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The problem of resolving genotypes into haplotypes, under the perfect phylogeny model,
has been under intensive study recently. All studies so far handled missing data entries
in a heuristic manner. We prove that the perfect phylogeny haplotype problem is NP-
complete when some of the data entries are missing, even when the phylogeny is rooted.
We define a biologically motivated probabilistic model for genotype generation and for
the way missing data occur. Under this model, we provide an algorithm, which takes an
expected polynomial time. In tests on simulated data, our algorithm quickly resolves the
genotypes under high rates of missing entries.

Keywords: haplotype; haplotype block; genotype; SNP; algorithm; complexity; genotype
phasing; haplotype resolution; perfect phylogeny.

1. Introduction

A central current challenge in human genome research is to learn about DNA differ-

ences among individuals. This knowledge will hopefully lead to finding the genetic

causes of complex and multi-factorial diseases. The distinct single-base sites along

the DNA sequence, which show variability in their nucleic acids contents across the

population, are called single nucleotide polymorphisms (SNPs). Millions of SNPs

have already been detected23, and it is estimated that the total number of common

SNPs is 10 million18.

In diploid organisms (e.g. humans) there are two nearly-identical copies of each

chromosome. Most techniques for determining SNPs provide a pair of readings,

one from each copy, but cannot distinguish from which of the two chromosomes

each reading came16. The goal of phasing (or resolving) is to infer that missing

information. The original conflated data from both chromosomes are called the

genotype of the individual, and is represented by a set of two nucleotide readings for

each site. The two separated sequences corresponding to the two chromosomes of an
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individual are called his/her haplotypes. If the two bases in a site are identical (resp.

different), the site is called homozygote (resp., heterozygote). For recent reviews on

biological and computational aspects of haplotype analysis see Halldorsson et al.12

and Hoehe et al.15.

Resolving the genotypes is a central problem in haplotyping. It has been ar-

gued that more accurate association studies can be performed once the genotypes

are resolved16,5. In the absence of additional information, each genotype can be

resolved in 2h−1 different ways, where h is the number of heterozygote sites in

the genotype. To find the correct way, resolution is done simultaneously on all the

available genotypes, and according to a model. A pioneering approach to haplotype

resolution was Clark’s parsimony-based algorithm4. A likelihood-based EM algo-

rithm 7,19 gave better results. Stephens et al.25 and Niu et al.20 proposed MCMC-

based methods which gave promising results. All of those methods assumed that the

genotype data correspond to a single block with no recombination events. Hence,

for multi-block data the block structure must be determined separately.

Recently, a new combinatorial formulation of the phasing problem was suggested

by Gusfield11. According to this model, phasing must be done so that the resulting

haplotypes define a perfect phylogeny tree. This model assumes that for the studied

region along the chromosome, recombination occurred infrequently, and the infinite

site model holds11. Gusfield showed how to solve the problem efficiently, and simpler

algorithms were subsequently developed by Bafna et al.2 and Eskin et al.6. Eskin

et al.6 showed good resolving results with small error rates on real genotypes. They

also reported that their algorithm was faster and more accurate in practical settings

than Stephens et al.’s method25.

In real genotype data (e.g., refs21,8,5) some of the data entries are often missing,

due to technical causes. Current phasing algorithms (which are based on perfect

phylogeny) require complete genotypes. This situation raises the following algo-

rithmic problem: Complete the missing entries in the genotypes and then resolve

the data, such that the resulting haplotypes define a perfect phylogeny tree. We

call this problem incomplete perfect phylogeny haplotype (IPPH). It was posed by

Halldòrsson et al.12. In order to deal with such incomplete data, Eskin et al.6 used

a heuristic to complete the missing entries, and showed very good results. However,

having an algorithm for optimally handling missing data entries should allow more

accurate resolution. In this paper we address the IPPH problem.

A special case of IPPH was studied in phylogeny by Pe’er et al.22. In the incom-

plete directed perfect phylogeny problem, the input is an n × m species-characters

matrix. The characters are binary and directed, i.e., a species can only gain char-

acters, and certain characters are missing in some species. The question is whether

one can complete the missing states in a way admitting a perfect phylogeny. Pe’er et

al. provided a near optimal Õ(nm) time algorithm for the problema. This problem

aWe use eO notation to suppress polylogarithmic factors in presenting complexity bounds. Formally,
eO(g(n)) := {f(n) | ∃n0 > 0, ∃c > 0,∃d > 0, ∀n ≥ n0 : 0 ≤ f(n) ≤ c[log n]dg(n)}.
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is a special case of IPPH in which all the sites in all genotypes are homozygote, and

the root is known.

The IPPH problem has two variants: rooted (or directed) and unrooted (or gen-

eral). In the rooted version, one haplotype is given as part of the input. This hap-

lotype is referred to as the root of the tree, even though it may not be the real

evolutionary root of the tree. This holds, since each of the haplotypes can be used

as a root in the perfect phylogeny tree10. The unrooted version is a more direct

formulation of the practice in biology, since in phasing, the root of the haplotypes is

not given. However, we argue that the more restricted rooted version is of practical

importance: Though theoretically finding a root might take an exponential time, in

practice often there is one genotype which is complete and homozygote in all sites,

which can be used as a root. As we shall demonstrate in Section 5 on simulated

and real biological data, virtually always at least one such genotype exists. If there

is no such genotype, one can use a genotype with few undetermined sites and enu-

merate the values in these sites. In the rare cases that this too is not feasible, one

can physically separate the two chromosomes of a single individual and sequence

one haplotype, as was done in Patil et al.21. This procedure is considerably more

expensive than standard genotyping techniques, but it will be performed only for

one individual, so the price is small. Thus, both variants of IPPH are biologically

important.

In this paper, we show that rooted IPPH is NP-complete. The hardness of

unrooted IPPH follows immediately from the hardness of determining the compat-

ibility of unrooted partial binary characters (incomplete haplotype matrix)24. This

was observed first by R. Sharan (private communication). However, this result does

not imply the hardness of rooted version. In fact, our proof for rooted IPPH is quite

involved.

To cope with the theoretical hardness of IPPH, we invoke a probabilistic ap-

proach. We define a stochastic model for generating the haplotypes and for the

way missing entries occur in them. The model assumptions are mild and seem to

apply to biological data. In addition, we assume that the number of sites m grows

much more slowly than the number of genotypes n. Specifically, we assume that

m = o(n.5). As m is bounded by the block size which in practice is not more than

a modest constant (10-30), this condition also holds in practice. We design an al-

gorithm which always finds the correct solution, and under the assumptions above

takes an expected time of Õ(m2n). A similar probabilistic approach leading to com-

parable results was developed simultaneously and independently by Halperin and

Karp13.

To test our algorithm, we applied it to simulated data using biologically realistic

values of the parameters, and calculated an upper bound Γ on the main factor in the

running time. Γm gives a bound on the number of times the polynomial algorithm of

Peer et al.22 would be invoked to complete the calculation. Γ may be exponential,

but under the model assumptions it was shown to have an expected polynomial

time. On data with 200 genotypes and 30 sites, we show that on average Γ < 4000
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even when only two haplotypes are present and the rate of missing entries is 50%.

For a more realistic case of five haplotypes and 20% missing entries, E[Γ] < 100.

Hence, the algorithm runs in modest time even far beyond the range of its provable

performance.

The paper is organized as follows: Section 2 presents definitions and preliminar-

ies. Section 3 shows the hardness result. Section 4 presents the algorithm and the

probabilistic analysis. Section 5 summarizes our experimental results.

A preliminary version of this study was published in the Proceeding of the

Second RECOMB Satellite Meeting on SNPs and Haplotypes17.

2. Preliminaries

In this section we provide basic defnitions, lemmas and observations that are needed

for our analysis. Figure 1 demonstrates the main definitions.

Given n genotypes, the haplotype inference problem is to find n pairs of haplo-

types vectors that could have generated the genotypes vectors. Formally, the input

is an n × m genotype matrix M , with M [i, j] ∈ {0, 1, 2}. The i-th row M [i, ∗] de-

scribes the i-th genotype. The j-th column describes the alleles in the j-th location:

0 or 1 for two homozygote alleles, and 2 for a heterozygote site. A 2n × m binary

matrix M ′ is an expansion of the genotype matrix M if each row M [i, ∗] expands to

two rows denoted by M ′[i, ∗] and M ′[i′, ∗], with i′ = n + i, satisfying the following:

for every i, if M [i, j] ∈ {0, 1}, then M [i, j] = M ′[i, j] = M ′[i′, j]; if M [i, j] = 2, then

M ′[i, j] 6= M ′[i′, j]. M ′ is also called a haplotype matrix corresponding to M .

Definition 1. Perfect Phylogeny Tree for a Matrix

A perfect phylogeny for a k × m haplotype matrix M ′ is a tree T with a root r,

exactly k leaves and integer edge labels, and a binary label vector (lv(1) . . . lv(m))

for each node v, that obeys the following properties:

1. Each of the rows in M ′ is the label of exactly one leaf of T .

2. Each of the columns labels exactly one edge of T .

3. Every edge of T is labelled by one column.

4. For any node v, lv(i) 6= lr(i) if and only if i labels an edge on the unique path from

the root to v. Hence, given the root label, the root-node paths provide a compact

representation of all node labels.

An equivalent definition appeared in ref.2. Note that we disallow edges with

multiple labels, and replace them by paths with a single label per edge.

Problem 1. The Perfect Phylogeny Haplotype Problem (PPH) 11

Given a matrix M , find an expansion M ′ of M which admits a perfect phylogeny.

We now define a generalization of PPH that allows missing data entries. The

input to our problem is an incomplete genotype matrix, i.e., a matrix M with

M [i, j] ∈ {0, 1, 2, ?}, where ’?’ indicates a missing data entry. The process of replac-

ing each ’?’ by 0,1 or 2 is called completing the matrix M .
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Problem 2. Incomplete Perfect Phylogeny Haplotype Problem (IPPH)

Given an incomplete genotype matrix M , can one complete M , so that there exists

an expansion M ′ of M , which admits perfect phylogeny?

The following definitions are implicit in refs.3,6.

Definition 2. Perfect Phylogeny Forest

Let M be a haplotype matrix, and let P = (VP , EP ) be a perfect phylogeny tree

corresponding to M . The perfect phylogeny forest of P is a directed forest F =

(VF , EF ) whose vertices are the edges of P , and for u, v ∈ VF , u is a parent of

v in F if and only if the edge corresponding to u in P is a parent of the edge

corresponding to v in P .

Hence, the vertices of perfect phylogeny forest correspond to M ′’s columns, and

reflect the order of mutations in the phylogeny tree. Clearly, each perfect phylogeny

tree can be converted into perfect phylogeny forest and vice versa. Thus, M ′ admits

a perfect phylogeny tree iff it admits a perfect phylogeny forest. For a column

j ∈ {1, 2, . . . , m} of M ′, we denote by uj its corresponding vertex in the perfect

phylogeny forest.
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Fig. 1. Genotypes, haplotypes and trees. A genotype matrix M , a haplotype matrix M ′ that is
an expansion of M , the perfect phylogeny tree of M ′, and the corresponding perfect phylogeny
forest.

For a perfect phylogeny forest F , we say that two vertices are in parenthood

relation if one is an ancestor of the other. Otherwise, we say that they are in broth-

erhood relation. Note that brothers can either be in different connected components,

or be in the same component and have the root on the path connecting them.

The following special case of IPPH will be a main subject of our investigation.

Problem 3. Incomplete Perfect Phylogeny Haplotype, rooted version (rooted-

IPPH)

Given an incomplete genotype matrix M and a haplotype r, can one complete M ,

such that there exists an expansion M ′ of M , which admits an perfect phylogeny,

with r as a root?
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In this problem, we can assume w.l.o.g. that the input root haplotype is r0 =

(0, . . . , 0) (ref. 10). The following lemma explains the connection between F and

M ′, and is key for our construction:

Lemma 1. (Bafna et al.2, Eskin et al.6) Let M ′ be a haplotype matrix, and let

F = (VF , EF ) be a perfect phylogeny forest, corresponding to perfect phylogeny

tree with the root r0 = (0, 0, . . . , 0). F is perfect phylogeny forest of M ′ iff for

all ua, ub ∈ VF and for every haplotype i:

(1) If ua is an ancestor of ub then M ′[i, a] = 1 or M ′[i, b] = 0.

(2) If ua and vb are in brotherhood relation, then M ′[i, a] = 0 or M ′[i, b] = 0.

In the rest of this section, we provide our own definitions, building on those

introduced above, and prove several lemmas which will be needed for our analysis.

Definition 3. Constrained Mixed Graph

A constrained mixed graph (CMG) is a triplet Gc = (V, E, X), where G = (V, E) is

a graph and X = {X1, X2, ..., Xp}, where for each i: Xi ⊆ V . The sets Xi are called

XOR relations. G has four types of edges: undirected, dashed undirected, directed

and dashed directed.

Definition 4. Parenthood Connected Components

Two vertices u and v in a constrained mixed graph are in the same parenthood

connected component if there exists a path between u and v consisting only of

undirected or directed edges (a parenthood relation). Note, that edge directions are

not important in this definition.

Definition 5. Constrained Mixed Completion Graph

For a constrained mixed graph Gc = (V, E, X), we define its constrained mixed

completion graph G′ = (V, E′) to be a complete graph (with a single edge for

each pair u, v ∈ E), where E ′ contains two types of edges: directed and dashed

undirected. The edge types induce a labelling L : E ′ → {0, 1}, where a directed

edge is labelled with 0, and dashed undirected edge is labelled with 1. G′ must

maintain all the following properties:

(1) All G′ edges maintain the following properties:

(a) If e : (u, v) ∈ E is an undirected edge then E ′ must contain a directed edge

from u to v or from v to u.

(b) Directed edges and dashed undirected edges in G are unchanged in G′.

(c) If e : (u, v) ∈ E is a dashed directed edge from u to v then the corresponding

e′ : (u, v) ∈ E′ must be a dashed undirected edge or a directed edge from u

to v.

(2) G′ contains a spanning forest F = (V, EF ⊆ E′), consisting of directed edges

only, such that:
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(a) If node u ∈ V is an ancestor of v ∈ V in F , then there is a directed edge

from u to v in G′.

(b) For any two nodes in V , if neither node is an ancestor of the other in F ,

then they are connected by a dashed undirected edge in G′.

(3) For each XOR relation Xi, for every three vertices: xi,a, xi,b, xi,c ∈ Xi, the

following holds: L(xi,a, xi,b) ⊕ L(xi,b, xi,c) ⊕ L(xi,a, xi,c) = 0.b

Problem 4. Constrained Mixed Graph Completion Problem (CMGC)

Given a constrained mixed graph G, provide a constrained mixed completion graph

of G, if such exists.

aa

b c

d e

c

A B

XOR relations: {b,c,e}, {a,b,d}

b

d e

Fig. 2. Example of CMGC problem. A: an instance of a graph for CMGC with XOR relations. B:
a possible solution for this instance. The edges of the forest appear in bold.

An example of CMGC problem is presented in Figure 2. The decision version of

CMGC problem is to decide whether there exists a constrained mixed completion

graph G′ for G. An important property of the constrained mixed completion graph,

is that it can be viewed as a directed spanning forest F , with additional edges

between nodes, according to the relation of those nodes in the forest: a dashed

undirected edge for a brotherhood relation, and a directed edge for a parenthood

relation.

The following notation is adopted from Eskin et al.6: c(M, x) is defined as the

set of rows of M containing the value x in column c. Let c, c′ be columns and let

x, y be elements of {0, 1}. The pair c, c′ induces (x, y) in M if ((c(M, x)∩c′(M, y))∪

(c(M, x) ∩ c′(M, 2)) ∪ (c(M, 2) ∩ c′(M, y)) 6= ∅. Let R(M, c, c′) be the set of pairs

(x, y) such that (c, c′) induces (x, y) in M . Note, that R(M, c, c′) does not contain

pairs with ’?’, but only ’0’ and ’1’. Note also that R(M, c, c′) contains (0,0) for every

c, c′ by our assumption that the root is (0, . . . , 0).

Let c, c′ be two columns such that c(M, 2)∩c′(M, 2) 6= ∅. Let M ′ be an expansion

of the M , after completing the missing entries, which admits a perfect phylogeny. We

bThe operator ⊕ denotes the boolean xor operator.
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say that M ′ resolves the pair of columns (c, c′) unequally if {(0, 0), (0, 1), (1, 0)} =

R(M ′, c, c′) and equally if {(0, 0), (1, 1)} = R(M ′, c, c′). According to Lemma 1, M ′

must resolve the pair (c, c′) either equally or unequally, and can not resolve the pair

in both ways.

For an incomplete genotype matrix M , we build a constrained mixed graph

Gc(M), where each column in M has a corresponding vertex in Gc. The edges

represent the possible relations of the columns in the perfect phylogeny forest,

and are determined according to lemma 1: For each two vertices ua, ub: (1) If

R(M, a, b)\{(0, 0)} = {(1, 1), (1, 0)} then ua is an ancestor of ub in F . The edge

(ua, ub) is set as a directed edge from ua to ub. (2) If R(M, a, b)\{(0, 0)} = {(1, 1)}

then ua, ub are in parenthood relation in F , but it is unknown which of the

vertices is the ancestor. The edge (ua, ub) is set as an undirected edge. (3) If

R(M, a, b)\{(0, 0)} = {(1, 0), (0, 1)} then ua, ub are in brotherhood relation in F .

The edge (ua, ub) is set as a dashed undirected edge. (4) If R(M, a, b)\{(0, 0)} =

{(1, 0)} then either ua is an ancestor of ub in F , or ua, ub are in brotherhood rela-

tion in F . The edge (ua, ub) is set as a dashed directed edge from ua to ub. (5) If

R(M, a, b)\{(0, 0)} = ∅ then the relation of ua, ub in F is unknown. In that case:

(ua, ub) /∈ E. The labelling of unlabelled edges corresponds to selecting the type of

edge in the completion of Gc for solid undirected and for dashed directed edges.

In addition, for each row i, the set of columns a1, . . . , at, such that M [i, a1] =

, · · · , = M [i, at] = 2, imply a XOR relation on the corresponding vertices

ua1 , . . . , uat
. Each pair of vertices of Gc is labelled with L : (ua, ub) → {0, 1, ?}

as follows: A solid (directed or undirected) edge, i.e., a parenthood relation, is la-

belled with 0; dashed undirected edge, i.e., a brotherhood relation, is labelled with

1; and all other cases, i.e., an unknown relation, are labelled with ’?’. The last set

is called unlabelled pairs.

Step 1: Primary Label Completion

A primary label completion of Gc(M) is an assignment of a label s to unlabelled pairs

of vertices, by performing the following step as long as possible: Find three vertices

xi,a, xi,b, xi,c ∈ Xi, such that L(xi,a, xi,b) and L(xi,b, xi,c) are set and L(xi,a, xi,c)

is not, and assign: L(xi,a, xi,c) = L(xi,a, xi,b) ⊕ L(xi,b, xi,c).

Define UGc
to be the set of unlabelled pairs after primary label completion was

performed. UGc
is independent of the order of choosing the triplets2.

Step 2: Secondary Label Completion

A label completion of a constrained mixed graph Gc(M) is an assignment of a label

in {0,1} to pairs (ua, ub) ∈ UGc
, such that for each XOR relation Xi, for every three

vertices xi,a, xi,b, xi,c ∈ Xi, the condition: L(xi,a, xi,b)⊕L(xi,b, xi,c)⊕L(xi,a, xi,c) =

0 is satisfied.

After secondary label completion, we can perform label resolution using the in-

complete haplotype matrix, which is defined as follows: Given an incomplete geno-

type matrix M , an expansion for M is in an incomplete haplotype matrix M ′ which

satisfies the expansion rules for complete matrices, and also preserves all ’?’ values.
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Formally, each row M [i, ∗] expands to two rows denoted by M ′[i, ∗] and M ′[i′, ∗],

such that for every i, if M [i, j] ∈ {0, 1, ?}, then M [i, j] = M ′[i, j] = M ′[i′, j];

if M [i, j] = 2, then either M ′[i, j] = 0 and M ′[i′, j] = 1, or M ′[i, j] = 1 and

M ′[i′, j] = 0.

Step 3: Label Resolution

A label resolution of a Genotype matrix M is an expansion of M to an incomplete

haplotype matrix M ′, according to the label function L: For every two columns

a, b, if there exists i, such that M [i, a] = M [i, b] = 2, if L(ua, ub) = 0 resolve (a, b)

equally and if L(ua, ub) = 1 resolve (a, b) unequally. The output of this process is

an incomplete haplotype matrix.

Label resolution of an incomplete genotype can be done by algorithm E2M

proposed by Bafna et al.2. Observe, that any submatrix M [i, (a, b)], where M [i, a]

and M [i, b] are not both equal 2, has a unique expansion in any incomplete haplotype

matrix. Hence, for such submatrix, the resolution is not influenced by the label

function.

Primary label completion was suggested by Bafna et al.2 as part of an algorithm

for complete genotype matrix phasing. Interestingly, Bafna et al. proved that once

primary label completion is performed, for any possible (legal) secondary label com-

pletion of UGc
, label resolution of the genotype matrix results in a haplotype matrix,

which admits a perfect phylogeny. This is true for a complete genotype matrix (with

no missing entries), but not for the incomplete case. A simple example for that is

an incomplete haplotype matrix that does not admit a perfect phylogeny (see e.g.,

Pe’er et al.22, Figure 2). Now consider such a matrix to be the input genotype ma-

trix, by duplicating each haplotype to form a fully homozygote genotype. Here, no

primary and secondary resolution is needed, since there are no heterozygotes in the

matrix. Thus, every secondary resolution results in an incomplete haplotype matrix

(namely, the same input matrix), which does not admit a perfect phylogeny. The

following lemma describes a weaker connection between secondary label completion

and the solution of IPPH.

Lemma 2. Suppose M is an incomplete genotype matrix that has a completion

that admits a perfect phylogeny. Then there exists some secondary label completion

of UGc
, such that a label resolution of the incomplete genotype matrix M gives an

incomplete haplotype matrix, that can be completed to M ′.

Proof. Suppose M can be completed to a binary matrix M ∗, so that there exists an

expansion M ′ of M∗, which admits a perfect phylogeny. Let C be the set columns

of M . The perfect phylogeny implies some label function fL on the pairs of the

vertices of Gc(M), i.e., ∀i, j ∈ C : fL(ui, uj) ∈ {0, 1}. This complete label function

can not contradict the XOR relations of Gc(M) (for proof, see ref.2). Next, primary

label completion of Gc(M), for the known pairs, must match the labels in fL, as

there is only one possible primary label completion. Then, we can chose the following

secondary label completion: (ui, uj) ∈ UGc
: L(ui, uj) = fL(ui, uj), which obviously
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gives an equivalent label function to fL. Thus, using this secondary label completion

of M , a label resolution of the incomplete genotype matrix M gives an incomplete

haplotype matrix, that can be completed to M ′.

3. The Hardness Result

In this section we show that IPPH-rooted is NP-complete. Clearly, the problem

belongs to NP. To prove NP-hardness, we will show the following polynomial re-

ductions: 3-SAT ∝ CMGC ∝ rooted-IPPH.

We note that this also implies an alternative proof of the hardness of unrooted

IPPH: to form the reduction rooted-IPPH ∝ IPPH, given an instance (M, r) of

rooted-IPPH, we simply add the genotype row r to M . The resulting matrix M ∗

is the input to IPPH. In a solution to the latter, there will be a leaf labelled with

r, and thus it solves the former problem. Conversely, if M has a solution with root

r then it is also a solution for M∗. The same idea was used for another purpose by

Bafna et al.2.

We first prove the reduction from CMGC:

Theorem 1. CMGC ∝ rooted-IPPH

Proof. Given a constrained mixed graph Gc = (V, E, X) for the CMGC problem,

we build a matrix M , and set r = (0, 0, . . . , 0). (M, r) will serve as input for rooted-

IPPH. Let |X | = p. M has dimensions (2|E| + p) × |V |. For each e ∈ E there are

two corresponding rows, and their indices are denoted by N 0
e and N1

e . For each

Xi ∈ {Xi}1≤i≤p there is one row with index NXi
. The column i ∈ {1, 2, ..., |V |}

corresponds to vertex ui in Gc.

The construction of M is as follows:

(1) For each e = (ua, ub) ∈ E, we add two rows M [N0
e , ∗] and M [N1

e , ∗], such that

∀uc ∈ V \{ua, ub}, M [N0
e , c] = M [N1

e , c] =?, and:

(a) If e is an undirected edge then M [N 0
e , a] = 0, M [N0

e , b] = 0, M [N1
e , a] =

1, M [N1
e , b] = 1.

(b) If e is a dashed undirected edge then M [N 0
e , a] = 0, M [N0

e , b] =

1, M [N1
e , a] = 1, M [N1

e , b] = 0.

(c) If e is a directed edge from ua to ub then M [N0
e , a] = 1, M [N0

e , b] =

0, M [N1
e , a] = 1, M [N1

e , b] = 1.

(d) If e is a dashed directed edge from ua to ub then M [N0
e , a] = 0, M [N0

e , b] =

0, M [N1
e , a] = 1, M [N1

e , b] = 0.

(2) For each {Xi}1≤i≤p, we add one row M [NXi
, ∗], such that ∀uj ∈ Xi :

M [NXi
, j] = 2 and ∀uk ∈ V \Xi : M [NXi

, k] =?.

This completes the description of the reduction. Clearly the reduction is poly-

nomial.

(⇒)
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Suppose that rooted-IPPH(M ,r) = TRUE, i.e., M has an expansion M ′ that

admits a perfect phylogeny tree, with r0 as a root. Thus, M ′ has a directed perfect

phylogeny forest F = (VF , EF ). Let F̂ = (VF , ÊF ) be a complete graph, where for

each u, v ∈ VF , we add a directed edge from u to v if u is an ancestor of v in F , or

a dashed undirected edge if neither node is in ancestor of the other.

We claim that F̂ is a constrained mixed completion graph of Gc. This is proven

by checking that all three properties of F̂ as a constrained mixed completion graph

of graph Gc hold (compare Definition 5). Property 2 hold since by the construction

of F̂ , F is a rooted spanning forest of F̂ as required. In order to prove property 3 we

use Lemma 2 in Bafna et al.2: the structure of the rows {M [NXi
, ∗]}1≤i≤p forces that

for each of the XOR relations, for every three vertices xi,a, xi,b, xi,c ∈ (Xi ⊆ VF ), the

equation L(xi,a, xi,b)⊕L(xi,b, xi,c)⊕L(xi,a, xi,c) = 0 holds. Finally, property 1 holds,

since for an edge e ∈ E the values in the two corresponding rows {M [N j
e , ∗]}j∈{0,1}

are determined in step 1 of the construction of M : The edge (u, v) in graph Gc

determines the possible relations of u and v in F . Since, by the assumption, M has

an expansion M ′, that admits a perfect phylogeny forest F , it follows that for each

u, v ∈ F , the edge e′ = (u, v) ∈ EF must be set according to e = (u, v) ∈ E in Gc: If

e is an undirected edge then e′ must be a directed edge; if e is a dashed undirected

edge then e′ must be a dashed undirected edge; if e is a directed edge from u to v

then e′ must be a a directed edge from u to v; and if e is a dashed directed edge

from u to v then e′ must be a dashed undirected edge or a directed edge from u to

v. This proves property 1. Thus, F̂ is the constrained mixed completion graph of

Gc, and CMGC(Gc) = TRUE.

(⇐)

Suppose that CMGC (Gc) = TRUE, i.e., there exists a constrained mixed com-

pletion graph G′ for Gc. According to the second property of G′, there exists a

directed forest F = (EF , V ), which spans V . Due to the third property, the com-

pletion of edges in Gc, does not violate the XOR relations. We create an expansion

M ′ of M as follows: resolve the ’2’ of the genotypes in those rows, according to G′:

for two vertices {ua, ub ∈ Xi}1≤i≤p, in case M [NXi
, a]=M [NXi

, b] = 2, if there is

an undirected dashed edge between ua, ub ∈ V , then resolve the pair of columns

(a, b) unequally, and if there is an directed edge between ua, ub ∈ V , then resolve

the submatrix equally. Since those edges are completed in G′ according to XOR re-

lations (see Definition 5, property 3), each of the ’2’s in these rows can be resolved

accordingly.

We denote the remaining 2|E|×|V | matrix by M ∗. Note that M∗[i, j] ∈ {0, 1, ?}.

We call the {0, 1} entries “constants”, and the ’?’ entries “variables”. We denote

the set of column indices of constants in row i by Ci, and the set of column indices

of variables in this row by Vi. Complete the variables entries in the matrix M ∗ to
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create a matrix M∗∗ as follows:

M∗∗[i, j]j∈Vi
=

{
1 if ∃c ∈ Ci s.t.: M∗[i, c] = 1 ∧ uj is an ancestor of uc

0 otherwise

M∗∗ is a binary matrix and an expansion of M . We claim that M ∗∗ admits a

perfect phylogeny forest. Moreover, this forest is F . This will be proven by showing

that each two columns in M∗∗ do not contradict F , and thus, according to Lemma

1, F is a perfect phylogeny forest of M ∗∗.

Consider two vertices ua, ub ∈ V and their corresponding columns a, b in M∗∗.

For each row i, we examine the three possible cases for M ∗∗:

(1) ua, ub ∈ Ci

M(i, a) and M(i, b) were set according to the edge (ua, ub) ∈ E, which by

definition of G′, does not contradict F .

(2) ua ∈ Ci, ub ∈ Vi

First, suppose M∗∗[i, a] = 0: If M∗∗[i, b] is set to 0, then there is no contra-

diction for any relations of ua and ub in F . Otherwise, if M∗∗[i, b] is set to 1,

then there exists c ∈ Ci such that M ′[i, c] = 1 and ub is an ancestor of uc. Sup-

pose, on the contrary, that ua, ub contradict F in row i. This means, that there

are two rows j, k such that M∗[j, a] = 1,M∗[j, b] = 0,M∗[k, a] = 1,M∗[k, b] = 1,

i.e., according to these rows, ua is an ancestor of ub in F . Since ub is an ancestor

of uc, then ua must be an ancestor of uc. However, according to the construction

of M , ua cannot be an ancestor of uc, since M∗∗[i, a] = 0 and M∗∗[i, c] = 1 and

a, c ∈ Ci.

Second, suppose M∗∗[i, a] = 1: If M∗∗[i, b] is set to 0, clearly ub is not an

ancestor of ua, so M∗∗ does not contradict F . Otherwise, if M∗∗[i, b] is set to

1, then there exists c ∈ Ci, such that M∗∗[i, c] = 1 and ub is an ancestor of uc.

In case c = a, ua and ub can not be in a brotherhood relation. In case c 6= a, ua

and uc are in parenthood relation, and since ub is an ancestor of uc, it follows

that ua and ub can not be in a brotherhood relation.

It follows that, in this case, M∗∗ does not contradict F .

(3) ua, ub ∈ Vi

First, suppose that M ′[i, a] and M ′[i, b] are both set to 0. Obviously, the

submatrix does not contradict F .

Second, suppose w.l.o.g. that M ′[i, a] is set to 0 and M ′[i, b] is set to 1. There

exists c ∈ Ci, c 6= a such that M ′[i, c] = 1 and ub is an ancestor of uc. Suppose,

on the contrary, that ua, ub contradict F in row i. This means, that there are

two rows j, k such that M∗[j, a] = 1,M∗[j, b] = 0,M∗[k, a] = 1,M∗[k, b] = 1, i.e.,

according to these rows, ua is an ancestor of ub in F . Since ub is an ancestor

of uc, then ua must be an ancestor of uc. However, in that case, M ′[i, a] should

have been set to 1.

Third, suppose that M ′[i, a] and M ′[i, b] are both set to 1. There exist

ca, cb ∈ Ci such that M ′[i, ca] = 1, M ′[i, cb] = 1 and ua is an ancestor of uca

and ub is an ancestor of ucb
. Clearly, uca

and ucb
are in parenthood relation,
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so w.l.o.g. suppose that uca
is an ancestor of ucb

. Thus, both ua and ub are

ancestors of ucb
, and it follows that ua and ub can not be in brotherhood

relation.

It follows that, in this case, M∗∗ does not contradict F .

Theorem 2. 3-SAT ∝ CMGC

Proof. For a 3-SAT instance Φ we build a CMGC graph Gc. Denote the variables

of Φ by {Yi}1≤i≤t and the clauses by {Cj}1≤j≤s. Our construction will be formed

from four types of CMG sub instances. First we define these four graph structures :

variable base graph contains two vertices denoted by xi
0 and xi

1, with no edge

between them. This graph is denoted by V ari.

clause base graph (see Figure 3) contains 6 vertices denoted by {cj
t}0≤t≤5. The

edges are indicated in Figure 3. This graph is denoted by Clj .

positive variable connector (see Figure 3) contains 12 vertices denoted by

{ai,j
t }0≤t≤5, and {bi,j

t }0≤t≤5. The edges are indicated in Figure 3. This graph

is denoted by Pos.

negative variable connector (see Figure 3) contains 8 vertices denoted by

{di,j
t }0≤t≤3 and {ei,j

t }0≤t≤3. The edges are indicated in Figure 3. This graph is

denoted by Neg.

j
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a

ba

b
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i,j

i,j

i,ji,j

i,j

i,j
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3
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3
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10
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Fig. 3. The building blocks of the reduction. Clause base graph (left), positive variable connector
(middle), and negative variable connector (right). In each case, the circled vertex sets represent
XOR relations. Edge types (directed, undirected, solid, dashed) are as shown in the graphs.
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Fig. 4. Completion of variable positive and negative connectors. Note that in Pos (left) the com-
pletion propagates the type of the edge from the bottom to the top. In Neg (right) the types at
the top and the bottom are reversed.

The XOR relations constrain the ways to complete the variable connectors. In

fact, that there are two possible ways to complete the positive variable connector

and the negative variable connector with undirected edges. Both of the ways for both

types of connectors are presented in Figure 4. An important key to understanding

the reduction, is that in the positive connector, the type (dashed or non-dashed)

of edge (ai,j
0 , bi,j

0 ) is the same as the type of the edge (ai,j
5 , bi,j

5 ). In the negative

connector, the type of edge (di,j
0 , ei,j

0 ) is the opposite from the edge (di,j
3 , ei,j

3 ). These

two types will play the role of True and False in the reduction.

The construction of Gc is done as follows:

1. For each variable {Yi}1≤i≤t create a copy of variable base graph V ari.

2. For each clause {Cj}1≤j≤s create a copy of clause base graph Clj .

3. For all 1 ≤ j ≤ s, for all 1 ≤ k ≤ 3 do:

4. if Yi is the k-th literal in clause Cj then do:

create a copy of positive variable connector with superscripts i, j.

identify ai,j
0 with xi

0 and bi,j
0 with xi

1.

identify ai,j
5 with ci

k and bi,j
5 with ci

k+1.

5. if ¬Yi is the k-th literal in clause Cj then do:

create a copy of negative variable connector with superscripts i, j.

identify di,j
0 with xi

0 and ei,j
0 with xi

1.

identify di,j
3 with ci

k and ei,j
3 with ci

k+1.

This concludes the reduction which is clearly polynomial. For convenience, we also
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call an undirected dashed edge a positive edge, and a directed or undirected (solid)

edge a negative edge.

(⇒)

Suppose that 3-SAT(Φ) = TRUE. There exists a satisfying truth assignment

τ : (Yi) → {T, F} for Φ. For each variable graph {V ari}1≤i≤t complete the edge

according to the assignment: ∀1 ≤ i ≤ t : (xi
0, x

i
1) is determined to be a positive

edge if τ(Yi) = T , or a negative edge, otherwise. Now, resolve the XOR relations in

all the variable connectors. In each the clause base graphs Clj , at least one of the

three edges (cj
1, c

j
2), (cj

2, c
j
3), and (cj

3, c
j
4), is a positive edge. It follows, that in each

clause base graph there is more than one parenthood connectivity component. Each

such component has only solid edges between members, and there is a directed edge

between vertices cj
a and cj

b, only if a = b + 1. It follows, that a directed tree can be

built in each of the components of a clause base graph, under the constrains of Gc.

In addition, any of the two possible completions of each of the variable con-

nectors, for any assignment, provides parenthood connectivity components in the

variable connectors as follows: each component is a connected component in the

subgraph of the solid edges only. These components can be directed in a transitive

fashion (see Figure 4). Thus, in each variable connector, one can form a directed

sub-tree in each component, according to Gc constrains. Note, that subgraphs of

two different variable connectors Con1 and Con2 may be in the same parenthood

connectivity component. This may happen only when two variable connectors are

connected to the same clause base graph, to edges (cj
1, c

j
2) and (cj

3, c
j
4) respectively,

and when (cj
2, c

j
3) is a directed solid edge and (cj

1, c
j
2) and (cj

3, c
j
4) are undirected

dashed edges. In this case, there is only one directed edge which connects Con1 and

Con2, so trees T1 and T2 can be built on Con1 and Con2 separately and directed

using the common edge, and then T1 and T2 can be united to a spanning directed

tree on Con1 ∪ Con2.

It follows that the graph can be divided into h parenthood connectivity com-

ponents {Ri}1≤i≤h, where a directed spanning tree Ti can be built in each of this

components, under the constrains of Gc. Since each of the trees is in different par-

enthood connectivity component, then
⋃h

i=1 Ti is a directed forest spanning on Gc

vertices. The constrained mixed completion graph can now be accomplished simply

by completing the rest of the missing edges, in each parenthood connectivity com-

ponent according to its spanning tree, and between the components, by undirected

dashed edges. It follows that CMGC (Gc)=TRUE.

(⇐)

Suppose that 3-SAT(Φ) = FALSE. Then for each truth assignment to the vari-

ables at least one of the clauses has all literals assigned to be FALSE. This implies

that in any completion of Gc, there will be always one clause base graph Clj , such

that all the three edges: (cj
1, c

j
2), (cj

2, c
j
3) and (cj

3, c
j
4), are negative, i.e., solid di-

rected edges. Thus cj
5 must be an ancestor of cj

0 in the forest. But this contradicts

the undirected dashed edge between cj
0 and cj

5, so a spanning forest which satisfied



May 11, 2004 9:46 WSPC/INSTRUCTION FILE ipph-jbcb

16 Gad Kimmel and Ron Shamir

Gc constraints does not exist. Thus, CMGC (Gc)=FALSE.

4. An Algorithmic Solution for IPPH

In spite the negative results of Section 3, we provide an efficient algorithmic ap-

proach to IPPH. We propose a probabilistic model for data generation and argue

that the model holds for biological data. Under this model, we provide an algorithm

that takes an expected polynomial time for both the rooted and the unrooted ver-

sions of IPPH. A similar probabilistic approach leading to comparable results was

developed simultaneously and independently by Halperin and Karp13.

Pe’er et al.22 suggested an algorithm that requires Õ(mn) time for solving the

rooted version of perfect phylogeny with missing data on an n×m haplotype matrix.

Let the input incomplete haplotype matrix be M̃ , with M̃ [i, j] ∈ {0, 1, ?}, and let

the root be r. We denote by IDP(M̃ ,r) the completed matrix obtained by performing

this algorithm on M̃ . We also use IDP(M̃) to denote IDP (M̃ ,r0). We use h(·, ·) to

denote the Hamming distance between two binary vectors. We use σ0(j) and σ1(j)

for the numbers of 0s and 1s in the j-th column of M , respectively.

Suppose the root r0 is known. Given an incomplete matrix M, we build a con-

strained mixed graph, as described in Section 2. We then perform primary label

completion. According to Lemma 2, if M can be completed to M ∗ so that there

exists an expansion M ′ of M∗ that admits a perfect phylogeny, then there exists

some secondary label completion of UGc
, that can form the basis to completion of

M∗. Thus, the computational challenge is to find such secondary label completion.

Suppose we were able to guess the correct secondary label completion. In that case,

let M̃ be the resulting incomplete haplotype matrix, generated by performing label

resolution accordingly. A completion of M̃ can be done in polynomial time by com-

puting IDP(M̃). Hence, the bottleneck step is finding a secondary label completion.

Due to the hardness result in Section 3, a polynomial time algorithm for find-

ing the correct secondary label completion does not exist, unless P=NP. However,

by making several assumptions on the properties of the genotype data, this can

be performed by a polynomial expected time algorithm. We now describe these

assumptions, and for each one, we provide its biological motivation:

(1) Each entry value in the original genotype matrix is replaced by ’?’ with prob-

ability p̃, independently of the other values. This assumption makes sense as

missing data entries are caused by technical problems in the biological experi-

ment, that tend to generate independent ”misses” (’?’s).

The same value p̃ may be used for all entries. One may claim, that occa-

sionally different SNPs may have different probability for a missing entry, due

to distinct difficulties in sequencing different regions in the human genome. In

that case, we denote by p̃i the probability for a missing entry in the i-th SNP

and set p̃ to be: p̃ ≡ maxi{p̃i}.

(2) Each haplotype hi, which is a node in a perfect phylogeny tree, is chosen to

be in a genotype with probability of αi, independently. This assumption is also
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made in the Hardy-Weinberg equilibrium model14. Moreover, we assume that

these probabilities do not depend on n or m.

(3) The number of columns m grows much more slowly than the number of rows

n. Specifically, we use m = o(n.5). This assumption applies in all biological

scenarios: In future experiments, the number of genotypes is expected to be

even larger than today, while m is not expected to grow substantially, since m

is the size of a ”block”, i.e., a region in the chromosome where the number of

recombination events in the sampled population is small. A constant bound on

m is thus plausible, but for our analysis, a much weaker assumption than that

is required.

Prob-IPPH(M):

1. Let Gc(M) = (V, E, X) be the constrained mixed graph of M .
2. Let r be a vector such that rj = 0 if σ0(j) > σ1(j) and 1 otherwise.
3. Perform primary label completion of Gc(M).
4. For i = 0 →

`
m

2

´

For each possible root r ∈ {0, 1}m, such that h(r, r) = i do
Relabel the matrix entries according to r, so that r0 is the new root.

For each possible secondary label completion of UGc ,
such that |{(ua, ub) : (ua, ub) ∈ UGc ∧ L((ua, ub)) = 0}| = i do

Perform label resolution of M to fM .

If IDP(fM) is compatible then output IDP(fM) and halt.
5. Output: ”no solution”.

Fig. 5. An algorithm for IPPH.

Our algorithm was designed to solve IPPH under the assumptions above. Infor-

mally, algorithm Prob-IPPH(M) ignores the missing data entries in order to decide

the relation between each two columns in the matrix. As we shall prove, if it is

impossible to conclude the relation deterministically from the matrix, with high

probability, a correct relation is obtained just by guessing.

Theorem 3. Under the assumptions of the model, algorithm Prob-IPPH(M) solves

IPPH correctly within expected time of Õ(m2n).

Proof. Correctness: Algorithm Prob-IPPH(M) enumerates all possible roots and

all possible relations between every pair of columns (parenthood or brotherhood).

Thus, correctness trivially follows.

Complexity: Steps 1-3 can all be done in O(m2n) time. The main time consuming

step of the algorithm is step 4. The algorithm can stop for any 0 ≤ i ≤ m2. We

denote by S0, an upper bound to the running time of the algorithm, when it stops

for i = 0, and by ES0 the event that the algorithm stops for i = 0. Similarly, we

denote by S0, an upper bound to the running time of the algorithm, when it does

not stop for i = 0, and by ES0
the event that the algorithm does not stop for i = 0.
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Trivial upper bounds for S0 and S0 are:

S0 = Õ(m2n), (1)

S0 = Õ(m2n2m2

).

Let Fi,j be the set of rows a such that M [a, i] = M [a, j] = 1, or M [a, i] = 1 and

M [a, j] = 2, or M [a, i] = 2 and M [a, j] = 1. Clearly, if Fi,j 6= ∅ then the columns

i, j are in parenthood relation.

Definition 6. Informative and Enigmatic Pairs of Columns

A pair of columns i, j in an incomplete genotype matrix is called an informative pair

if there is at least one row a, such that a ∈ Fi,j in the original complete genotype

matrix, i.e., the two corresponding vertices of the columns in the perfect phylogeny

forest are in parenthood relation. The row a is called an informative row w.r.t.

columns i, j.

A pair of columns i, j in an incomplete genotype matrix is called an enigmatic pair

if the relation between i, j can not be concluded directly from these columns, and

there exists at least one row a, such that M [a, i] =? or M [a, j] =?. Such row a is

called an enigmatic row w.r.t. columns i, j.

Let Ii,j be the event that that the pair of columns i, j is an informative pair, and

let Ei,j be the event that the pair of columns i, j is an enigmatic pair. Let I
(a)
i,j , denote

the event that row a ∈ Fi,j . We denote the set of all pairs of haplotypes, which

create a genotype which belongs to Fi,j by HFi,j
. Now, according to assumption

(2), the probability that row a belongs to Fi,j is Pr[I
(a)
i,j ] =

∑
ha,hb∈HFi,j

αaαb. We

denote Pr[I
(a)
i,j ] by qi,j .

Let E
(a)
i,j denote the event that the row a is enigmatic w.r.t. the columns i, j.

The probability of E
(a)
i,j , for all a, i, j is p = 2p̃(1 − p̃) + p̃2. We now calculate the

joint probability Pr[Ii,j , Ei,j ]:

Pr[Ii,j , Ei,j ] = Pr[∀a : {I
(a)
i,j → E

(a)
i,j }] − Pr[∀a : {¬I

(a)
i,j }]

= Pr[∀a : {¬I
(a)
i,j ∨ E

(a)
i,j }] − Pr[∀a : {¬I

(a)
i,j }]

= Pr[∀a : {¬(I
(a)
i,j ∧ ¬E

(a)
i,j )}] − Pr[∀a : {¬I

(a)
i,j }]

= [1 − qi,j(1 − p)]n − (1 − qi,j)
n.

Next, we calculate the conditional probability of a pair of columns to be an

informative pair, when the pair is known to be enigmatic:

Pr[Ii,j |Ei,j ] =
Pr[Ii,j ,Ei,j ]

Pr[Ei,j ]

=
[1−qi,j(1−p)]n−(1−qi,j)

n

1−(1−p)n

≤ [1−qi,j (1−p)]n

1−(1−p)n .
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The probability for a pair to be not informative, when it is known to be enigmatic

is:

Pr[¬Ii,j |Ei,j ] ≥ 1 − [1−qi,j (1−p)]n

1−(1−p)n (2)

=
1−(1−p)n−[1−qi,j (1−p)]n

1−(1−p)n

≥ 1 − (1 − p)n − [1 − qi,j(1 − p)]n.

Note that Pr[¬Ii,j |Ei,j ] is the probability for a ”success” with respect to columns

i, j: Given that the pair i, j is enigmatic (i.e., we can not conclude its relation), the

pair is not informative, which means that we can be sure that the columns relation

is brotherhood.

We use the following definitions:

u = maxi,j{1− p, 1 − qi,j(1 − p)}.

Due to assumption (2), 0 < u < 1 , and does not depend on n or m. When

substituting (3) into inequality (2), we get:

Pr[Ii,j |Ei,j ] ≤ 2un.

Since there are
(
m

2

)
pairs of columns, the probability that at least one of the

enigmatic pairs is an informative pair, can be bounded using a union bound:

Pr[∃i, j : Ii,j |Ei,j ] = Pr[
⋃

i<j(Ii,j |Ei,j)]

≤
∑

i<j Pr[Ii,j |Ei,j ]

≤
(
m
2

)
2un.

Thus, the complementary event, which represents ”success”, can be bounded by:

Pr[∀i, j : ¬Ii,j |Ei,j ] ≥ 1 −
(
m

2

)
2un.

If the relation between two columns can not be concluded, then the algorithm starts

with a guess of a brotherhood relation. Thus, an error might occur when i = 0, only

if a pair is an informative pair. Since m = o(n.5), we replace n with c1m
2, where

c1 is a constant. There exists m0, such that ∀m ≥ m0 the probability that the

algorithm finds the correct solution when i=0, and when the root is known to be r̃,

is:

Pr[ES0 | root is r̃] ≥ 1 − m2uc1m2

. (3)

We now calculate the probability for an error in deciding the root, when i = 0.

Denote by r the root calculated by the algorithm when i = 0. Let P 0
i , P 1

i be the

probabilities for 0 and 1 in the i-th row, respectively. Hence P 0
i + P 1

i = 1 − p,

where p is the probability for ’?’ in a haplotype. A specific site in the genotype

is missing if at least one out of the two corresponding sites in the haplotypes is

missing. Thus, p̃ = 1− (1− p)2 or, equivalently, p = 1−
√

1− p̃. Let n0
i , n1

i be the

number of 0 and 1 in the i-th row, respectively. Without loss of generality, suppose
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that P 0
i < P 1

i , then the root can be determined to be ’1’ in the i-th component,

according to the majority rule in determination of the root in perfect phylogeny

(see 10). The probability for an error in the i-th component can be bounded using

Chernoff bound1:

Pr[ri 6= r̃i] = Pr[n0
i > n1

i | P 0
i < P 1

i ]

= Pr[n0
i > 1−p

2 | P 0
i < P 1

i ]

= Pr[n0
i > nP 0

i + nP 0
i ( 1−p

2P 0
i

− 1) | P 0
i < P 1

i ]

≤ e−
nP0

i
(
1−p

2P0
i

−1)2

4

= e−bn,

where b =
P 0

i

4 ( 1−p

2P 0
i

− 1)2 is a constant. Using the union bound again, there exists

m0, such that ∀m ≥ m0 the probability for the root to be correct, when i = 0

Pr[r = r̃] ≥ 1 − me−bc2m2

,

where c2 is a constant. Now, we can bound the probability that the algorithm stops

when i = 0:

Pr[ES0 ] ≥ Pr[ES0 , r = r̃] (4)

= Pr[ES0 |r = r̃] Pr[r = r̃]

≥ (1 − m2uc1m2

)(1 − me−bc2m2

)

≥ 1 − e−c3m2

,

where c3 is a constant. Using inequality (1), we are now able to bound the expected

running time of the algorithm:

E[running time] ≤ Pr[ES0 ]S0 + (1 − Pr[ES0 ])S0 (5)

≤ Õ(m2n) + e−c3m2

Õ(m2n2m2

),

Since m = o(n.5) we can choose c1 large enough (c3 is larger when c1 increases),

such that the second summand vanishes for n → ∞, and thus:

E[running time] = Õ(m2n).

Observe, that in addition to proving that the expected running time is polyno-

mial, we also showed that the running time is polynomial with high probability.

Note that the above analysis applies also when the root is known. In that case,

obviously, we need not enumerate all possible roots, so the worst case running time

can only improve. Asymptotically, the expected running time is the same.
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5. Experimental Results

In order to assess our algorithm, we applied it on simulated data. The simulations

used parameters which were adopted from several large scale biological studies5,21,8.

By Theorem 3 the algorithm always outputs a correct solution. Although we proved

that under our model assumptions the expected running time is Õ(m2n), we wanted

to estimate the actual running time, under realistic biological parameters and be-

yond the range of the model assumptions. Specifically, we wanted to calculate the

expected number of different phylogenic tree solutions for a given data set. The

proof of Theorem 3 implies that Γ = 2|UGc | is an upper bound on the number

of different phylogeny solutions, and the dominant factor in the complexity of the

algorithm, in the rooted version of the problem.

In each different experiment, we randomly generated N = 105 perfect phylogeny

trees. We used the following procedure to generate a perfect phylogeny tree of

haplotypes: We start with a binary root vector with m = 30 sites. Initially, no

site is marked. In each step, we randomly pick a node from the current tree and an

unmarked site, add a new child haplotype to that node in which only the state of that

site is changed, and mark the site. For each tree, we randomly chose k haplotypes

for reconstructing the genotypes, where k = 2, 3, . . . , 9. We assigned frequencies,

denoted by α1, α2, . . . , αk, to the k chosen haplotypes, such that
∑k

i=1 αi = 1 and

∀i : αi ≥ 0.05. For each tree, different frequencies were assigned. Next, we generated

200 genotypes according to the chosen haplotypes and their assigned frequencies.

Introducing missing data entries to the genotypes was performed as follows: Each

site in the genotypes data was flipped into a missing entry independently with

probability p. Since we observed in real data p ≈ 0.1 (ref.5,8), we checked a wider

range: p = 0, 0.05, . . . , 0.5. Thus, for each sampled tree Tj : j = 1, 2, . . . , N , we

sampled one incomplete genotype matrix Mj of size 200 × 30. We applied our

algorithm on each Mj . We denote UGc(Mj ) by Uj . After performing steps 1-3 of the

algorithm, we stopped at i = 0 and calculated 2|Uj |. As was shown in Section 4, if

the secondary label completion is known, it is possible in Õ(m2n) time to output

the solution to IPPH. Hence, completion of the algorithm, for each Mj , should

take less than 2|Uj |Õ(m2n) time. The dominating factor in the running time is the

random variable 2|Uj |, whose expectation is approximated by: E[Γ] = E[2|Uj |] ≈
1
N

∑N

j=1 2|Uj |.

The results are presented in Figure 6. In all experiments, E[Γ] was below 3500

(compared to a theoretical upper bound of 2(m

2 ) = 2435) . When the missing data

rate is below 20%, E[Γ] was smaller than 100. Another observation, is that the

larger the number of chosen haplotypes, the smaller the value of E[Γ]. Notably, in

all cases we found a correct root: either by finding at least one haplotype, which

is homozygote with no missing entries in all sites, or by using the majority rule

described in the algorithm.

To demonstrate that in real biological data, a root is readily available, we chose

the genotype data of Daly et al.5. This data set consists of 103 SNPs and 129
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Fig. 6. Simulation results: both figures show the average of 2|Uj | (y-axis), which represents the
dominating factor in the running time of the algorithm for different missing data rates (x-axis).
Each different line in the figures corresponds to a different number of haplotypes chosen from the
tree (see legend).

genotypes. We checked all possible
(
103
2

)
= 5253 blocks. In all the blocks of size 65

or smaller, there was always at least one genotype that was homozygote in all alleles

and without any missing entries. This genotype is actually a haplotype, since it can

be resolved in only one possible way, and hence, it can be used as a root. Since the

size of a block is almost always smaller than 30, this naive simple method can be

used for finding a root in biological data.

6. Concluding Remarks

We investigated the incomplete perfect phylogeny haplotype problem. The goal is

phasing of genotypes into haplotypes, under the perfect phylogeny model, where

some of the data are missing. We proved that the problem in its rooted version

is NP-complete. We also provided a practical expected polynomial-time algorithm,

under a biologically motivated probabilistic model of the problem. We applied our

algorithm on simulated data, and concluded that the running time and the number

of distinct candidate phylogeny solutions are relatively small, under a broad range

of biological conditions and parameters, even when the missing data rate is 50%. An

accurate treatment for phasing of genotypes with missing entries can therefore be

obtained in practice. In addition, due to the small number of phylogenetic solutions

observed in simulations, incorporation of additional statistical and combinatorial

criteria with our algorithm is feasible.

After the completion of this study, Gramm et al.9 reported on another investiga-

tion of the rooted-IPPH problem. They proved that this problem is NP-complete

even when the phylogeny is a path and only one allele of every polymorphic site

is present in the population in its homozygous state. This provides an alternative
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proof that the rooted-IPPH problem is NP-complete. They also give a linear-time

algorithm for the problem for the special case, in which the phylogeny is a path.
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