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ABSTRACT
We present a new algorithm for the problems of genotype
phasing and block partitioning. Our algorithm is based on
a new stochastic model, and on the novel concept of prob-
abilistic common haplotypes. We formulate the goals of
genotype resolving and block partitioning as a maximum
likelihood problem, and solve it by an EM algorithm. When
applied to real biological SNP data, our algorithm outper-
forms two state of the art phasing algorithms. Our algo-
rithm is also considerably more sensitive and accurate than
a previous method in predicting and identifying disease as-
sociation.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics; G.3 [Probability and Statistics]:
Probabilistic algorithms

General Terms
algorithms, haplotyping

Keywords
haplotype, haplotype block, genotype, SNP, algorithm, max-
imum likelihood, genotype phasing, haplotype resolution,
disease association

1. INTRODUCTION
A major challenge after the completion of the human

genome project is to learn about DNA differences among
individuals. This knowledge can lead to better understand-
ing of human genetics, and to finding the genetic causes
for complex and multi-factorial diseases. Most DNA differ-
ences among individuals are single base sites, in which more
than one nucleic acid can be observed across the population.
Such differences and their sites are called single nucleotide
polymorphisms (SNPs) [19, 7]. Usually only two alternative
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bases occur at a SNP site. Millions of SNPs have already
been detected [20, 22], out of an estimated total of 10 mil-
lions common SNPs [13].

When studying polymorphism in the population, one looks
only at SNP sites and disregards the long stretches of bases
between them that are the same in the population. The
sequence variants at each site are called the alleles at that
site. The sequence of alleles in contiguous SNP sites along a
chromosomal region is called a haplotype. Recent evidence
indicates that haplotypes tend to be preserved along rela-
tively long genomic stretches, with recombination occurring
primarily in narrow regions called hot spots [7, 19]. The
regions between two neighboring hot spots are called blocks.
The number of distinct haplotypes within each block that
are observed in a population is very limited: typically, some
70-90% of the haplotypes within a block are identical (or
almost identical) to very few (2-5) distinct common haplo-
types [19]. This finding is very important for disease asso-
ciation studies, since once the blocks and the common hap-
lotypes are identified, one can, in principle, obtain a much
stronger association between a haplotype and a disease phe-
notype.

Several studies have concentrated on the problem of block
identification in a given collection of haplotypes: Zhang
et al. [27, 28] sought a block partitioning that minimizes
the number of tag SNPs (roughly speaking, this is a set of
sites with the property that the combination of alleles in
it uniquely identifies the alleles at all other sites, or a pre-
scribed fraction of the haplotypes in that block). Koivisto
et al. [12] used a minimum description length (MDL) crite-
rion for block definition. Kimmel et al. [11] minimized the
total number of common haplotypes, while allowing errors
and missing data. All these studies used the same basic dy-
namic programming approach of [27] to the problem, but
differed in the optimization criterion used within the dy-
namic programming computation.

The block partitioning problem is intertwined with an-
other problem in diploid organisms. Such organisms (includ-
ing humans) have two near-identical copies of each chromo-
some. Most techniques for determining SNPs do not pro-
vide the haplotype information separately for each of the
two copies. Instead, they generate for each site genotype
information, i.e., an unordered pair of allele readings, one
from each copy [20].

Hence, given the genotype data {A,A} {A,C} {C,G} for
three SNP sites in a certain individual, there are two pos-
sible haplotype pair solutions: (ACC and AAG), or (ACG
and AAC). A genotype with two identical bases in a site is
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called homozygote, while a genotype with two different bases
is called heterozygote in that site. The genotype in the ex-
ample above is homozygote for the allele A in the first site,
and heterozygote in the second and third sites. The pro-
cess of inferring the haplotypes from the genotypes is called
phasing or resolving.

In the absence of additional information, each genotype
with h heterozygote sites can be resolved in 2h−1 different
ways. Resolving is done simultaneously in all the available
genotypes and is based on some assumptions on how the
haplotypes were generated. The first approach to haplo-
type resolution was Clark’s parsimony-based algorithm [3].
Likelihood-based EM algorithms [6, 15] gave better results.
Stephens et al. [21] and Niu et al. [18] proposed MCMC-
based methods which gave promising results. All of those
methods assumed that the genotype data correspond to a
single block with no recombination events. Hence, for multi-
block data the block structure must be determined sepa-
rately.

A novel combinatorial model was suggested by Gusfield [9].
According to this model, the resolution must produce haplo-
types that define a perfect phylogeny tree. Gusfield provided
an efficient yet complex algorithm for the problem. Simpler,
direct efficient algorithms under this model were recently de-
veloped [5, 1]. Eskin et al. [5] showed good performance with
low error rates on real genotypes.

While elegant and powerful, the perfect phylogeny ap-
proach has certain limitations: first, it assumes that the
input data admit a perfect phylogeny tree. This assump-
tion is often violated in practice, due to data errors and
rare haplotypes. In fact, Eskin at al. show that in the real
data that they analyzed, a block does not necessarily ad-
mit a perfect phylogeny tree. Second, the model requires
partition of data into blocks by other methods. Third, the
solution to the problem may not be unique and there may
be several (or many) indistinguishable solutions. (These
limitations were addressed heuristically in [5]). Recently,
Greenspan and Geiger [8] proposed a new method and algo-
rithm, called HaploBlock, which performs resolution while
taking into account the blocks structure. The method is
based on a Bayesian network model. Very good results were
reported.

In this study we provide a new algorithm for block par-
titioning and phasing. Our algorithm is based on a new
model for genotype generation. Our model is based on a
haplotype generation model, parts of which were suggested
by Koivisto et al. [12]. In our model, common haplotypes are
redefined in a probabilistic setting, and we seek a solution
that has maximum likelihood, using an EM algorithm. The
model allows errors and rare haplotypes, and the algorithm
is particularly tailored to the practical situation in which the
number of common haplotypes is very small. We applied
our algorithm to two genotype data sets: on the data set
of Daly et al. [4] our algorithm performed better than Hap-
loBlock [8] and Eskin et al. [5]. On genotype and phenotype
data for the µ opioid receptor gene, due to Hoehe et al. [10],
our algorithm revealed strong association for disease, by us-
ing blocks partitioning and resolving, and improved sharply
over the original analysis in [10].

Unlike most former probabilistic approaches [6, 15, 21,
18], our algorithm reconstructs the block partitioning and
resolves the haplotypes simultaneously, and assigns a like-
lihood value to the complete solution. Consequently, it is

considerably faster and more accurate. While our approach
has some resemblance to HaploBlock, there are also signif-
icant differences. First, our approach is not based on a
Bayesian network, but rather computes the maximum likeli-
hood directly. Second, our algorithm actually computes the
likelihood function of each block, and thus the real maxi-
mum likelihood partitioning is optimized, while HaploBlock
uses an MDL criterion for block partitioning. Third, once
the model parameters are found, we solve the phasing prob-
lem directly to optimality, such that the likelihood function
is maximized. In constrast, HaploBlock applies a heuristic
to find the block partitioning, even though this partition-
ing is part of the model parameters. Fourth, our stochas-
tic model allows a continuous spectrum of probabilities for
each component in each common haplotype, while the Hap-
loBlock software allows only two common probability values
for all mutations. HaploBlock has the theoretical advantage
of allowing a larger number of common haplotypes, but this
is apparently less relevant in practice [7, 4]. HaploBlock’s
model also incorporates inter-block transitions, while we
handle them separately after the main optimization process.

This paper is organized as follows: In Section 2 we present
our stochastic model, in Section 3 we show how block par-
titioning and resolution of haplotypes are performed under
our model. Section 4 contains our results on the two real
data sets.

2. THE STOCHASTIC MODEL
Consider first the problem of resolving a single block. The

input to the problem is presented by a n×m genotype matrix
M , in which the rows correspond to samples (individuals
genotyped), and columns correspond to SNP sites. Hence,
the ith row M [i, ∗] describes the ith genotype (the vector
of readings for all the SNP sites), which is also denoted by
gigigi. We assume that all sites are bi-allelic, and that the two
alleles were renamed arbitrarily to 0 and 1. The genotype
readings are denoted by M [i, j] ∈ {0, 1, 2}. 0 and 1 stand for
the two homozygote types {0,0} and {1,1}, respectively, and
2 stands for a heterozygote. A 2n×m binary matrix M ′ is
an expansion of the genotype matrix M if each row M [i, ∗]
expands to two rows denoted by M ′[i, ∗] and M ′[i′, ∗], with
i′ = n + i, satisfying the following: for every i, if M [j, i] ∈
{0, 1}, then M [i, j] = M ′[i, j] = M ′[i′, j]; if M [i, j] = 2, then
M ′[i, j] 6= M ′[i′, j]. M ′ is also called a haplotype matrix
corresponding to M . Given a genotype matrix, the phasing
problem is to find its best expansion, i.e., the best n pairs of
haplotype vectors that could have generated the genotype
vectors. “Best” must be defined with respect to the data
model used.

We now describe our stochastic model for how the hap-
lotype matrix of a single block is generated. The model
aims to reflect the fact that only few distinct common hap-
lotypes are usually observed in each block [7, 4], and the
variability between observed haplotypes originating from the
same common haplotype. The model assumes a set of com-
mon haplotypes that occur in the population with certain
probabilities. Each genotype is created by selecting inde-
pendently two of the common haplotypes according to their
probabilities and forming their confluence. The two (pos-
sibly identical) common haplotypes are called the creators
of that genotype. The key property of our model is the
probabilistic formulation of the common haplotypes: For-
mally, a probabilistic common haplotype is a vector, whose
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components are the probabilities of having the allele ’1’ in
each site of a haplotype created by it. Hence, a vector of
only zeroes and ones corresponds to a standard (consensus)
common haplotype, and a vector with fractional values al-
lows for deviations from the consensus with certain (small)
probabilities, independently for each site. In this way, a
common haplotype may appear in different genotypes in dis-
tinct forms. A similar model was used in [12] in the context
of block partitioning of haplotype (phased) data.

A precise definition of the stochastic model is as follows.
Assume that the genotype matrix M contains only one block.
Let k be the number of common haplotypes in that block.
Let {θiθiθi}1≤i≤k be the probability vectors of the common hap-
lotypes, where θiθiθi = (θi,1, . . . , θi,m) and θi,j is the probability
to observe ’1’ in the jth site of the ith common haplotype.
(Consequently, 1 − θi,j is the probability to observe ’0’ in
that site.) Let αi > 0 be the probability of the ith common

haplotype in the population, with
Pk

i=1 αi = 1. Each row
in the matrix M is generated as follows:

• Choose a number i between 1 and k according to the
probability distribution {α1, . . . , αk}. i is the index of
the first common haplotype.

• The haplotype (x1, . . . , xm) is generated by setting, for
each site j independently, xj = 1 with probability θi,j .

• Repeat the steps above for the second haplotype and
form their confluence. The result is the genotype in
that row.

For generating a matrix with several blocks, the process is
repeated for each block independently. Our main task will
be to show how to infer the parameters and the haplotypes
from genotype data of a single block. This inference also
gives a likelihood for the block. Given a multi-block ma-
trix, a dynamic programming algorithm is used to find the
maximum likelihood block partitioning.

3. INFERRING THE MODEL PARAMETERS
For a single genotype gjgjgj , assuming its creators θaθaθa and θbθbθb

are known, the probability of obtaining gjgjgj is:

f(gjgjgj ;θaθaθa, θbθbθb) =

mY
i=1

8<: (1− θa,i)(1− θb,i) gj,i = 0
θa,iθb,i gj,i = 1
θa,i(1− θb,i) + θb,i(1− θa,i) gj,i = 2

.

We denote by Ii and Ji the index of the first and second
creator of genotype gi, respectively. The complete likelihood
of all genotypes is:

L(M) =

nY
i=1

αIiαJif(gigigi;θIi
θIiθIi , θJi

θJiθJi).

Let the random variable A
(i)
j be the number of times the

vector θjθjθj appears as a creator of genotype gigigi. Clearly, A
(i)
j

can be 0, 1, or 2. The log likelihood can be written as:

l(M) =

nX
i=1

[log αIi + log αJi + log f(gigigi;θIi
θIiθIi , θJi

θJiθJi)]

=

nX
i=1

[

kX
a=1

A(i)
a log αa +

X
1≤a<b≤k

A(i)
a A

(i)
b log f(gigigi;θaθaθa, θbθbθb)

+
X

a: A
(i)
a =2

log f(gigigi;θaθaθa, θaθaθa)].

Let I{A
(i)
a =2} be an indicator random variable for the event

A
(i)
a = 2. Then we can replace the last sum in l(M) byPk
a=1 I{A

(i)
a =2} log f(gigigi;θaθaθa, θaθaθa). Since Ii and Ji, for 1 ≤ i ≤

n, are unknown, we use the EM approach (see, e.g., [17]).
We denote the set of parameters by ϑ ≡ {αi, θiθiθi: 1 ≤ i ≤
k}. Given an initial set of parameters ϑ0, we want to find
another set of parameters ϑ of higher likelihood. This can
be done by maximizing the conditional expectation:

QM,ϑ0(ϑ) = Eϑ0 [l|M ] =

nX
i=1

[

kX
a=1

Eϑ0 [A
(i)
a |gigigi] log αa

+
X

1≤a<b≤k

Eϑ0 [A
(i)
a A

(i)
b |gigigi] log f(gigigi;θaθaθa, θbθbθb)

+

kX
a=1

Eϑ0 [I{A
(i)
a =2}|gigigi] log f(gigigi;θaθaθa, θaθaθa)].

In order to find arg maxϑ QM,ϑ0(ϑ), we need that ∀i, j : 1 ≤
i ≤ k; 1 ≤ j ≤ m, ∂Q

∂αi
= 0 and ∂Q

∂θi,j
= 0.

Expectation:
The first step is to find ααα, such that Q is maximized. The
conditional probabilities are:

Pϑ0 [A
(i)
j = 1|gigigi] =

P
1≤x≤k, x6=j 2αxαjf(gigigi;θxθxθx, θjθjθj)Pk
x=1

Pk
y=1 αxαyf(gigigi;θxθxθx, θyθyθy)

,

Pϑ0 [A
(i)
j = 2|gigigi] =

αjαjf(gigigi;θjθjθj , θjθjθj)Pk
x=1

Pk
y=1 αxαyf(gigigi;θxθxθx, θyθyθy)

.

(1)

We use Equations (1) to calculate the conditional expecta-
tion:

Eϑ0 [A
(i)
j |gigigi] = Pϑ0 [A

(i)
j = 1|gigigi] + 2Pϑ0 [A

(i)
j = 2|gigigi].

The requested αj can then be written as follows:

αj =
1

2n

nX
i=1

Eϑ0 [A
(i)
j |gigigi].

In order to calculate the vectors θiθiθi for 1 ≤ i ≤ k, we first
need to get the conditional expectations:

Eϑ0 [A
(i)
a A

(i)
b |gigigi] = Pϑ0 [A

(i)
a = 1, A

(i)
b = 1|gigigi]

=
2αaαbf(gigigi;θaθaθa, θbθbθb)Pk

x=1

Pk
y=1 αxαyf(gigigi;θxθxθx, θyθyθy)

,

Eϑ0 [I{A
(i)
a =2}|gigigi] = Pϑ0 [A

(i)
a = 2|gigigi].

(2)

Maximization:
Now ∂Q

∂θi,j
can be calculated, using Equations (2):

∂Q

∂θi,j
=

nX
s=1

� X
1≤a≤k, a6=i

Eϑ0 [A
(s)
a A

(s)
i |gsgsgs] ·

8><>:
1

θi,j−1
gs,j = 0

1
θi,j

gs,j = 1
1−2θa,j

θa,j+θi,j−2θa,jθi,j
gs,j = 2

+

+ Eϑ0 [I{A
(s)
a =2}|gsgsgs] ·

8><>:
2

θi,j−1
gs,j = 0

2
θi,j

gs,j = 1
1−2θi,j

θi,j−θ2
i,j

gs,j = 2

�
.

An inspection of the system of equations ∂Q
∂θi,j

= 0 for all

θi,j reveals that for each j, the set of equations for {θi,j : 1 ≤
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i ≤ k} can be solved separately. In other words, for each j
we have k polynomials with k variables: {θi,j |1 ≤ i ≤ k}.
These equations can be solved numerically in practice, since
k is assumed to be small.

Using this approach, we iteratively recalculate the param-
eters of the model, until convergence of the likelihood to a
local maximum. Once the parameters are found, resolv-
ing is performed as follows: for each genotype gigigi, we find

Pϑ[A
(i)
a = 1, A

(i)
b = 1|gigigi] and Pϑ[A

(i)
a = 2|gigigi], for each a and

b. The indices of the creators of gigigi are then determined by

arg max{maxa6=b Pϑ[A
(i)
a = 1, A

(i)
b = 1|gigigi],maxa Pϑ[A

(i)
a =

2|gigigi]}. Once the creators θaθaθa and θbθbθb of genotype gigigi are known,
its alleles at each heterozygote read j are ha

i,j = 1, hb
i,j = 0

if θa,j > θb,j , and ha
i,j = 0, hb

i,j = 1, otherwise.
Each of the common haplotypes is represented by a vec-

tor of probabilities θiθiθi. The corresponding binary common

haplotype vector bθi
bθi
bθi is obtained by rounding: bθi,j = 0 if

θi,j ≤ 0.5 and bθi,j = 1 otherwise.

3.1 Finding the Number of Common Haplo-
types in Each Block

The calculations of the maximum likelihood solution as-
sume that k is known. In real biological data, we know that k
is small, but its value is unknown. To overcome this obstacle,
we calculate the likelihood L(M, k) of a block with k com-
mon haplotypes, for k = 1, . . . , u, where u is a small number
(usually 5). It is easy to see that L(M, i) is monotone non-
decreasing in i. Let ∆(M, k) := L(M, k + 1) − L(M, k).
In practice, when k exceeds the correct number of common
haplotypes, ∆(M, k) becomes small. Thus, we choose the
first k such that ∆(M, k) ≤ ε, where ε is a parameter of the
algorithm.

3.2 Finding the Blocks
To find the optimal block partition, we seek one that max-

imizes the overall likelihood of the data. The procedure is
straightforward dynamic programming as in [27]. We first
calculate for each j and for each i > j the value lji, the log
likelihood of the best solution forming a single block span-
ning columns i through j, as described above. Let Ti be the
maximum log likelihood of a multi-block solution on the sub-
matrix of M induced on the columns 1, . . . , i, where T0 = 0.
Then the following recursive formula is used to compute Ti:

Ti = max
0≤j≤i−1

{Tj + lji} .

Tm gives the total log likelihood of the complete multi-block
solution.

3.3 Matching Pairs of Blocks
So far, we have shown how to find the haplotypes of each

individual within each block. This determines which alleles
within the block appear together on the same chromosome.
Our next challenge is to perform a similar task on the inter-
block level, i.e., to determine for each individual which of the
two haplotypes in each block occur on the same chromosome,
and in this way to determine its complete chromosome pair.
We call this problem matching pairs of blocks. If there are
b blocks and the two haplotypes within each of them are
distinct, then there are 2b−1 possible matchings. We seek a
simultaneous solution for all individuals which will be “best”
in a precise sense. This problem was presented in [5], where
a combinatorial algorithm was proposed for solving it.

Our solution for the problem will be based on the observa-
tion that common haplotypes tend to pair unevenly across
block boundaries [4]. Specifically, a common haplotype in
one block may tend to appear on the same chromosome
with another common haplotype in the next one, forming
stretches that join together common haplotypes in several
blocks.

The problem is solved in the following way: Let t and
t + 1 be the indices of two consecutive blocks. Let {at

i, b
t
i}

and {at+1
i , bt+1

i } be the common haplotypes in blocks t and
t + 1 respectively, for genotype gigigi. These can be matched
as {(at

i, a
t+1
i ), (bt

i, b
t+1
i )} or {(at

i, b
t+1
i ), (bt

i, a
t+1
i )}. In block t

there are up to k different common haplotypes, denoted by
{at

s}1≤s≤k. Recall, that the probability that the common
haplotype a appears in a genotype is αa. Let Ptrans(a, b)
be the transition probability from common haplotype a in
block t to common haplotype b in block t+1, i.e., the prob-
ability that if common haplotype a appears in block t, then
common haplotype b appears in block t + 1 on the same
chromosome. Denote by At

i an indicator random variable
that has value 1 iff the matching for the ith genotype is
{(at

i, a
t+1
i ), (bt

i, b
t+1
i )}, and let Āt

i = 1 − At
i. Over all, with

respect to blocks t and t + 1, the log likelihood function is:

l =

nX
i=1

[ln αat
i
+ ln αbt

i
+ At

i ln(Ptrans(a
t
i, a

t+1
i )Ptrans(b

t
i, b

t+1
i ))

+ Āt
i ln(Ptrans(a

t
i, b

t+1
i )Ptrans(b

t
i, a

t+1
i ))].

Here too we find the parameters {Ptrans(ai, bj)} using
maximum likelihood estimation by an EM approach: The
transition probabilities can be obtained from {E[At

i]}1≤i≤n

and vise versa by closed formulas, so calculating {E[At
i]}1≤i≤n

and the transition probabilities can be performed iteratively,
until convergence of the likelihood. Once the transition
probabilities are known, the decision which of the two possi-
ble pairs matching to choose can be done for each 1 ≤ i ≤ n,
according to:

arg max{Ptrans(a
t
i, a

t+1
i )Ptrans(b

t
i, b

t+1
i ),

Ptrans(a
t
i, b

t+1
i )Ptrans(b

t
i, a

t+1
i )}.

If in some block the two common haplotypes of a certain
genotype originate from the same common haplotype, then
the two possible matchings are identical. In that case, we
preform the procedure on the haplotypes in the closest flank-
ing blocks that have distinct common haplotypes (using all
the haplotypes in theses blocks). This heuristic procedure
aims to reveal longer range dependency between blocks.

4. RESULTS
Our algorithm was implemented in a C++ program called

GERBIL (GEnotype Resolution and Block Identification us-
ing Likelihood). In the implementation, all initial parame-
ters are chosen at random, the complete procedure is re-
peated 100 times and the maximal likelihood solution is
selected. Running times on 2 GHz Pentium PC were less
than 1 minute for resolving one block of 20 SNPs with 150
genotypes. Partitioning into blocks and phasing for a few
hundred SNPs took several hours. GERBIL will be available
in the future at www.cs.tau.ac.il\∼rshamir.

We applied GERBIL to two published data sets, and com-
pared the results to prior analysis of the same data. We
describe how we dealt with missing data entries and outline
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the methods that we used to evaluate the results, and then
present the results on each data set.

Missing entries in the genotype matrix were completed
in the original data, before the algorithm is performed, by
the following heuristic. For each missing entry, we look at
the window that spans 15 sites before and 15 sites after this
site, and seek the closest other genotype within this window,
where closeness is measured by the number of matching en-
tries. The missing entry is then completed as the site value
in that closest genotype. For an alternative approach to
complete missing entries see [5].

4.1 Measures for Comparing Solutions
The data set of Daly et al. [4], on which we tested GER-

BIL, could be resolved to a large extent using pedigrees.
The pedigree-based solution was assumed to be correct, and
we used three methods for comparing different phasing so-
lutions to it:

1. Block Error Rate - This test measures the error
rate in a solution of a specific single block, w.r.t. the
true solution. Let the two true haplotypes for geno-
type gigigi be ti

1t
i
1t
i
1, t

i
2t
i
2t
i
2 and let the two inferred haplotypes be

hi
1hi
1hi
1,h

i
2hi
2hi
2. Define the number of errors in genotype gi as

ei = 1
2

min{[d(ti
1t
i
1t
i
1,h

i
1hi
1hi
1) + d(ti

2t
i
2t
i
2,h

i
2hi
2hi
2)], [d(ti

1t
i
1t
i
1,h

i
2hi
2hi
2) + d(ti

2t
i
2t
i
2,h

i
1hi
1hi
1)],

where d is the Hamming distance. If the number of
heterozygote sites in genotype gigigi is ri, then the error

rate is
Pn

i=1 eiPn
i=1 ri

.

2. Average Block Error Rate - This test measures the
error rate in a multi-block solution with respect to the
true solution. Let ej be the total number of errors
in block j (the numerator in the expression above),
and let rj be the total number of heterozygote sites in
the the genotypes in block j (the denominator in the
expression above), and let B be the number of blocks

in the matrix. The measure is
PB

j=1 ejPB
j=1 rj .

3. Switch Test [14] - This test assumes matching of
block pairs has been performed. It compares two solu-
tions, h = (h1, h2), t = (t1, t2) each of which is a pair of
complete haplotype rows of sister chromosomes. De-
fine the number of switches between h and t as the
minimum number of times one has to ’jump’ from one
haplotype in h to the other in order to obtain t, when
scanning the haplotypes from end to end. An example
of switch test is shown in Table 1. This test is ar-
guably more adequate than just counting the number
of errors as above, since a whole group of errors can
be corrected by changing the single decision to switch
the group with that on the other haplotype. The to-
tal number of switches divided by the total number of
heterozygote sites is called the switch rate.

4.2 Chromosome 5p31 Genotypes
The data set of Daly et al. [4] contains 129 pedigrees of

father, mother and child, each genotyped at 103 SNP sites in
chromosome 5p31. The original children data contain 13287
typed sites, of which 3873 (29%) are heterozygote alleles
and 1334 (10%) are missing. After pedigree resolving, only
4315 (16%) of the 26574 single SNPs remained unknown
(unresolved or missing data). Following [5], we used only

t h
1: 11110001111 1: 00000000000
2: 00001110000 2: 11111111111

Table 1: Example of switch test. The number of
switches that has to be done on h in order to obtain t
is 2. Viewed as a single block, the minimum number
of errors between the solutions is 3.

the genotypes of the children and compared our solution to
the pedigree-based solution from [4].

As a first step we applied GERBIL separately on each of
the original blocks reported by Daly et al. The differences
between the common haplotypes calculated by us and the
true ones (which were constructed using the pedigrees) are
minor: only in 4 common haplotypes there is a difference.
In total, 10 bases out of 344 (2.9%) differed.

The results of GERBIL for resolving and block partition-
ing are presented in Table 2. We identified 8 blocks with to-
tal log likelihood of -4112.45, compared with log likelihood
of -4647.36 of the solution of Daly et al., using the optimal
model parameters for that solution. In each block 4-5 com-
mon haplotypes were found. The total number of switches
in the haplotype matrix was 115 (3%). The average block
error rate was 0.7%.

We compared the performance of our algorithm to two
previously published phasing algorithms: the algorithm of
Eskin et al. [5], which uses the perfect phylogeny criterion
(see also [1]), and HaploBlock of Greenspan and Geiger [8],
which resolves the genotypes by constructing a Bayesian net-
work. The solution of [5] was taken from [25], and the solu-
tion of [8] was obtained by running HaploBlock [26] on the
raw data. Table 3 compares the results of the three algo-
rithms using the different error measures. In the switch test
criterion, GERBIL made 29% less errors than Eskin et al.,
and 8% fewer errors than HaploBlock. With respect to av-
erage block error, GERBIL made 43% less errors than Eskin
et al., and 62% less errors than HaploBlock.

Since HaploBlock partitioned the data into four blocks
only, one could argue that the better results that we ob-
tained were due to the increased number of blocks. To test
it, we ran GERBIL on the blocks of HaploBlock, applying
only the resolving procedure on the given partition, and the
number of common haplotypes was assigned to be k = 5.
The results are presented in Table 4. Our average block
error rate was 30% less than HaploBlock.

4.3 OPRM1 Genotypes and Phenotypes
The data set of Hoehe et al. [10] consists of 172 genotypes

and 25 SNPs. The SNPs are from the human µ opioid recep-
tor gene (OPRM1) on chromosome 6, which is known to be
related to morphine tolerance and dependence [16]. For each
individual, its disease phenotype to substance (heroine and
cocaine) dependence is available (case / control). No pedi-
gree information is available and thus the true haplotypes
are not known. Instead, we ran GERBIL on the data, with
and without block partitioning, and tried to find association
with the disease phenotype using the resolved haplotypes.

We first used GERBIL to resolve the data as a single block
(Table 5). In all GERBIL runs we allowed four common
haplotypes. In order to check for association between the
resolved haplotypes and disease phenotype, we calculated
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SNPs Common Haplotypes of GERBIL αi Number of Errors Number of Heterozygotes Error Rate

1 - 14 GGACAACCGTTACG 0.83 0 450 0
AATTCGTGGCCCAA 0.13
AATTCGTGGTTACG 0.02
GGACAACCGCCCAA 0.01

15 - 28 CCGGAGACGACGCG 0.55 6 583 0.0103
TGACTGGTCGCTGC 0.24
CCGCAGACGACTGC 0.19
TGGCAGGTCGCTGC 0.02

29 - 38 CCCGGATCCA 0.72 1 393 0.0025
TATAACCGCG 0.17
CCCAACCCCA 0.06
CCCAACCCAA 0.05

39 - 44 GCCCGA 0.54 4 210 0.0190
CCCTGA 0.19
CTCTGA 0.14
CCATAC 0.13

45 - 72 TCCCTGCTTACGGTGCAGTGGCACGTAT 0.7 2 942 0.0021
CTCCCATCCATCATGGTCGAATGCGTAC 0.24
CCATCACTCCCCAGACTGTGATGTTAGT 0.05

73 - 91 TGCACCGTTTAGCACAACA 0.59 9 711 0.0127
ATTAGTGTTTGACGCGGTG 0.16
ATCAGTGATTAGCACGGTG 0.13
ATCAGTGATTAGCACGGTG 0.07
ATCTCTAATTGGCGTGACG 0.05

92 - 98 GTTCTGA 0.57 4 294 0.0136
TGTGTAA 0.28
TGTGCGG 0.15

99 - 103 CGGCG 0.45 0 290 0
TATAG 0.42
TATCA 0.14

total 26 3873 0.0067

Table 2: Results of GERBIL in phasing and block partitioning on the data of Daly et al.

χ2 scores, for each common haplotypes vs. the rest, and
also for all the haplotypes together. The results of the asso-
ciation tests are summarized in Table 7. For all the common
haplotypes together, the p-value was 0.02378; for the third
common haplotype, the p-value was 0.0234.

Next, we ran GERBIL with blocks partitioning. We dis-
covered two blocks (Table 6). We checked disease association
in the same fashion. The first block was clearly associated to
the disease with p-value of 0.0031. In the second block, only
the second haplotype was associated with p-value of 0.0385.
It is quite clear that association is much more prominent in
the first block.

Hoehe et al. resolved the genotypes using the MULTI-
HAP [24] software, which is based on [6]. Then, the hap-
lotypes were hierarchically clustered into a tree using an
agglomerative nearest neighbor approach. The p-values of
comparisons of haplotype frequencies and of cases and con-
trols were calculated between the clusters calculated at each
level of the hierarchical clustering. The lowest p-value which
was achieved was 0.017.

In order to compare the significane of the two solutions,
one has to correct for multiple testing. Since we performed
eight different tests for two blocks (four tests in each block),
after Bonferroni correction our p-value, for common haplo-
type number 4 in block number 1 was 0.0360. Hoehe et al.
performed n different tests, where n is the number of haplo-
types. To correct Hoehe et al. score for multiple testing, we
multiplied their score by the number of distinct groups of
haplotypes in their dendrogram, which was 5. Notably, this
correction is much less strict than ours. Thus, after multiple
testing correction, Hoehe et al. p-value was 0.0850, which
is 2.3-times larger than ours. Hence, our solution achieves a
much better statistical significance.

5. CONCLUDING REMARKS
We have introduced a new stochastic model for genotype

generation, based on the biological finding that genotypes
can be partitioned into blocks, and in each block, a small
number of common haplotypes is found. Our model de-
fined the notion of a probabilistic common haplotype, which
might have different forms in different genotypes, thereby
accommodating errors and rare mutations. We were able
to define a likelihood function for this model. Finding the
optimal parameters of the model was achieved using an EM
algorithm, according to the maximum likelihood approach.

In tests on real data, our algorithm gave more accurate
results than two recently published phasing algorithms [5,
8]. The haplotypes and blocks identified by the algorithm
on case/control genotype data of the OPRM1 gene [10] led
to finding more significant association with substance abuse
phenotype.

Although our model finds a block partitioning that maxi-
mizes the overall likelihood, it performs resolving and block
partitioning first, and then matches pairs of blocks along
the chromosome as a postprocessing step. We plan to unite
those two steps into a complete, single model. An additional
open problem is to treat the missing data as a part of the
model. We believe that solving these problems will lead to
additional improvement in performance. Finally, the block
patterns are sometimes unclear, and it has been argued that
less restrictive models of haplotypes generation are needed
(e.g., [23, 2]). We intend to generalize our approach in this
spirit.
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Algorithm GERBIL Eskin et al. HaploBlock

Total Number of Errors 26 46 69
Average Block Error Rate 0.0067 0.0119 0.0178
Switch Test 115 163 125
Switch Rate 0.0297 0.0421 0.0323

Table 3: Performance of three algorithms for phasing and block partitioning. The error measures evaluate
the solutions by GERBIL, by Eskin et al. and by Greenspan and Geiger, on the data of Daly et al., compared
to the true solution.

Algorithm Block: 1-24 25-36 37-91 92-103 total
Number of Heterozygotes 846 537 1906 584 3873

GERBIL Number of Errors 13 0 29 6 48
Block Error Rate 0.0154 0 0.0152 0.0103 0.0124

HaploBlock Number of Errors 28 3 31 7 69
Block Error Rate 0.0331 0.0056 0.0163 0.0120 0.0178

Table 4: Resolving performance: Comparison of GERBIL and HaploBlock on the data of Daly et al. Here
GERBIL used the blocks produced by HaploBlock and performed genotypes resolving only.

Common Common Haplotype αi

Haplotype
Number

1 0000000000000000000000100 0.817
2 1010100000001010000000100 0.077
3 1010110000001010000001100 0.054
4 0000000000000010000010101 0.053

Haplotype Number 1 2 3 4 Total

Cases 218 24 19 13 274
Controls 62 2 0 6 70
Total 280 26 19 19 344

A B

Table 5: GERBIL results on the OPRM1 data, without block partitioning. A: the common haplotypes
identified. B: frequencies of cases and controls for the resolved common haplotypes.

Block 1: SNPs 1-17 Block 2: SNPs 18-25
Common Common αi Common αi

Haplotype Haplotype Haplotype
Number
1 00000000000000000 0.50 00000100 0.85
2 00000000000000100 0.21 10000000 0.097
3 00000000001000000 0.15 00010101 0.035
4 10101000000010100 0.13 00010001 0.017

A

Haplotype Number 1 2 3 4 Total

Cases 137 54 40 43 274
Controls 30 24 14 2 70
Total 167 78 54 45 344

Haplotype Number 1 2 3 4 Total

cases 239 21 10 4 274
controls 55 11 2 2 70
total 294 32 12 6 344

B C

Table 6: Results of GERBIL on the OPRM1 data, with block partitioning. A: common haplotypes identified
by GERBIL. B, C: frequencies of common haplotypes in the resolved data in cases and controls. B: first
block; C: second block.

Haplotype Checked One Block Two Blocks: First Block Two Blocks: Second Block

1 vs. rest 0.0839 0.2859 0.0667
2 vs. rest 0.0955 0.0093 0.0385
3 vs. rest 0.0234 0.2676 0.747
4 vs. rest 0.211 0.0045 0.4255
all vs. all 0.02378 0.0031 0.1648

Table 7: Association test results on the OPRM1 data: P-value χ2 test results on the haplotypes resolved by
GERBIL, with and without block partitioning.
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