections in the second. We develop novel algorithms that considerably outperform prior art on 

simulated and real data from three distinct domains. First, by analyzing protein-protein 

interactions and negative genetic interactions in yeast we discover epistatic relations among 

protein complexes. Second, we analyze protein-protein interactions and DNA damage-specific 

positive genetic interactions in yeast, and reveal functional rewiring among protein complexes, 

suggesting novel mechanisms of DNA damage response. Finally, using transcriptomes of non-

small cell lung cancer patients, we analyze networks of global co-expression and disease-

dependent differential co-expression, and identify a sharp drop in correlation between two 

modules of immune activation processes, with possible microRNA control. Our study 

demonstrates that module maps are a powerful tool for deeper analysis of heterogeneous high 

throughput omic data. 
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Introduction 

Biological networks provide a comprehensive overview of biological systems. They enable better 

understanding of the system and can shed light on the function of genes and other molecular 

compounds. Among other applications, they have been utilized for discovery and prediction of 

gene interactions, gene functions, and disease-genes associations (1-9).  

In these networks, nodes represent molecular entities and the edges represent interdependencies. 

For example, in protein-protein interaction (PPI) networks nodes represent proteins and edges 

represent physical interactions. In genetic interaction (GI) networks, nodes represent genes and 

edges represent the organism fitness for double knockout perturbations, yielding two major types 

of edges: alleviating GIs and aggravating GIs. In alleviating GIs, also called positive GIs, the 

organism fitness after the double-knockout perturbation is better than expected based on the 

single knockout results. In aggravating or negative GIs, the fitness is worse than expected. In 

gene co-expression networks, nodes represent genes and edges score the correlation in expression 

between the two genes (10,11). In gene differential correlation (DC) networks, edges score the 

change in gene pairwise correlation between one set of samples to another (e.g., cases and 

controls) (12-14). With the growing use and number of types of biological networks, 

computational methods that exploit these rich data are of great importance.  

Computational methods that make use of several networks are often better than methods that 

analyze only a single network (4,7,8,15-19). For example, combined analysis of  PPI networks 

and gene co-expression networks was utilized to detect gene sets that are co-expressed and are 

connected in the PPI network. Such analysis outperformed standard clustering algorithms, and 

was successfully utilized for gene function prediction (5,8,16,19). Alleviating and aggravating GI 

data were used to find epistasis among and within gene sets. Under the premise that negative GIs 

tend to occur between compensatory pathways and positive GIs occur within pathways (or 

complexes), analysis of GIs was used to suggest a map of epistatic relations among functional 

gene modules (15,17,20-22). A marked improvement was reported after adding a connectivity 

constraint in a PPI network of the modules (15,17). The ability to construct a summary map of 

several networks allows identifying associations among discovered modules, thus improving the 

interpretability of the results compared to standard clustering of a single network. 

Building on prior studies of specific pairs of networks, we introduce and study the fundamental 

problem of constructing a summary map of two biological networks H and G, where the nodes of 

both are the same genes or proteins, and the edges in each represent a distinct type of relations 

(see Figure 1D). The map nodes are gene sets that are strongly connected in H, and pairs of sets 

are connected by links. A link represents strong connection between two gene sets in G. The goal 

is to find gene modules in H simultaneously with finding module-to-module interactions 

according to G, by optimizing a specific objective function. We call this computational problem 

the module map problem.  

Most algorithms for the module map problem to date were used to find a summary map of 

epistatic interactions among pathways (15,17,20-22). Kelley and Ideker (15) proposed a method 

that is based on local searches in the graphs to find pairs of connected modules. Ulitsky et al. (17) 

used a clustering of H as a starting point and then improved the solution by merging modules. An 
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algorithm akin to (15) has been recently proposed for analyzing gene co-expression and DC 

networks. The joint analysis of these networks revealed gene groups that are much more (or much 

less) correlated in one class of individuals (23). Although previous algorithms for the module 

map problem proved valuable, a thorough analysis of the problem and of the merits and 

weaknesses of these algorithms in different scenarios is required.  

The problem of finding an optimal module map is NP hard under most formulations, as it 

contains the clustering of H as a subproblem. Hence, heuristics are used. These algorithms 

usually contain two phases. We call the first phase initiators: algorithms for finding an initial 

solution that may contain many small modules. The second phase employs improvers: algorithms 

for improving an initial solution according to a predefined objective function. A variety of 

algorithms can be formed from different combinations of initiators and improvers. 

Here, we study novel and extant initiators and improvers. We show that a new initiator based on 

maximal bicliques in G together with a statistically formulated global improver strategy performs 

consistently better or equal to extant methods on synthetic and real networks of several types. We 

call the resulting algorithm ModMap. We apply ModMap to experimental data in three biological 

scenarios: (1) using yeast PPIs and negative GIs, we find epistatic relations among protein 

complexes, (2) using yeast PPIs and DNA damage-specific positive GIs, we detect emerging 

connections among protein complexes involved in DNA damage response, and (3) using 

differential correlation analysis of gene expression profiles of non small cell lung cancer tissues, 

we identify disease specific loss of correlation between immune activation processes, and detect 

disease-specific microRNAs.  

Materials and Methods 

Definition of the module map problem 

The input to the problem is a pair of networks H=(V,EH,WH) and G=(V,EG,WG) defined on the 

same set of vertices. These networks can be weighted or un-weighted. The goal is to find a 

module map that summarizes both networks. A module map is a graph F=(M,L) where M is a 

collection of disjoint node sets, called modules, M={M1,…, Mp}, Mi   V, Mi   Mj =  , and L is a 

set of module pairs {(U1,V1), …, (Up,Vp)}, where each Ui and Vi are in M. These pairs are called 

the map links. In addition, each module must be linked to at least one other module. Roughly 

speaking, our goal is to find a module map such that each module corresponds to a heavy sub-

graph of H, and each link represents a heavy bipartite sub-graph in G between a pair of modules. 

(A formal notion of heavy subgraphs will be introduced later.) Figure 1D shows a toy example of 

two unweighted networks and their module map.  

Previous algorithms for constructing module maps vary in the way they define the objective 

function and the links. The DICER algorithm (23) seeks one pair of linked modules at a time. A 

pair of modules is defined as linked if the sum of weights WG between them is high enough. We 

call the approach of DICER local, as it finds one module pair at a time. The algorithm of Ulitsky 

et al. (17) aims to maximize the global score, namely, the total sum of scores within modules in 

H plus the sum of scores of links in G. In addition to increasing the global score, links between 
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modules are accepted only if they pass a statistical significance test. We call the second approach 

global. Note that both methods identify the links and the modules simultaneously. 

 

Figure 1 Module map: example and simulation results. A-B) Performance of module map algorithms on 

500-node graphs. A) Unweighted graphs. B) Weighted graphs. Each simulated pair of graphs contained an 

embedded module map of six modules in a tree structure. In addition, two random cliques and two 

bicliques were embedded in the graphs as decoys. Module, clique, and biclique size was chosen uniformly 

at random between 10 and 20. In the un-weighted model (A) each edge was replaced by a non-edge with 

probability p, and vice versa. In the weighted model (B) edge weights are sampled from the normal 

distribution N(1,σ), and non-edge weights are sampled from the normal distribution N(-1, σ). Results are 

averages of 10 simulations for each data point. The four top performing algorithms for each simulation are 

presented using radar plots. MBC-DICER with global improvement is denoted as ModMap. The Jaccard 

coefficient between the modules produced by each algorithm and the true modules is shown as the distance 

from the center. Consecutive spokes from the top anticlockwise show increasing values of p in A and of σ 

in B. C) Comparison of module map algorithms on unweighted graphs with 1000 nodes, containing a map 

of 10 modules and five decoys and p=0.15. D) A toy example of the module map problem; left: the two 

networks. Nodes are genes, H edges are black and G edges are blue; right: The module map. Nodes are 

modules and edges are links. Colors and numbers are the same on the left and right. The map contains three 

modules: Module 2 is linked to modules 1 and 3, whereas module 1 and 3 are not linked.  Black nodes are 

not part of the module map. Note that the graph H (black edges) contains a clique that is not linked in G to 

another module and thus is not a part of the map. The example also demonstrates the difference between 

the local and global approaches. The local approach identifies modules 1 and 2 as linked, while the global 

approach also identifies module 3 as linked to module 2. See text. 
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Figure 1D demonstrates the differences between the local and global approaches. Assume that in 

both graphs edge weights are 1, non-edge weights are -1, and that the local approach uses a 

threshold of 0 on the sum of WG weights between two modules for reporting a link. In both 

approaches modules are clusters of nodes with high density in H. According to both approaches, 

module 1 is linked to module 2: the local score is 4 (8 edges and 4 non-edges), the global analysis 

p-value for linkage is lower than 0.05, and the total score for the module pair is 13 (module score 

6+3 + link score 4). The sum of WG weight between modules 2 and 3 is -4 (10 edges and 14 non-

edges) and the local method rejects that link. However, the global approach will also link module 

2 and 3: the linkage p-value is significant (p=0.039), and adding this link will improve the global 

map score to 24 (13 for the (1,2) pair + 15 for module 3 – 4 for the (2,3) link). This example 

illustrates the advantage of the global approach on sparse graphs, in which large modules are not 

expected to be densely inter-connected.  

Algorithms  

We conducted a systematic study and developed further a family of two-phase algorithms for 

module map detection that find an initial solution (possibly consisting of many small modules), 

and then improve it. We call algorithms for the first phase initiators and algorithms for the second 

phase improvers. For simplicity, we describe the algorithms assuming that edges with positive 

weight are considered heavy. For un-weighted graphs we assume edge weights to be 1 and non-

edge weights to be -1. For weighted graphs all node pairs (edges) have weights, so there are no 

non-edges.  

Initiators 

We tested five different initiators: (1) DICER (23), which finds one pair of linked modules at a 

time, (2) hierarchical clustering of the graph H (26), which finds a set of modules, (3) a greedy 

node addition algorithm for finding modules in H, (4) DICERk a variant of DICER wherein the 

minimum module size is set to k, and (5) an algorithm based on enumeration of maximal 

bicliques in G using an exhaustive solver (24,25), followed by the cleaning process of DICER. 

We call the latter algorithm MBC-DICER, see Supplementary Text and Supplementary Figure 

1 for a full description of all initiators. Each initiator creates an initial module set, but note that 

modules in the map constructed by clustering algorithms are not necessarily linked. 

Improvers 

The local improver (23) extends module map links by either adding a single node to a module or 

by merging two module map links. One drawback of this approach is that it cannot create new 

modules that are not represented in the initial solution. Another disadvantage is that it cannot 

merge a module whose two parts are linked to different modules that are unlinked. See 

Supplementary Figure 2 for examples. Below we introduce the global improver, which can 

often overcome both problems. 

Our global improver is based on the procedure in (17). Let M={M1,…, Mn} be a collection of 

disjoint node sets (e.g., a set can be a single gene or not linked to any other set). Given sets (U,V), 

U,V   M, and x U, the significance of the linkage of x with V is calculated using Wilcoxon 
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rank-sum test by comparing the edge weights WG between x and V to the edge weights between x 

and all nodes not in V. Such p-values are calculated for all nodes in U and V, and they are 

combined using Stoufer’s method (27). If the final p-value p(U,V) is at most α then U and V are 

connected by a link in the map. Let L={ (U1,V1), …, (Up,Vp)} be the resulting set of links. 

The global score of the solution is the sum WH of edge weights within each Mi plus the sum of 

WG edge weights between the linked node sets: 

                 

            

           

                        

 

                                                     

The improvement stage merges a pair of node sets (two modules or a module and a single gene) if 

the global score increases and the new link passes the significance test. Note that considering a 

merge that creates a new module Y requires recalculating p(Y,Z) for all other modules Z in M, in 

order to calculate the global score. This process is done greedily: iteratively, the merge that yields 

the best improvement is performed until no possible merge can improve the global score.  

We modified the above method to allow for fast analysis of large graphs, as follows. First, when 

calculating p(U,V) we consider the links in G’ (the un-weighted version of G). We use a hyper-

geometric test to evaluate if a node has significant number of edges in G’ to the opposite set (e.g., 

from a node v   V to the set U), and then all node p-values are merged using Fisher’s method 

(28). (U,V) are linked if the resulting value <α. This test is much faster and provides maps of 

equal quality to using the Wilcoxon test on G (see Supplementary Text). Note that weighted 

tests, such as the Wilcoxon test, are not always appropriate for detecting linkage among gene 

modules. For example, in the differential correlation graphs, a strong link must contain many 

positive edges, while the Wilcoxon test only looks at the ranks of the edge scores. 

Second, we set another parameter β>>α, and if at some point the p-value for the possible link 

between two sets is at least β, we say that the sets are anti-linked. In the original algorithm, when 

considering merging two sets U and V into W, possible links between W and every other set Y 

must be calculated. However, if U and Y are anti-linked or V and Y are anti-linked then we mark 

W and Y as anti-linked, avoiding the need to consider the possible link (W,Y). In practice we 

used α=0.005 for the yeast data as suggested in (17), and tested several options in the gene 

expression data (see Supplementary Text).  In all cases we used β=0.2. Finally, we perform 

multiple merge steps simultaneously in a single iteration in a way that guarantees that the global 

score improves (see Supplementary Text). This provides a speed up of two-fold or more in 

practice without loss of solution quality. 

Simulations  

We constructed initially empty 500-node graphs H and G and then added edges creating a perfect 

module map in which modules are cliques in H and links are bicliques in G. The module map 

topology (M,L) was a random tree with |M|=6. We then added two H-cliques and two G-bicliques 

to the graphs to represent additional “decoy” structures that are not part of the map. Clique, 



Amar and Shamir – Module maps     to appear in Nucleic Acids Research 
  

8 
 

biclique, and module sizes were randomly selected in the range 10-20 with uniform distribution 

and disjoint node sets. Call the resulting edge sets EH* and EG*. Finally, we modified these 

graphs by introducing random noise: each edge in G and H was deleted with probability p, and 

each non-edge was replaced by an edge with probability p. All reversal steps were done 

independently. For creating weighted graphs, the same procedure was used, but all possible edges 

are present in the final H and G:  w(u,v) is sampled from N(1,) if (u,v)  is in EH* or EG*, and 

from N(-1,) otherwise. We also generated in this manner 1000-node graphs with 10 or 20 

modules and five decoys (cliques and bicliques). 

Analysis of negative genetic interactions and protein-protein interactions in yeast 

Protein-protein interactions (PPIs) and negative genetic interactions (GIs) were downloaded from 

BIOGRID (29). These networks were used to find epistatic relations among protein complexes. 

The PPI network was used as H and the GI network was used as G (See Supplementary Table 

1).  

Analysis of DNA damage-specific genetic interactions data 

We used the data of (21), in which all pairwise GIs among 418 genes were tested, and of (30), 

which tested GIs between 55 query genes and 2,022 genes.  A DNA damage-specific positive GI 

was defined as one that had S<0 in the untreated cells, S>0.5 in the treated cells, and the p-value 

for differential GI was <0.01. This analysis yielded 840 interactions from (21) and 1677 

interactions from (30). We additionally defined a positive GI as stable if it had S>1.5 both in the 

untreated cells and in the DNA damage cells. This analysis provided 491 interactions in (21) and 

3139 interactions in (30). Note that due to the different experimental setups most of these GIs are 

not directly comparable. 

Calculating differential correlation scores 

Given a training set containing gene expression profiles of subjects, we used the statistical 

method of (23) to compute for each gene pair its consistent correlation and differential correlation 

(DC) scores. First, DC scores are computed using the real labels of the samples. Then, the scores 

are transformed to log-likelihood ratio (LLR) scores by comparing the original DC scores to 

scores calculated on the same data with randomly shuffled labels. Thus, positive LLR scores 

mark gene pairs with significant change in DC. The prior probability of real DC changes was set 

so that only correlation changes of at least 0.4 will have a positive LLR score. This approach 

guarantees a similar yet slightly more stringent acceptance threshold compared to (23). See 

Supplementary Text for additional information. 

GO and microRNA enrichment analysis 

We used TANGO (31) for GO molecular function and biological process enrichment analysis of 

modules, and FAME (32) for microRNA enrichment analysis. Both tools are available as part of 

the EXPANDER software (33). When a set of modules was analyzed, we corrected for multiple 

testing using FDR with q=0.05. Notably, the background set for the enrichment analysis was 

defined as the set of genes in the networks and not all genes in the organism. This filtering step 

reduces bias in case of over-representation of GO terms in the networks.  
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Network visualization 

Network visualization was done using Cytoscape (34). 

Availability 

A command line tool for running ModMap is freely available for academic use at 

http://acgt.cs.tau.ac.il/modmap/.  

Results 

Simulations 

We first tested the different algorithms on synthetic graphs H and G. Starting from a perfect 

module map, we first added cliques in H and bicliques in G to represent additional structures that 

are not part of the map, and then introduced random noise to the edges. To generate both sparse 

and denser graphs, we tested a wide range of the noise parameters σ and p in the weighted and the 

unweighted simulations, respectively (see Materials and Methods). The results presented here are 

for graphs with 500 nodes and six modules per map. We also tested larger graphs with similar 

results (See Supplementary Figures 3, and 4). 

We tested 10 combinations of initiator and improver on 10 random datasets for each value of p 

and σ. We measured the quality of produced solutions using Jaccard coefficient between the 

reported modules and the known modules. The results of the un-weighted and weighted models 

are shown in Figure 1A and Figure 1B, respectively. Only the four algorithms that performed 

best on average in each simulation are shown. Supplementary Table 2 contains the results for all 

combinations. The local improvement algorithms did not reach perfect scores even on noiseless 

data. In contrast, MBC-DICER and DICER5 followed by global improver reached perfect Jaccard 

scores when there was no statistical noise. The high performance of MBC-DICER remained 

robust even when noise levels were as high as p=0.15 in the un-weighted model and σ=1.2 in the 

weighted model. A comparison of all algorithms on unweighted graphs with 1000 nodes and 10 

modules for noise level p=0.15 is shown in Figure 1C. Performance remains high although the 

graphs are much larger. Using the improvers was beneficial compared to using only the initiator 

solutions, especially for the DICER variants. MBC-DICER with the global improver reached 

highest performance (0.87). Interestingly, the local improver was better than the global improver 

for all other algorithms (e.g., 0.71 vs. 0.59 for DICER5). This is probably because the MBC-

DICER initiator detects robust fully-connected modules, which are a better starting point to the 

global improver at high noise levels. Tests with different values of k for the DICERk algorithm 

led us to choosing k=5 (Supplementary Figure 4). In addition, we compared the performance of 

the global improver with the hyper-geometric test and with the Wilcoxon rank-sum test, which 

was used in previous studies. Our results show that using the hyper-geometric test reaches similar 

quality of results, but is much faster (see Supplementary Text).  Overall, the results indicate that 

MBC-DICER followed by the global improver achieved the best performance on both un-

weighted and weighted data. We call the resulting algorithm ModMap and will use it as the 

algorithm of choice from now on.  

 

http://acgt.cs.tau.ac.il/modmap/
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Yeast protein-protein interaction and negative genetic interaction data 

We used protein-protein interactions (PPIs) and negative genetic interactions (GIs) from 

BIOGRID (29) to find epistatic relations among protein complexes. Only genes that had both 

types of interactions were used. Overall, the networks contained 3979 genes, 45,456 PPIs, and 

76,237 negative GIs (the interactions are listed in Supplementary Table 1). Note that this 

number of genes and edges is larger than in previous studies. For example, (22) covered 1460 

genes, and (17) covered 743 genes. Therefore, our networks have the potential to provide a 

broader overview of the yeast interactome and allow for a comprehensive performance testing of 

the different algorithms.  

As done in previous studies, we evaluated solutions by their statistics and the functional 

characterization of the modules (17,22). The calculated solution statistics included the number of 

modules, the number of genes covered, and the maximal module size. We used TANGO (33) to 

measure module functional enrichment, and reported the number of discovered GO terms, the 

percent of enriched modules, and the percent of module map links for which both modules are 

enriched (with the same or with different functions), which we call enriched links. Enriched links 

represent dense GIs among known biological terms. 

The solution statistics of all algorithms are shown in Supplementary Table 3. One can observe 

clear superiority of global over local improvers. While global improvers reported at least 100 

modules and covered 800-1000 genes, the local improvers found 2-28 modules covering only 15-

192 genes. Except for DICER, the results of all solutions were similar and of high quality. 

ModMap was the best in terms of the percent of enriched modules (87%) and percent of enriched 

links (80%). Taken together, the map of ModMap was best in combining functional 

comprehensiveness and quality. We also compared ModMap to other weighted approaches for GI 

data analysis (22,35) on the data of Collins et al (36). See Supplementary Text for details. Our 

results show that ModMap produces high quality maps and improves upon extant weighted 

approaches. 

Figure 2 shows a portion of the map constructed by ModMap where links were restricted to 

p<10E-50 (for details see Supplementary Tables 4-6). Each node represents a module and edges 

represent map links. All modules in the presented map are enriched at 0.05 FDR with at least one 

GO term. The node labels show the most significantly enriched term. Three major hubs are 

marked in green: Rpd3L complex (14 genes, p=4.35E-38), Swr1 complex (13 genes, p=1.08E-

35), and the mediator complex (17 genes, p=4.89E-43). The Rpd3L and Swr1 complexes are 

chromatin related and were previously annotated as hubs of GIs in a gene based study (37). 

Bandyopadhyay et al. (21) discovered some of the same links; however, module annotation there 

was manual, whereas our analysis was completely automatic, and produced a much larger map. 

Moreover, our map extends upon the previous observations by showing that the three hubs are 

linked and by providing additional links for the Rpd3L complex. In Figure 3 we focus on the 

three most significant links in the map (p<1E-70). Figure 3A shows the connections between the 

Rpd3L and Set3 complexes, and between the Rpd3L and Swr1 complexes. Rpd3L and Set3 are 

both histone deacetilases and negative GI between them was reported in (20). Notably, the Rpd3L 

complex was split into two disjoint modules, while in our map it is detected as a single module, 
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containing all 14 Rpd3L genes. Figure 3B shows a connection between two well established 

subunits of the proteasome complex (38). This example shows how joint analysis of PPIs and GIs 

correctly detects core functional subunits even when they are connected by many PPIs.  

 

Figure 2 The yeast module map. Each node is a module in the yeast PPI network. The name of a node is 

the most significantly enriched GO term for that module. Each edge represents a highly significant link 

between two modules in the negative GI network (p<1E-50). Modules that were not enriched for any GO 

term at 0.05 FDR are not shown. Three main chromatin related hubs are marked in green. Some links 

connect disjoint modules enriched with similar GO terms (e.g., proteasome-proteasome link, top right), and 

other links show epistasis between different biological processes (e.g., nuclear pore and ribosome 

biogenesis, top right). 
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Figure 3 Examples of linked modules in the yeast module map. The genes of each module are arranged in 

a circle. Blue edges represent negative GIs and pink edges represent PPIs. For each module the most 

enriched GO term is shown along with its enrichment p-value. A) Linkage among different protein 

complexes. The significance of the links between Rpd3L and the Set3 complexes, and between Swr1 and 

Rpd3L complexes is < 10E-70. The link between Swr1 and Set3 is also highly significant (p=4.29E-59). B) 

Detection of sub-complexes. The joint analysis of the PPI and GI networks partitions the proteasome 

complex into its two sub-complexes: the accessory and the core complex. 

Analysis of DNA damage response networks in yeast 

The module map described above was obtained by analyzing the entire set of known negative 

GIs. Recent studies have gone beyond static analysis to detect changes in the GI network in 

response to DNA damage (21,30). In these studies, GIs were measured in untreated cells and 

following perturbation by the DNA-damaging agent methyl methanesulfonate (MMS) (41). We 

combined two such datasets (21,30) to detect DNA damage-specific positive GIs, i.e., differential 

positive GIs that emerge in the treated cells and are not observed in the untreated cells (see 

Materials and Methods). Negative GIs are typically observed between genes working in parallel, 

such as genes that are involved in two compensatory complexes or pathways that backup each 

other, and thus the loss of one is buffered by the other. Positive GIs are more likely to be 

observed between genes from the same complex or pathway, where most of the phenotypic effect 

is already observed in each single knockout. Hence, DNA damage-specific positive GIs are 

expected to represent changes of the network in response to MMS, revealing DNA damage 



Amar and Shamir – Module maps     to appear in Nucleic Acids Research 
  

13 
 

specific interactions within pathways or between different pathways or complexes working in 

series. In total, 1078 genes were included in both studies, with 2227 DNA damage-specific 

positive GIs among them (See Supplementary Table 7). There were 6771 PPIs within that gene 

set.  

We applied ModMap with the PPI network as H and the DNA damage-specific positive GI 

network as G. Since these networks were much smaller than in the previous analysis, we set the 

minimal module size to 3. The small module sizes also affected the attainable p-values for links. 

Here, a pair of modules was defined as linked if its p-value was < 0.05 after Bonferonni 

correction, considering all statistical tests done by the algorithm during the improvement steps.  

 

Figure 4 A module map of DNA damage-specific positive GIs. A) A module map of the significantly 

enriched modules. Nodes represent modules and edges represent significant links (Bonferonni corrected p < 

0.05). The name of a node is the most significantly enriched GO term. B) A closer look at the DNA repair 

module and three linked modules. Nodes represent genes and edges represent interactions: blue – DNA 

damage-specific positive GIs; pink – PPIs; black – stable positive GIs, which are observed both in the 

untreated and in the treated cells. This map shows the emerging connections between functional modules 

upon DNA damage response covering DNA repair and checkpoint responses in the DNA repair module, 

response to damaged replication forks (the DNA damage response module), DNA double stranded response 

genes (RAD52 module) and RNA degradation related genes (SKI complex module).  Note that the RAD52 

and SKI modules do not appear in A since they reflect functions that do not have established GO terms. 

The generated module map contained 78 genes in 12 modules, with 17 links among them. 

Module sizes ranged between 3 and 15. A complete description of the map is provided in 

Supplementary Tables 8-10. A map of the modules that were significantly enriched with GO 

terms is shown in Figure 4A. The hub in this map is a module enriched with DNA repair genes, 

linked to six modules that cover a large variety of functions. In Figure 4B we focus on the DNA 

repair related module and on three of the modules linked to it. The DNA repair module contains 

four genes: RAD5, RAD18, HPR5, and UBC13. Interestingly, while UBC13 is known to 

physically interact with the three other genes, positive GIs that are consistently stable across 

experiments (see Materials and Methods) connect the other three genes, providing further 

evidence that the four genes are involved in a common process.  The RAD5, RAD18, and UBC13 



Amar and Shamir – Module maps     to appear in Nucleic Acids Research 
  

14 
 

genes are known to be involved in postreplication repair (42-44) and HPR5 is involved in 

checkpoint recovery (45,46).  

The DNA repair hub module is linked to a module associated with response to DNA damage. It 

contains five genes: CTF4, ESC4, MMS1, MMS22, and Rt101. The last four genes are part of the 

cullin-RING ubiquitin ligase complex (GO:0031461). The last three genes were shown to form a 

complex that stabilizes the replisome during replication stress (47,48). The CTF4 gene is related 

to DNA repair and DNA replication initiation according to its GO annotations. The link suggests 

that this complex might work together with the DNA repair module for coping with damaged 

replication forks. Interestingly, the two MMS genes were originally detected in MMS sensitivity 

tests but are not expected to be required for double-stranded repair (48). The RAD52 module 

(RAD51, RAD52, and RAD59), is related to double-stranded DNA damage repair (49), and is 

linked both to the DNA damage repair module and to the DNA damage response module, 

suggesting these modules work together in the same pathway as a result of DNA damage to cope 

both with damaged replication forks and with double-stranded DNA breaks. The fourth linked 

module contains three genes of the Ski complex (SKI2, SKI5, and SKI7). These genes are 

involved in 3-5 RNA degradation in the cytoplasmatic exosome (50,51). Our analysis suggests 

that this complex might also be involved in response to DNA damage. Previous studies have 

shown that RNA degradation cytoplasmatic genes might play a role in DNA damage response 

separately from their cytoplasmatic activity (52,53). The suggested roles of RNA degradation 

genes in DNA damage response include DNA stability and telomere stability related functionality 

(52), mediating the assembly of multi-protein complexes in double-stranded breaks (53), and 

specific mRNA degradation upon DNA damage (54). Hence, our findings match prior studies, 

and strengthen the role of the SKI complex in the response to DNA damage. 

Analysis of human co-expression and differential correlation networks 

We applied ModMap on case-control gene expression data of non-small cell lung cancer 

(NSCLC) to reveal differential correlation among highly correlated gene modules. The 

contribution of this part is twofold. First, we show that differential correlation among gene 

modules is reproducible in cross-validation tests. Second, we analyze the map of DC patterns 

between gene modules discovered by ModMap. 

Given a dataset of gene expression profiles from cases and controls, we used the method of (23) 

to compute two scores for each gene pair: the consistent correlation (CC) score, which is positive 

if the gene pair is consistently correlated across phenotypes, and the differential correlation (DC) 

score, which is positive if the correlation difference between the cases and controls is higher than 

expected by chance. These scores were then used as edge weights in networks H and G, 

respectively, on which a module map was learned. The methodology was evaluated using cross 

validation: Given a module map constructed on a set of profiles (the training set) and a disjoint 

set of samples (the test set), the quality of the predicted map was evaluated on the test set by 

comparing the DC of links and of non-links using Wilcoxon rank-sum test, where the null 

hypothesis is that there is no difference in DC between links and non-links. This measure is 

parameter-free and reflects all DC changes.  
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We tested several variants of the algorithm using 2-fold cross-validation. The maps produced by 

the local improver received low p-values, but suffered from low coverage. For example, for the 

MBC-DICER initiator, the local improver achieved a p-value of 4.43E-4, but the map covered 

only 197 genes. In contrast, when applying ModMap (i.e., MBC-DICER with the global 

improver), the map covered 1289 genes, with p-value of 1.54E-10. Supplementary Text contains 

further results of testing different parameters of the global improver, as well as tests on 

Alzheimer’s disease (55), which got similar cross validation results. The full results are shown in 

Supplementary Table 11 for lung cancer and in Supplementary Table 12 for Alzehimer's 

disease. Taken together, ModMap produces large maps that are robust when tested on 

independent datasets. 

 

Figure 5 A pair of immune activation related modules differentially correlated in NSCLC. A) Two linked 

modules, which are a part of the constructed module map. Nodes are genes and edges represent correlation 

> 0.4 between the genes in the expression patterns of control class. Note that edges here correspond to high 

co-expression between two genes and do not reflect the weights in the CC or DC networks. We observe 

strong co-expression both within and between the modules. Nodes with black frames are related to immune 

activation response (six T-cell activation genes in module 11, and four B-cell activation genes in module 

12). Red nodes in module 11 are targets of mir-34 family. B) GeneMANIA analysis of the T-cell and B-cell 

signaling pathway genes shows that the genes of both modules are expected to interact in healthy controls. 

C) The same two modules and their co-expression network in the NSCLC class. As in A, the genes within 

each module are highly co-expressed. In contrast to A, co-expression between the modules is completely 

diminished. 
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Next, we analyzed the module map obtained by running ModMap on all samples of the NSCLC 

data. The map covered 1921 genes in 76 modules, connected by 405 links (See Supplementary 

Tables 13-14 for details). To focus on strong changes in correlation between modules we 

compared the DC of each link in the map to the DC calculated between random gene sets of the 

same sizes in 200 repeats, and calculated the fold-change between the real link and the best 

random link, as proposed in (23). The link fold change scores are given in Supplementary Table 

14. 150 links had fold change   1.5, with the top five links exceeding 2.3. This indicates that the 

DC of the linked modules is far stronger than expected by chance.  We also analyzed the modules 

of the top links using pathway enrichment analysis and miRNA enrichment analysis (See 

Supplementary Table 15 for details). One of the links connected two modules related to immune 

response activation. The linked modules are shown in Figure 5. In Figure 5A we observe many 

high co-expression edges between the modules (gene pairs with r>0.4) in the control class. 

Module 11 is enriched with B cell receptor signaling pathway genes (6 genes, p=3.1E-8). Module 

12 is enriched with T cell receptor signaling pathway genes (4 genes, p=1.37E-4). Figure 5B 

shows GeneMANIA analysis of these 10 genes (7,56), which confirms that they are connected by 

several types of interactions. Figure 5C shows the co-expression of the same modules in the 

NSCLC class. Within each of the modules a strong level of co-expression is preserved, but the 

co-expression between the modules is abolished, suggesting that co-regulation of the different 

immune responses is lost in NSCLC. Finally, module 11 is highly enriched with targets of 

miRNA 34-a,b,c family (red nodes in Figure 5A) whose members are annotated as causal to 

NSCLC according to the mir-2-disease database (57). Taken together, these results show the 

ability of our analysis to detect NSCLC related functional modules without using any prior 

knowledge.  

Discussion 

In this paper we presented a methodology for joint analysis of two gene networks, each 

representing a different type of omic relation between genes.  The method identifies gene sets as 

modules and the complex structure of relations among them, and summarizes the analysis in a 

module map. Modules correspond to interacting gene sets in the first network, and links in the 

module map correspond to interacting modules in the second. The map is constructed based on 

both networks simultaneously, and thus can capture and reveal structures that are not identifiable 

when analyzing each data type separately. Our novel algorithms recovered the planted map 

structure in simulated data, even when the noise level in the data was very high. We tested our 

methods in three biological applications: (1) yeast PPIs and negative GIs, (2) yeast PPIs and DNA 

damage-specific positive GIs, and (3) differential correlation analysis of human disease 

expression profiles. In all cases, certain parts of our maps are supported by prior biological 

knowledge, while other parts reveal novel structure and suggest new biological findings. The 

module map paradigm can be applied in principle on any two types of networks with underlying 

common nodes. 

Our analysis of the yeast PPI and negative GI data constructed a large map describing epistatic 

relations among complexes. Our findings are in agreement with previous studies and show a 

complex map of interactions among chromatin modification-related complexes, but also provide 

interactions with other functions, such as protein modification-related complexes. The analysis of 
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the yeast PPIs and DNA damage-specific positive GIs produced a smaller map, which contains a 

DNA repair module as a central hub. The interactions of this module suggest that several 

mechanisms emerge simultaneously in response to MMS, including double strand repair, 

damaged replication fork repair, and exosome complex activity. In the map constructed based on 

human NSCLC blood expression profiles, modules represent gene sets that are highly co-

expressed both in cases and in healthy controls, whereas the map links correspond to specific 

rewiring of the co-expression network in NSCLC patients. In particular, we identified two 

modules enriched with immune activation genes manifesting a sharp drop in correlation in the 

NSCLC patients, suggesting diminished coordination between the T-cell and the B-cell enriched 

modules. 

The concept of a module map can be viewed as a higher level combination of clustering and 

biclustering. Each of those problems has been extensively studied and was applied successfully to 

numerous single-type genomic and proteomic studies (1,58-69). By performing joint analysis on 

two different data types we allow some relaxation of the objective function in each of the 

networks, for the sake of obtaining an overall clearer structure. Therefore, the new analysis can 

yield results when clustering or biclustering of one data type fails. One of the difficulties in 

clustering and biclustering is that module (or module-pair) sizes must be large enough to obtain 

highly significant sets. As our analysis demonstrates, the added power of the module map 

approach can identify relatively small, precise groups that are beyond the detection ability of 

those prior methods.  

Only a handful of studies have addressed the module map problem to date, and most of them 

focused on joint analysis of yeast PPI and GI networks. Ulitksy et al. (17) and Bandyopadhyay et 

al. (39) developed clustering methods that seek a map in which the likelihoods of the edge 

weights of PPIs and GIs within clusters or of GIs between linked clusters are higher than a given 

background distribution. Leiserson et al. (22,35) sought local maximum cuts in the weighted 

graph of the GIs by a greedy incremental approach, producing a collection of linked pairs of 

modules. Kelley and Ideker (20) developed a clustering algorithm that is based on graph 

compression, where the original GI graph is compressed to a module map. Hence, both (22,35) 

and (20) look for approximate bicliques that connect gene modules. In contrast, we enumerate the 

maximal bicliques of GIs, analyze them by taking into consideration the two interaction types to 

ensure that the initial solution contains dense, strongly connected modules, and improve the 

solution using our global improver. Since our approach is generic, it does not exploit the specific 

probabilistic nature of the GI data as other methods do (22,35). Nevertheless, we show that our 

method outperforms these and other extant methods in several criteria on GI data. In addition, 

since our algorithm is not limited by the type of the input data, we are able to combine many 

heterogeneous datasets (e.g., using all GIs of BioGRID) in our analysis.  

When dissecting human expression profiles of disease patients and healthy controls, differential 

correlation analysis was proposed as a way to discover gene modules whose inter-module 

correlation levels are altered in disease (12,14,23,70). We previously developed DICER (23), 

which uses a local approach to detect module pairs. Here we go beyond it by finding maximal 

bicliques in the DC graph, and by concurrently constructing a global map of modules. As we 

showed here, in most cases the map links are highly significant. However, we also observed cases 
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where the absolute correlation change of modules might be mild even though the DC of the 

module-pair is significant. A possible remedy is to give more emphasis to high absolute DC of 

map links in order to see the DC signal better. Another possible improvement is to enumerate 

bicliques using established heuristics (e.g. (69)). 

A key factor in the performance of the ModMap algorithm is the objective function optimized. 

Here, we chose to maximize the sum of weights within modules plus the sum of weights of 

module links, and assigned these weights based on a probabilistic model. On un-weighted 

networks, such as the PPI and GI yeast networks, we set the weight of an edge to 1 and the weight 

of a non-edge to -1, thereby promoting strongly connected modules and links. This setting 

produced good results and revealed functional interactions among protein complexes. By setting 

different weights to non-edges in the graphs, future analyses can promote modules that are 

sparser, thus enabling better detection of interactions among complete pathways. 
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