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Abstract

A PCR primer sequence is called degeneifitsome of its positions have several possible bases. The
degeneracyf the primer is the number of unique sequence combinattorantains. We study the problem of
designing a pair of primers with prescribed degeneracyrttath a maximum number of given input sequences.
Such problems occur when studying a family of genes thatasvkronly in part, or is known in a related species.
We prove that various simplified versions of the problem aelhshow the polynomiality of some restricted
cases, and develop approximation algorithms for one variased on these algorithms, we implemented a pro-
gram calledHYDEN for designing highly-degenerate primers for a set of geemaguences. We report on the
success of the program in several applications, one of whiah experimental scheme for identifying all human
olfactory receptor (OR) genes. In that projeey,DEN was used to design primers with degeneracies U)o
that amplified with high specificity many novel genes of tranily, tripling the number of OR genes known at

the time.

Keywords: Degenerate Primers for PCR, Complexity, NP-Hardness, éypration Algorithms, Olfactory

Receptor Genes.



1 Introduction

Polymerase chain reaction, or PGRullis et al., 1986), is a ubiquitous technique which arfipsi a specific
region of DNA, so that enough copies of that region are agléo be adequately tested or sequenced. In order
to use PCR, one must know the exact sequences which lie ar sitte of the DNA region of interest. These
sequences are used to design two synthetic DNA oligonudistor primersone complementary to each strand
of the DNA double-helix and lying on opposite sides of theg&tregion. The primers are typically of length
20-30.

A PCR primer sequence is called degeneifageme of its positions have several possible bases (Kwak et
1994). For example, in the primer: GG,G}A{C,G,T}A, the third position is C or G and the fifth is C, G
or T. The degeneraayf the primer is the number of unique sequence combinatiooasntains. For example,
the degeneracy of the above prime6isDegenerate primers are as easy and cheap to produce aar negigue
primers, are useful for amplifying several related genoseiguences, and have been used in various applications.
Most extant applications use low degeneracy of up to hursdrigdthis work we study the problem of designing
primers of high degeneracy.

Suppose one has a collection of related target sequenged)BA sequences of homologous genes, and the
goal is to design primers that will match as many of them asiptess A naive solution would be to align the
sequences without gaps, count the number of different ntidks in each position along the alignment and seek
a primer-length window (typicall20-30) where the product of the counts is low. Such solution isfigant
because of gaps, the inappropriate objective function®ftlgnment, and, most notably, the exceedingly high
degeneracy: When degeneracy is too high, unrelated seggiemay be amplified as well, losing specificity. We
may have to compromise by aiming to match many but not nedbsal the sequences. Our goal here is to
develop an ad-hoc method for designing primers that witvalradeoff between the degeneracy and the coverage
(the number of matched input sequences). We call this proBlegenerate Primer Design (DPD).

Our need to study DPD arose in a joint project with the groupd.d_ehrach (MPI Berlin) and D. Lancet
(Weizmann) for finding new human olfactory receptor (OR) egenAt the outset of the project (which preceded
the publication of the human genome), oiB7 OR genes were known, and the goal was to selectively amplify

additional OR genes using degenerate primers. The ratiovad that primers which match many of the known



genes, would also amplify many new genes from the same faamsilyell, whose sequences are closely related.
Most OR genes contain conserved regions, and so the primmrkslwe designed to match such regions. OR
genes contain a singlE#00bp coding exon, so amplification can be done on the genomigces®g. In gene
families that contain introns, the same technique can béeap selectively amplify cDNAs. The technique
can be applied to various families, and to extracting germ® fa particular family in an unsequenced species
based on the known sequences of family members in a relagetesp In cDNA analysis, one can use degenerate
primers for amplifying and then measuring frequencies afnioers of a gene family.

DPD is related to the Primer Selection Problem (PSP) (Peatal., 1996), in which the goal is to minimize
the number of (hon-degenerate) primers required to amaplégt of DNA sequences. Several algorithms have
been developed to solve this problem, and some take intauatearious biological considerations and technical
constraints (see, e.g., (Doi and Imai, 1997)). Howeverldage gene families, the number of primers needed to
cover a sufficient portion of the genes without losing speityfis rather large. Furthermore, since the primers are
not degenerate, they do not amplify many of the unknown genes

Traditionally, degenerate primers were usually designadually by examining multiple alignments of the
target sequencescoDEHOP (Rose et al., 1998) and DePiCt (Wei et al., 2003) are progfamdesigning de-
generate primers for multiply-aligned protein sequeneasbEHOPconstructs a pair of primers for each given
multiple alignment. Each primer consists of a degenerat®® region, typically with degeneracy at mags,
and a 5’ non-degenerate consensus sequence that stabilizealing. cobeHoPworks well for small sets of
proteins, taking into account the codon usage of the tamg@bigne, as well as the desired annealing temperature.
However, it is inappropriate for constructing primers wittry high degeneracy on large sets of long genomic
sequences. DePiCt clusters the sequences using a simjdlrigynscore, and then designs a pair of primers for
each cluster by translating conserved blocks of aminosaith nucleotides. Another algorithm for designing
multiple degenerate primer pairs, calledbs (Souvenir et al., 2003), was developed very recently in treext
of SNP genotyping. (Both DePiCt amdPs were developed following our initial introduction of DPD {hin-
hart and Shamir, 2002)). Souvenir et al. define two variahtse@Multiple Degenerate Primer Design problem
(MDPD), in which the goal is to find a minimum number of prim#érat together match all the input sequences.
MIPS uses a beam-search technique to progressively constratbf@imers until all sequences are covered.

Since a degenerate primer can be viewed as a motif, DPD isaed to motif finding. However, there are



marked differences: Motif algorithms (e.g., MEME (BaileydaElkan, 1995), Random Projections (Buhler and
Tompa, 2002), CONSENSUS (Hertz and Stormo, 1999), AlignABHEghes et al., 2000), Multiprofiler (Keich
and Pevzner, 2002), Gibbs Sampler (Lawrence et al., 1998YN@WER (Pevzner and Sze, 2000)) usually
produce a profile matrix or a HMM, with no constraint on the fimaxm degeneracy. Some combinatorial motif
finding algorithms do use consensus with degenerate posifeg., ARGO (Vishnevsky et al., 1998)), but their
goal is to find a “surprising” motif, i.e., a pattern that islikaly given the background sequence probabilities.
In DPD, on the other hand, the “surprise” in a primer is irvalet, and we care about degeneracy and coverage
instead.

In this work we study the DPD problem from theoretical andcpical perspectives. We define and study
several variants of the problem. In one key variant we botieddiegeneracy and wish to maximize coverage,
and in another we wish to minimize degeneracy while reqgifuil coverage. We give conditions under which
the problem is polynomial, but prove that the two variantsvaband some others are in genexéP-Hard. For
the maximum coverage variant, we provide several polynbamproximation algorithms. We then describe a
practical program called YDEN for producing high degeneracy primers. The program is aistiuthat builds
on ideas analyzed in the theoretical pastrDEN was applied in the context of searching for new human OR
genes, where it designed primer pairs with degeneracy asasig4 - 10'°, perhaps the highest ever used. Theses
primers were both very sensitive, leading t8-#old increase in the number of known OR genes, and remaykabl
specific, amplifying a negligible number of non-OR sequenda addition to the experimental results, we ana-
lyze the performance of the primers on a large test set of GRRgextracted from the first draft of the human
genome (Glusman et al., 2001). We also report results of thergrojects that utilizedYDEN: an experiment
for deciphering the canine olfactory subgenome, and a sbudihe degeneration of the olfactory repertoire in
primates HYDEN is freely available for academic use (http://www.mathaalil/~rshamir/hyden/HYDEN.htm).

The remainder of the work is organized as follows. In SecBiome give formal definitions of the problems.
Section 3 gives hardness results and polynomial algoriftemseveral problem variants. In Section 4 we give
approximation algorithms. Section 5 describesti®EN program, and Section 6 presents the actual performance
of HYDEN in the OR project. A summary and directions for further resleare given in Section 7. A preliminary
version of this study appeared as an extended abstractihdttiand Shamir, 2002). The applicatiorHofDEN to

the OR subgenome was reported in (Fuchs et al., 2002).



2 Problem Definition

Given a set of DNA sequences, our goal is to design a pair afrigte primers, so that the primers match and
amplify (in the PCR sense) as many of the input sequencessasibfm In order to obtain primers that match
a large number of known genes, and thus have a good chancéti dew related ones, one should obviously
use highly degenerate primers. On the other hand, in ordexdiace the probability of amplifying non-related
sequences, the degeneracy must be bounded. The problernesdectan thus be informally described as follows.
Given a training set of known genes, design a pair of primansg, for the 5’ side and another for the 3’ side,
so that the primers would amplify many of the genes and woalcetdegeneracy that does not exceed a pre-
defined limit. For this definition we assume that amplificatas a gene occurs when the two primers match (in
terms of ungapped local alignment) corresponding subsegsein the gene. The region between the matched
subsequences is then amplified. This version is called tigemerate Primer Design (DPD) problem.

One can extend the degenerate primer design problem inadevays. First, we may want to design several
primer pairs so that together they cover the whole traingtg\when one pair is not enough. Second, we may
allow a small number of mismatches between the primers actdagaplified gene, as this usually does not inhibit
hybridization. Third, we can set a lower bound on the lendtihe amplified regions, since analysis of the genes
is impossible when the amplified fragments are too short.

The following notation will help us formally define the prelbhs. LetX denote a finite fixed alphabet. In
the case of DNA sequences,={A,C,G,T}. A degenerate stringor primer, is a stringP with several possible
characters at each position, i.€.,= pip>...pg, Wherep; C ¥, p; # 0. k is thelengthof the primer. The
number of possible character sets at a single positionss2/>! — 1. Thedegeneracpf P is d(P) = [];_, |pi.

For example, the primeP* ={A}{C,G}{A,C,G,T}{G}{T} is of length 5 and degeneradyP*) = 8. At

non-degenerate positigrie., positions that contain a single character, we shitdhamit the brackets. We will

sometimes use an asterisk to denote a fully degeneratégmesié., a position that includes all possible charac-
ters. HenceP* =A{C,G}*GT. An alternative way to describe a primer is using the N&Iomenclature
Committee of the International Union of Biochemistry) reatide codéNC-IUB, 1985), also termed the IUPAC
(International Union of Pure and Applied Chemistry) nutiée code. According to this notatioR;* can be writ-

ten as: ASNGT. Leb(P) be the number of degenerate positiong’inSince each degenerate position contains



between two and®| possible characters! (") < d(P) < |S|°(F), or: [log)s; d(P)] < 6(P) < [log, d(P)].

A primer P! = pip) . ..p; is asub-primerof a primerP? = pip3 ... p; of the same length, ifi, 1 <i < k,
p; C p?. This relation is denote@®' C P2. Obviously,d(P') < d(P?). Theunionof the primersP' and P?,
denotedP! U P2, is P'? wherep}? = p! U p?.

A primer P = pipy ...p,, Mmatchesa stringS = s1s2...5, s; € %, if S contains a substring that can be
extracted fromP by selecting a single character at each position, #1£0 < j < [ —k st Vi,1 < i <
k, sj+: € p;. For example, the prime* matches the string TGAGAGTC starting from the third positié\
mismatchs a positior at whichs;; ¢ p;. In actual PCR, a few mismatches usually do not prevent tigadion.

Unless stated otherwise, we will not allow mismatches. Véenaw ready to define several problem variants:

Problem 1 DEGENERATEPRIMER DESIGN (DPD)
Given a set oh strings and integerg, d, andm, is there a primer of lengtlt and degeneracy at mogtthat

matches at leash input strings?

Figure 1 shows a small instance of DPD and a correspondintj@ol We defined DPD as a decision problem,
rather than an optimization problem. Ideally, one wishegptimize each of the parametdrsm andd. Since
the value ofk is usually predetermined by biological or technical casistis (e.g., in PCR experiments,is
usually between 20 and 30), we shall focus on optimizingeeith, the coverageof the primer, ord, the primer’s
degeneracy. As we will prove later on, these two optimizagimblems remain difficult to solve even if simplified
further. Specifically, when designing a primer that matdmemany strings as possible, we shall assume that all
input strings are of the same length as the primer. When nzimgthe degeneracy of the primer, on the other

hand, we will seek a full coverage of the input strings, ine = n. Figure 1
here
Problem 2 MaxiMmum COVERAGEDPD (MC-DPD)

Given a set of strings of length and an integerd, find a primer of lengthk and degeneracy at mosdtthat

matches a maximum number of input strings.

Problem 3 MINIMUM DEGENERACYDPD (MD-DPD)
Given a set of strings and an integerfind a primer of lengttk and minimum degeneracy that matches all the

input strings.



In our practical application, the MD-DPD approach yieldeidygrs with degeneracies too high for successful
experiments. We therefore focused on MC-DPD, and appliedtlit a variety of degeneracy limits imposed by
technical constraints (Sections 4-6).

We shall now define several generalizations of MC-DPD and MED. As mentioned earlier, a gene is usually
amplified even if there are a few mismatches between the pame the gene. In fact, mismatches near the 3’
extension site, i.e., close to the part of the gene that godsramplification, are typically more disruptive than
mismatches at the 5’ side of the primer (Kwok et al., 1994)e Tdllowing problem takes into account errors
(mismatches) between the primer and the strings, but igrtbigr position (i.e., we assume that all mismatches

are equally disruptive).

Problem 4 MINIMUM DEGENERACYDPD wiITH ERRORS(MD-EDPD)
Given a set of strings and integerg ande, find a primer of lengttk and minimum degeneracy that matches all

the input strings with up te errors (mismatches).

Under many circumstances, a single primer might not suffiee, provide satisfactory coverage, due to its
limited degeneracy and the divergence of the input stridAggatural question is whether one could design several

primers that, together, would match all the strings.

Problem 5 MINIMUM PRIMERS DPD (MP-DPD)
Given a set of strings of length: and an integerl, find a minimum number of primers of lengtand degeneracy

at mostd, so that each input string is matched by at least one primer.

In MP-DPD we assume that all the input strings are of the s@ngth as the primers. If we remove this
constraint, i.e., allow the strings to have arbitrary léngte get a more general problem. This variant of DPD,
called Multiple DPD (MDPD), is studied in (Souvenir et alQa3).

Finally, we may want to construct a pair (or several pairg)rithers, so that many of the input strings match
both primers. In gene terms, we would like to design one prifmethe 5’ side of the genes and another primer
for the 3’ side — only genes that match both the 5’ (sense) ha®t (anti-sense) primers are amplified by the
PCR procedure. We require that an amplified gene matchegithers at separate positions, so that there is no

overlap between the match sites.



Problem 6 MAXIMUM COVERAGE DEGENERATEPRIMER PAIR DESIGN(MC-DPD2)
Given a set ofi strings and integerg, d, find two primers —P;, P», each one of length and degeneracy at
mostd, so that a maximum number of input strings match both priperd the match site aP; occurs in all

covered strings to the left of the match sitebf without overlap between them.

The above definition of MC-DPD2 does not take into accountpibgitions at which each primer matches
each gene. In particular, for an effective PCR we shouldiredhat the distance between the 5’ primer match
site and the 3’ primer match site is large enough (i.e., thplified region of the gene is sufficiently long for
biological study). This additional constraint does notaja pose a problem, as was the case in our application
(see Section 6) — if the genes contain well-separated coedeegions, we could simply look for good 5’ and
3’ primers in different, sufficiently far parts of the genasd thus ensure that the amplified sequences are long
enough.

The real problem of designing degenerate primers combmgedients from all the aforementioned DPD
variants. Namely, given a set of input strings, we would tikeonstruct a small set of degenerate primer pairs,
so that each of the strings matches at least one of the prigies with only a few mismatches. We can also
require that each amplified substring is longer than someifgpe threshold, and incorporate other factors that
influence PCR, such as the positions of the mismatches, G€rpand more (Kwok et al., 1994). Our theoretical
results focus on the simple, restricted DPD variants. As vllesee in the next section, even those are hard. Our

heuristics, though, address most of the realistic issuesaztorily.



3 Complexity

In this section we shall discuss the computational compleithe various variants of DPD we defined earlier.
Before we prove the hardness of DPD problems, let's examiises; for which we can suggest a polynomial

solution.

3.1 Polynomial-Time Solutions for Restricted Cases

DPD involves several parameters that influence its hardi#ssshall now present polynomial-time algorithms

for solving DPD when the primer’s lengthk), degeneracyd), or coverager() are bounded.

3.1.1 Bounded Length

First, let us suppose that the length of the primer, is bounded by a constant. Recatlah= 2>/ — 1 is the

number of possible character sets in each position of tmegurfr is constant). A straightforward algorithm that
checks all thes|* possible primers runs in tim@(k L|o|*), whereL is the sum of the lengths of the input strings
(O(kL) is the time it takes to check a single primer, i.e., count thmler of input strings it matches). This naive

algorithm implies:

Theorem 7 DPD is polynomial whert: = O(log L).
Note that real values df are bounded (usuallg0 — 30), but the obtained time bound is impractical.

3.1.2 Bounded Degeneracy

Suppose we bound the degenerd®f the primer. For the special casedf 1, the non-degenerate primer that
matches the maximum number of input strings is clearly atsimigsof one of the strings. Therefore, we need
to check less thati. candidate substrings (a string of lendthontains! — & + 1 substrings of lengtlt), and
choose the best one. More generally] = O(1), we could consider ak L substrings and continue in one of
two ways. First, we could try to increase the degeneracy i eandidate substring by adding new characters at
various positions. There are no more thas: |log, d| degenerate positions in a primer whose degeneraty is

or less, since each such position at least doubles the tegaingracy. At each degenerate position we could try

10



all o possible character sets. Thus, there are a total of Iesﬂ]t(‘ga)wrs degenerate primers to check, and the total
running time isO(kL? () o?).

A different approach would be to take each non-degeneraididate and expand it using other substrings.
SupposeP! is a substring of the input stringl!. P! can be viewed as a non-degenerate priniéP{) = 1) that
matchesS!. Let S? be an input string thaP! does not match, and I€? be a substring of2. Obviously,P! #

P2, Let P2 = P' U P2. P'? is a degenerate primer that matches b®trand S2, and its degeneracy is larger
than that ofP! and P2, since it strictly contains them. Now'? can be expanded using a third prime#, which

is a substring of an input string that is not matched®y, and so on. We continue to expand the primer as long
as its degeneracy does not excdedin each step we consider all substrings of the yet un-mdttput strings,
and add (in terms of the union operation) each substringdggthmer, in its turn. Since the degeneracy of the
primer increases in each step by at least 1 (more accurbyedyfactor of at leag|/(|X| — 1)), the number of

steps is no more thath Therefore, the running time of the algorithm($k L L?). In summary:

Theorem 8 DPD is polynomial whed = O(1).
]

In Section 4 we shall introduce an efficient approximatiagoathm that is a judicious variant of the first
approach we have just described — expanding a primer caedigdncreasing its degeneracy.
3.1.3 Bounded Coverage

Another simple version of DPD is obtained when the numbertrifigs the primer should match is bounded,
i.e.,m = O(1). Asin the case of limited degeneracy, we could enumeratettielong substrings the primer
matches. If their union is a primer with degenerday less, then itis a valid solution. This algorithm has rungni

time of O(kL™). In particular:

Theorem 9 DPD is polynomial whem: = O(1).

3.2 Combining MC-DPD and MD-DPD

In the Maximum Coverage DPD problem, we wish to constructiamerthe same length as each of the input

strings and degeneragy d that matches a maximum number of input strings (Problem 2ijs ©& actually a

11



simplified version of DPD: In the original problem, the iniitings have arbitrary length, whereas in MC-DPD
they all have lengtl, which is also the length of the primer we seek. Another sifiepl DPD variant we defined
is MD-DPD (Minimum Degeneracy DPD), where we search for enpriwith minimum degeneracy that matches
all the input strings (Problem 3). Here, the extra constramimpose (with respect to the original DPD) is that
we require a full coverage, i.eny = n.

As we shall show below, both MC-DPD and MD-DPD avé&>-Hard. One may wonder what happens when
we combine the two. In other words, is the DPD problem stfficlilt to solve when all the input strings are of
lengthk, and we seek a primer with degeneracy at mb#iat covers them all? The answer is no — a trivial
polynomial solution is to simply compute the prim@rwhich is the union of all the input strings, i.e., prepare th
set of characters that appear at each position in the stiihd&P) < d, thenP is a feasible solution. Otherwise,
there is no such solution. Interestingly, this polynomaiiant of DPD, which we shall denote FCFL-DPD (Full-
Coverage Full-Length DPD), regains ité P-Hardness when we allow one mismatch between the primer and

each string (see Section 3.3.3), or when we design sevenaw instead of just one (see Section 3.3.4).

Theorem 10 FCFL-DPD is polynomial.

3.3 NP-Completeness of Variants of DPD

We shall now study the more difficult cases of DPD, for which@polynomial-time solutions are not likely to
exist.

3.3.1 Maximum Coverage DPD

Our first hardness proof establishes that MC-DPIViB-Complete, even for a binary alphabet. Since MC-DPD

is a special case of DPD, we conclude that DPD is Al$8-Complete.
Theorem 11 MC-DPD isN"P-Complete fofX| > 2.

Proof:  Clearly, the decision version of MC-DPD is jkP. We complete the proof by reduction from the
Maximum Clique(CLIQUE, in short) problem, which igv"P-Complete ((Karp, 1972), (Garey and Johnson,

1979, GT19)). Recall that a clique in a graph is a subset of¢igces, in which every two vertices are adjacent.

12



CLIQUE: Given a graplg= (V, E) and a positive integer, is there a clique of sizein G?

Our reduction is illustrated in Figure 2. W.l.0.g. we canuems that: > 3. We first setc = |V| (the length of the

primer and the input stringsy, = 2¢ (the degeneracy of the primer), and= (g) (the required coverage). Next,

we buildn = |E| strings over the binary alphab®Bt= {0, 1}. For each edge ig, we prepare a binary string of

lengthk with 1's at the positions that correspond to the two endsegiige. Formally, le¥ = {vy, va,. .., vk},

ande = {v;,v;} € E. The stringS, we construct frone is: S = sy1s2...sx, Wheres, is 'L if = € {i,j},

and '0’ otherwise. The reduction is clearly polynomial. Figure 2
We now prove the correctness of the reduction. Assume teereliqueV’’ of sizecin G — V' = {v;,, v1y,. .., 01, }. here

Let us examine the primdP that contains degeneracies at the positions that corrdspathec vertices of the

cligue and)’s at the rest of the positions:

{0/1} ie{t17t27"'7trﬁ}
P=pips...pr, pi=
0 otherwise

P hasc degenerate positions and two possible characters at eallpssition, so its degeneracyds= 2¢. The
primer matches every string that corresponds to an edge iclitiue, i.e., ife = {i, j} andi, j € {t1,t2,...,t.},
then P matchesS,. Since there ar¢;) edges in the clique, it follows tha® matches at least: strings, as
required.

Conversely, suppose there is a priniee= p1ps . . . pr With degeneracy < 2¢ that matches at least = (;) of

the input strings. Sincg:| = 2, it follows that each degenerate position{is 1}, and thad = 2%, wheres < ¢

is the number of degenerate positionginDenote byf the number of 1's in the non-degenerate positionB,n
e f={il1<i<k, p,=1},andletV’ = {vy,vs,,..., vt, } be the set of vertices that correspond to the

3 3

degenerate positions, i.@y, = p1, = ... =pt; = {0,1}.

Claim 12 If ¢ > 3, thenf = 0.

Proof: Notice that all the input strings we constructed contaircdyawo 1's. Thus, iff > 2, thenP does not
match any input string, i.emm = 0. Every two vertices irg are connected by no more than one edge. Hence,
if f =2, we getm < 1— the primer can only match the string that corresponds tediyee = {v;, v;}, where;
andj are the non-degenerate 1'skh(i.e.,p; = p; = 1). Finally, if f =1, and letp; = 1, thenP can only match

strings that correspond to edges whose one engdadad the other end is ili’, and thereforen < |[V'| =4d < c.

13



Thus, we showed that if > 0, it follows thatm < c. On the other handn > (5), so we get that iff > 0,

then(5) < ¢, which implies that < 3, a contradictionm

We now get back to the proof of Theorem 11: According to Claiiflc > 3, all the non-degenerate positions in
the primerP are '0’. Therefore, every input string covered Bycontains both its 1's ifP’s degenerate positions.
In other words, then stringsP matches correspond o edges in the subgraph induced By. Since a graph
with [V'| = § vertices contains no more th4}) edges, and since > (5) andd < ¢, we conclude that = (5)

andc = 4, i.e.,V' is a clique of size;, as requiredm

MC-DPD can easily be reduced to MC-DPD2, by simply concategaach input string to itself. It is not

surprising that designing a pair of primers is at least d&cdif as finding a single primer.

Corollary 13 MC-DPD2 isN'P-Complete fofX| > 2.

3.3.2 Minimum Degeneracy DPD
Our next result establishes that MD-DPDA&P-Complete, too.
Theorem 14 MD-DPD is N'P-Complete forX| > 3.

The proof of the theorem is based on a reduction fidmimum Set Cove(MSC) ((Karp, 1972), (Garey and
Johnson, 1979, SP5)). Using this reduction and a known lkeardresult of MSC, we can also show that it is

difficult to approximate the number degenerate positions in an optimal primer for MD-DPD:

Corollary 15 AssumingP # NP, there exists a constant> 0 such that there is no polynomial-time algorithm
for MD-DPD, which is guaranteed to create a solution in whtble number of degenerate positions is within a

factor of ¢ - log n of the optimum.

The full proofs of Theorem 14 and Corollary 15 are given imfiart, 2002).

3.3.3 Minimum Degeneracy DPD with Errors

In Section 3.2, we saw that combining MC-DPD and MD-DPD rissinla simple polynomial problem, designated

FCFL-DPD (Theorem 10). If we generalize this problem bywiiw up to one mismatch between the primer and

14



every input string, we get a special case of MD-EDPD, whick'i8-Complete.

Theorem 16 MD-EDPD is N"P-Complete foX| > 2, even ife = 1 and all input strings are of length.

To prove the theorem we use a reduction friglimimum Vertex Covef(Karp, 1972), (Garey and Johnson, 1979,
GT1)). Again, this allows us also to prove that it is diffictdtapproximate the number of degenerate positions in

MD-EDPD.

Corollary 17 AssumingP # NP, the number of degenerate positions in MD-EDPD, when wenatine mis-
match between the primer and each input string, is not apprakle within a factor ofi.36 in polynomial time,

even when all strings are of lengkh

The full proofs of Theorem 16 and Corollary 17 are given imfiart, 2002).

3.3.4 Minimum Primers DPD

In the previous section we studied the complexity of a vaadiMD-EDPD, which is a generalization, by allowing
mismatches, of FCFL-DPD. Another possible generalizaiotis problem is the MP-DPD problem, in which
we seek several primers, rather than just one primer, tlggther cover the whole set of input strings. In this

section we prove that this problemA§P-Complete.

Theorem 18 MP-DPD is NP-Complete fofX| > 2.

Proof:  Our proof is based on a reduction frawinimum Bin PackingMBP, in short) ((Garey and Johnson,
1979, SR1)).

MBP: Givenl! positive integersiy, .. ., a; (the items), and two additional integetrq{the capacity) and (the

number of bins), can the items be partitioned ihgubsets, each with a total sum of at maat

MBP is StronglyN’P-Complete, i.e., there exists a polynomyals.t. MBP remains\VP-Complete even if any
instance of lengtl is restricted to contain integers of size at mp@). We shall assume this restriction in our

reduction.

Given an instance of MBP, we construct an instance of MP-DR& B = {0, 1} as follows. Letd = ._, a;.

For each iterm; we prepare a binary strin§; of length A. Let A; be the sum of the first — 1 items, i.e.,
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A; = Zf;}a,;. The stringS; consists of a prefix ofi; 0's, followed bya; 1's and a suffix o0’s:

- , , 1 Ai<j<Ai+a
Si=818y...84, S§;=

0 otherwise

Finally, we sett = A, d = 2¢, and the target number of primars= b, i.e., we ask whether there ar@rimers of

length A and degeneracd that match all input strings. Figure 3 illustrates the reduction for a dreghmple.

Note that the reduction is polynomial, since all the integerthe input of MBP are bounded pyl). Figure 3
here

Given a solution to MBP —8y, . .., By, we construct a solutio#®, . .., P, to MP-DPD as follows. Lef; be

the set of positions at which; containsl’s, i.e.,T; = {A; +1,..., A; + a;}. ForbinB; = {a;,,...,a;, }, we

construct the primeP; that matches the corresponding stritgs, . . ., Si,,:

{0,1} JET, UT;,U...UT;,
0 otherwise

The number of degenerate positionshinis [T, | + ... + |T;,| = ai, + ... + a;, < ¢, as required. Obviously,

since every item belongs to one of the bins, every stng covered by one of the primers.

Conversely, letPy, ..., P, be a solution to MP-DPD. Suppog$& contains the character "1’ at positigh and

j € T,. Then,P; matches only the strin§,,,, since all other strings contain a '0’ at positipnW.l.0.g.,a,, < ¢

(otherwise, there is clearly no solution to MBP), so we caiaeeP; by a different primer —P;, which consists

of degeneracies at positioff,, and0’s at the rest of the positions. The degeneracybis at most2® and it

matchesS,,, just like P;. Therefore, we can assume w.l.0.g. that the prinf&ts. ., P, consist only of0’s and

degeneracies. It is now clear how to construct a solutiodMBP. For each primeP; we create a birB;. If

positionsI’; are degenerate in the primgr, then we add item; to bin B;. The sum of the items we insert into a

single binB; is at mostk, as each degenerate positionfincontributes at most to this sum. Finally, since each

string is covered by at least one primer, it follows that threstwe obtain contain all the given itenmss.

Suppose we describe MBP and MP-DPD as optimization funsticather than decision problems, where
the number of bins and the number of primers, respectivedyt@be minimized. Then, the above reduction
is, in effect, an L-reduction that preserves the targetevald a solution withb bins to an instance of MBP is
transformed into a solution with primers to the corresponding instance of MP-DPD, and viesateMBP is

not poly-time approximable within a factor 8f2 — ¢ for anye > 0 (Garey and Johnson, 1979). Unfortunately,

16



this result does not hold when the input to MBP consists agfgats bounded by a fixed polynomial — there
are no nontrivial inapproximability results for the stringyP-Hard version of Bin Packing (Johnson, 2002).
Therefore, we cannot apply the L-reduction to prove that D is hard to approximate.

A generalized version of MP-DPD, in which the input stringgynhave arbitrary length, was shown to/ié°-
Hard in (Souvenir et al., 2003). Our result is stronger: e¥eve limit all the strings to have the same length as
the desired primers, the problemA§P-Complete.

As noted earlier, ip = 1, MP-DPD becomes FCFL-DPD, which is a polynomial probleng (Section 3.2).
Ford = 1, that is, when no degeneracies are allowed, MP-DPD is thedPrBelection Problem, which j§P-
Complete if the input strings are of arbitrary length (Pearst al., 1996), and polynomial if they are all of
lengthk — the number of primers required is simply the number of ueibgput strings. Several hardness and

inapproximability results for variants of PSP are givenDoi{and Imai, 1997).
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4  Approximation Algorithms

In this section we focus on MC-DPD. We developed polynonparaximation algorithms with provable approx-
imation ratios for MC-DPD, whef2| = 2. We implemented a heuristic for the general DPD problemcivig
based on our approximation algorithms, and applied it teeerpental data (see Sections 5 and 6). Before explor-
ing the properties of these algorithms, we shall discussiglemf simple approximation methods. Unless stated
otherwise, we shall assume the binary alphabet = {0, 1}, for which the number of degenerate positions in a
primer is always)(P) = log, d(P). An algorithm is said to yield an approximation rati¢gr > 1) if the primer

it constructs is guaranteed to match at leasyr input strings, wheren,, is the coverage of an optimal solution.

4.1 Simple Approximations

Denote byM (P) the set of input strings matched by a prinferLet P° be an optimal solution with degeneraty
to an instance of MC-DPD. Like any other primer with degengri P° is a union ofd non-degenerate primers
(strings of lengthk): P° = Uf:] P?, whereP!,... P? constitute althe non-degenerate sub-primersitsf, and
M(P°) = U;.i:] M (P?%). Let P™ be a sub-primer with the largest coverage, | &.(P™)| = max®_, {|M (P?)|}.
Then, obviously|M (P°)| < d-|M(P™)|. Itis now clear how one can obtaindsapproximation taP: Simply
traverse alk-long substrings of the input strings, and choose a sulgsktjrthat matches a maximum number of
input strings. SinceM (P™)| < |M(Fy)|, we get:| M (Py)| > |M (P°)|/d. The algorithm runs in timé&(kL?),
wherelL is the sum of the lengths of the input strings (in MC-DHD+= nk). The running time can be reduced
to O(kL) using a hash table to store the number of strings matcheddbysedostring. Notice that the output of
the above algorithm is an optimal non-degenerate prifaeand its approximation ratio i¢. We can improve
the algorithm by finding the optimal primét, with a degenerate position$ € a < log, d). P, approximates
MC-DPD within a factor ofi/2%, since the optimal primeP° can be represented as a unior/#2* sub-primers,
each one with degenera2y, s.t. the set of strings covered BY is the union of the sets of strings that match the
sub-primers. Unfortunately, finding, takes exponential time with respectto

We now describe another algorithm, which starts with a cetey degenerate primer, and gradually “con-
tracts” it. Let P* be a completely degenerate primer of lengthnd degenerac®*. P* covers all the input

strings: |[M (P*)| = n. We shall now reduce the degeneracyRSf to d, by replacingk — 6 (§ = log, d)
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degenerate positions with simple characters. Denot&byi € {0,1}) the primer that begins with the char-
acteri, followed by k — 1 degeneracies. For examplekf= 3, then P¥ = 0xx and PF = 1xx. Clearly,
M(P*) = M(P¥)u M(PF), so by choosing eitheP} or P} we get a primer whose coverage is at lea&2.
Similarly, we can de-degenerate, or refitlee second position in the primer, i.e., replace it with ¢0''1’,
whichever is better, and obtain a primer with degenegdcy that matches at least/4 input strings, etc. Af-
terk — & steps we have a primer with the required degenedaahose coverage is at least2*—°, and therefore
atleastmn, /2 2. The total running time of the algorithmd((k — §)n), as it suffices to examine the firgt — &)
characters in each input string.

Combining the two approximation algorithms we have justdesd, we can approximate MC-DPD within a

factor of2/2: if § < g we run the first algorithm; otherwise, we execute the seedgarithm. In summary:

Proposition 19 MC-DPD can be approximated within a factor /2 in time O(kL).

4.2 Approximating the Number of Unmatched Strings

In this section we shall describe three approximation é@ligms —CONTRACTION, EXPANSIONaNdCONTRACTION-
x. Unlike the previous algorithms we studied, these algorglapproximate the number of unmatclsérihgs. In
other words, instead of expressing MC-DPD as a maximizgioblem, we now treat it as a minimization prob-
lem, designated MC-DPD in which the goal is to minimize the number of input stringattthe primer does not
match, rather than maximizing the number of strings it doatchh(we now look at the empty half of the glass).
This does not alter the optimization problem, only the wayhich we measure the quality of the approximation.
We say that an algorithm approximates MC-DR®ithin ratior (r > 1) if the number of strings not covered by
the primer it designs is no more than,, whereu, is the optimal solution value.

The CONTRACTION and EXPANSION algorithms construct the column distribution matfiXb, i) that holds

the number of appearances, or couieach character at each position. Formally, denotg’by: s{ s; . 5,1 the

j-thinput string,1 < j < n , then:

Vbhex, 1<i<k D(bi)=|{j|s] =b}

Let P° = pp3...p% be an optimal primer of degeneragywith 6 = log, d degenerate positions. Suppd3e
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coversm, input strings. Denote by, the number of strings tha?® does not matchy, = n — m,. Clearly,
Vb ¢ p? , D(b,i) < u,, and for each non-degenerate position P°, D(p¢,i) > m,. SinceP° containsk — ¢
non-degenerate positions, it follows that there/are 6 (or more) columns irD with a value at least,,. Given
a column distribution matri¥D, we define the leading value columni, denoted(7), as the largest value in that
column:v(i) = max{D(b,i) | b € £}. Similarly, the leading charactef columni is a charactee(i), whose
count is the leading valué(c(i), i) = v(i). Letv(iy) > v(iz2) > ... > v(ix) be the leading values i, sorted

from largest to smallest. The following lemma follows fronetdiscussion above.

Lemma 20 If P° coversm, strings, ther(ix_s) > mi,,.

4.2.1 TheCONTRACTION Algorithm

The first algorithm we describe is calledNTRACTION. The algorithm selects the— § largest leading values
in D, and sets the output primé&¥ to contain thé: — ¢ corresponding leading characters, and degeneracies at the
rest of the positions, i.e.:

c(i) i € {it, ... ik—s}
Vi<i<k, pj=

{0,1}  otherwise

An alternative way to describBONTRACTIONis as follows. The algorithm starts with a fully degeneraimpr,

and contracts it iteratively (hence, its name). In eachaften, the algorithm discards the character with the

smallest count. In other words, it examines all the remairdagenerate positions, chooses a positidimat

contains a charactérwhose counD (b, i) is smallest, and removégrom position: in the primer. The algorithm

stops once the degeneracy of the primer reachefn a sense, this is a smart variation of the simpie?-

approximation algorithm we saw in the previous sectio@eNTRACTION uses the column distribution matrix to

guide it in selecting good positions to refine, instead ofodtilag them arbitrarily. Figure 4 illustrates an execution

of CONTRACTION. Figure 4
The running time oEONTRACTION s linear in the length of the input-©(nk), since this is the time it takeshire

to compute the column distribution matiix, and thek — ¢ largest leading values can be found in timg:) (Blum

etal., 1973; Dor and Zwick, 1999). It remains to prove theragimation ratio. At each degenerate position, the

primer P¢ has no mismatches with the input strings. Therefore, thesiipns do not affect the coverage of the

20



primer, and we can ignore them in our analysis. Accordinggimma 20,v(i1 ), . . ., v(ix—s) > m,. Thus, ateach
non-degenerate positiaR® has a mismatch with at most, input strings. The total number of string® does
not match cannot exceed the sum of the number of mismatcleeshtposition, which is bounded by — 6)u,.

In conclusion:

Theorem 21 CONTRACTION approximates MC-DPDwithin a factor of(k — §) in timeO(nk).

4.2.2 TheEXPANSIONAlgorithm

The second algorithm, calleekPANSION, performsn iterations. In each iteration, it expands (degenerates) an

input string. In thej-th iteration,EXPANSION computes the matriy’;:

0 s =1

2

Vbe {0,1},1<i<k, Djb,i)=
D(b,i) otherwise

Intuitively, D’ (b, i) is the number of strings that will be mismatched due to sgttiei-th position in the primer
to sZ while theiri-th position ish. EXPANSION then selects thé largest leading values iR, : v’ (i1), . .., v;(is),

and uses them to expasd and create a primeP/ = p) ... p1, as follows:

Vi<i<h o {0,1} i€ {iy,... is}
S1s y Py =

i
J

s; otherwise

The output of the algorithn®, is the best primeP? it found in then iterations.

Denote bym,. andm, the number of strings covered by the priméts and P¢, respectively. Lemma 22
establishes tha®© is at least as good d3%°, and, therefores xPANSION also guarantees(@& — §)-approximation
to MC-DPD*. In fact, as the lemma implies, in some case®ANSION may find a better primer thaooN-
TRACTION, as demonstrated in Figure 5. On the down sid&@ANSIONis slower — its running time i®)(n?k),

dominated by the coverage computation of thgrimers it constructs. Figure 5
here

Lemma 22 m, > m..

Proof: Let S’ be a string covered b¥°. We shall prove thagxPANSION expandsS? into P¢, i.e., P/ = P°¢,

which impliesm, > m.. Letv(iy),...,v(ix_s) be thek — ¢ largest leading values if). CONTRACTION sets
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positionsiy, .. .,ix s in P° as the corresponding charactersSih and the rest positions inP°¢ are degener-
ate. SincdX| = 2, each column inD has two entries, whose sumsis Therefore, the complement characters
of c(i1), ..., c(ir—s) have the smallest count iR, so thes largest counts iD; cannot be in those columns. In
other words, the leading values selected in thieth iteration ofEXPANSION are from the columnsfl < i <
k|i#i1,...,ir_s}. Thus,P is exactlyP¢. Note that if different characters have equal counts, tefuioes
not hold. We can easily fix this, by modifying the sort funasoof the algorithms, so that leading values with
equal counts are sorted according to their column indexderading (descending) order TONTRACTION (EX-

PANSION). B

Corollary 23 EXPANSION approximates MC-DPPwithin a factor of(k — &) in time O(n2k).

4.2.3 TheCONTRACTION-x Algorithm

We now present an improved version@dNTRACTION, calledCONTRACTION-x, that yields better approxima-
tions at the expense of longer running times. A similar inmproent could be developed for tB@PANSION al-
gorithm, as well. The main idea we employ is to examine séy&sitions simultaneously, and decide which are
best to refine (i.e., de-degenerate), instead of checkinditttribution at each position separately. Formallyzlet

be a pre-defined integer,< = < k — §. For simplicity, assume | (k — &). Denote byb = (by, ..., b,) a binary

vector of lengthz, or z-tuple, and denote by= (i1,...,i,), 1 < i; < k, a set ofz distinct positions. Define
the multi-column distribution matri®/ D (b, i) as the count of the bits of b at positionsiy, .. . , i, in the input
strings, i.e.:

MD((br,...,by), (i1,...,i)) = |{j | 8], = b1, ..., sL =b,}]

Let P° be an optimal primer, and denote bythe number of input strings it does not matcttNTRACTION-
x starts with a completely degenerate primef, = p{ ... pg, p; = {0,1}, and iteratively refines it. In the first
iteration, it selects am-tuple with the largest count and sets theorresponding positions in the primer to contain
the bits of ther-tuple. In other words, i/ D(b',4') = max{M D(b,i)}, then:Vl < j < z, pf; = b);. Inthe next
iteration, CONTRACTION-x continues to refind® in a similar fashion. It examines atttuples in positions that

are still degenerate, i.e., that were not refined in the fiesation, selects an-tuple with the largest count, and
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sets the corresponding positionsiri accordingly. The algorithm perfornﬁs;—" iterations, as above, and reports
the obtained primeP?*. Since in each iteration it refinasnew positions, the output primer contains exaétly
degeneracies, as requiredzlf (k — ¢), and denote = (k — 0) mod x, thenCONTRACTION-X performs[%J
iterations as above, and an additional iteration, in whickfines onlyr positions, that is, it computes the count
of everyr-tuple at each subset ofpositions that are still degenerate, selects the largestamd refines those
positions accordingly.

A sample execution ofONTRACTION-x On seven input strings, with = 7, § = 3 andz = 2, is illustrated
in Figure 6. Notice that for: = 1, CONTRACTION-X is identical toCONTRACTION. In the other extreme case,
whenz = k — §, CONTRACTION-x effectively considers akt-long primers withy degeneracies, and it therefore
always yields an optimal primer. The multi-column disttibn matrix is also utilized in Multiprofiler, a motif

finding algorithm that has recently been reported to detactqularly subtle motifs (Keich and Pevzner, 2002).  Feyfr
here

Theorem 24 CONTRACTION-x approximates MC-DPDwithin a factor of [£=27 in time

T

O((*)n(k — ¢)) and space((*)nz).

Proof: Suppose that | (k — 0). Let us examine thg-th iteration of CONTRACTION-x. At the beginning of
the iteration, the primeP* contains at least + = degenerate positions (actually, it contains exaktly(; — 1)z
degeneracies). W.l.o.gP° contains exactly degeneracies (otherwise, we can add degeneracies tohuwit
changing its coverage). Thus, there are at leaktgenerate positions #A” that are not degenerate #f. Denote

themiy, ..., i,. P° does not match, input strings, hence:
max{MD(b,i)} > MD((pg,, 507 ), (1, 10g)) 21— 1y

Therefore, in each iteratiolONTRACTION-x refinesz positions, s.t. the-tuple it sets at these positions has

mismatches with at most, input strings. The total number of string®' does not match is, in the worst case, the

sum of the number of mismatched strings in each iteratioiginis at most’“;"uo. If z 1 (k — 0), the algorithm

k—d
T

performs| “=2 | + 1 iterations, so the number of string® does not cover is at moﬁf;—é}uo.
The matrixM D contains2® (*) entries, and can be computed in ti@¢2? (*)nz). SinceM D might be sparse,
especially wher is relatively large, a more efficient representation6D in terms of time, as well as space, is

an arrayA of (i) hash tables — the entry(i) in the array contains a hash table with the counts of-llples that

appear at positionsin the input strings. For eachC {1,...,k},|i| = x, and for each input string, we add the
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z-tuple at positions in the string to the hash tablé(:) (with an initial count of1), or increment the count of the
a-tuple if it already exists im (i). A contains the count of a total 6f( (’;)n) x-tuples. The construction of takes
O((’;)nm) time and space. In each iteration @ONTRACTION-x we find a pair(b, 7) with the maximum count
in the sub-matrix of\ D induced by the degenerate positionsAf (i.e., we ignore a column = (iy, ..., i,)

if 37, s.t. pi, # {0,1}). A single iteration can be performed in time linear in theesof 4, or O((i)nm) —

for each of theO((’;)n) entries inA, we check in time)(z) whether itsz positions are still degenerate i,

and find the largest count among all those entries. The totaling time is, thusQ((*)n(z + z[£27)), or

T

O((*)n(k - 6)). m

4.2.4 Non-Binary Alphabets

So far, we have discussed several approximation algorifom®IC-DPD when|X| = 2. However, in many
real-life applications the alphabet is not binary, as isd¢ase when designing primers for genomic sequences
(IZ] = 4). The simple approximations described in Section 4.1 asédyegeneralized to large alphabets, as we
shall now show. Lef?° be an optimal primer of length and degeneracy for a given set of: strings over:.
Letm, be the coverage aP°. The primerP? is a union ofd non-degenerate primers, and the number of strings
covered byP° is at most the sum of the coverage of these non-degeneratersti Hence, an optimal non-
degenerate primer, which is simplykdong substring that appears in the largest number of injinigs, covers
at leastmn,, /d strings.

As in the binary case, we can also devise a simple contraatgorithm for non-binary alphabets. For con-
venience, denote = |Y|, andd’ = |log, d]. A completely degenerate primer of lengdtthas degeneraay”
and coverage. By replacing the first degeneracy in the primer with a singhlaracter (one that gives the largest
coverage) we get a primer with degenerady ! that covers at least/a strings. We similarly refine posi-
tions2, ...,k — ', and obtain a primer with degeneracy at mésind whose coverage is at leagta* %', and
therefore at least, /a* .

Both algorithms we have just outlined run in tirék L), as explained in Section 4.1. Combining them, we
get a|%|[*/2]-approximation algorithm for MC-DPD: ifl > |%|l¥/21, thena*~% < |3|l*/2], so we run the

second algorithm; otherwise, we run the first algorithm (pane to Proposition 19).
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Proposition 25 When|X| > 2, MC-DPD can be approximated within a factor ¢|/*/21 in time O (kL).
[

Unfortunately, the results we obtained in Section 4.2 ferdbNTRACTION andEXPANSION algorithms do
not hold for non-binary alphabets. There are two complicetiin large alphabets. First, there is more than one
possibility for a degenerate position. Wheij = 2, every degenerate position in the primefis 1}, whereas
when|X| > 2 we need to choose one among several possible degeneratiestésofy with more than one
character) at each degenerate position. Second, there &dttitional complexity in deciding how to partition
the degeneracy between the positions. In the binary caségiiieneracy is always of the foty wheres is the
number of degenerate positions. However, whignh> 2, the number of degenerate positions could be any one
of many values. For example,df = 16 and|X| = 4, there may be four degenerate positions (each one with
degeneracy), three ¢, 2, 2), or only two @, 4). In the next section, we describe heuristics for MC-DPDhwit

non-binary alphabets that are basedc@nNTRACTION andeEXPANSION, and perform well in practice.
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5 Implementation: The HYDEN Program

We developed and implemented an efficient heuristic, calleneN (Linhart and Shamir, 2003), for designing
highly degenerate primers. The inputH@DEN is a list of DNA sequences and a set of integers that spea#y th
length of the primer, its maximum degeneracy, and the nuraberismatches it is allowed to have with every
sequence it coversiYDEN constructs a primer with the specified length and degendhatyovers many of the
given sequences. It does so by running a 3-phase algorititimex in Figure 7. In the first phaseyDEN locates
conserved regions in the DNA sequences by finding ungappatidtignments with a low entropy score. In the
second phase, it designs primers using variants otCtheTRACTION and EXPANSION algorithms. Finally, it
uses a greedy hill-climbing procedure to improve the pranand selects the one with the largest coverage as the
output. HYDEN is written in C++, and runs under Windows and LinuxyDEN is freely available for academic

use (http://www.math.tau.acdlfshamir/hyden/HYDEN.htm). Figure 7
here

Formally, letl = {S!,...,S™; k;d; e} be the inputta1YDEN, whereS?, ..., S™ aren strings ove® ={A,C,G,T}
with a total length ofl. characters, ankl, d, ande are the length, degeneracy, and mismatches paramet@mscres
tively. Let N,, No, N, and N, be additional integer parameters, whose roles will be éxgthsoon. Denote
by A an ungapped local alignment (alignment, in short) of theuirgirings, that is, a set of substrings of
lengthk (actually,A is a multi-set, since it may contain several copies of a singgt Denote byD 4 the column

distribution matrix of the substrings ia. In order to determine how well-conserved the alignmergrigl thereby

estimate how likely we are to construct a good primer frorwé,compute its entropy scorf, 4:

k . .
DA(b,Z) DA(b,Z)
Ha= 33 PR g, P

i=1 beX
The lower the entropy score is, the less variable are thenuwdwof A, and, intuitively, the greater the chances
are for finding a primer that covers many of the substringd.inThe first phase ofiYyDEN, calledH-ALIGN,
exhaustively enumerates all substrings of lerigiihn the input strings, and generates an alignment for eachesne
follows (see Figure 8). L&t = t,t, ..., be a substring of length. In each input string’, H-ALIGN finds the
best match td” in terms of Hamming distance, i.e., thdong substring’? of S7 that has the smallest number of
mismatched characters with The substringg™, ..., T (one of which isl" itself) form the alignmen# . After

3 3

considering allO (L) different substrings in the inpul-ALIGN obtainsO(L) alignments. TheéV, alignments
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with the lowest entropy score are passed to the second phasaGN runs in timeO(kL?). Fortunately, a few
simple heuristics, which we describe below, reduce theingntime considerably with marginal impact on the
quality of the results. Figure 8

Let A, C A be an arbitrary subset of an alignmeht|A;| = N;,. Provided thatV;, is not too small, we can here
useA, in order to estimate how well-conserveds, or, in other words, we may assume that, ~ H 4. Thus,

a more efficient version afi-ALIGN iterates allk-long substrings, and aligns only, input strings to each one.
Then, theN,. substrings, whose alignments received the lowest (ppeidtopy scores, are re-aligned against
all n input strings, their full entropy scoré] 4, is computed, and the bea, (< N,/) alignments are passed to
the next stage. If all input strings have approximately #raes length, then this efficient versiontofaLIGN runs

in time O(kL(%L + N,)). Another improvement we applied exploits the fact thatratignts obtained from
highly overlapping substrings are very similar. Therefdfrehe alignment we get from a substring. . . s;1 51

has a high entropy score, there is no point in checking thesubstring:s;+1 . .. si+, as itis highly unlikely to
yield good results, too. In fact, if the entropy score is vieopr, we may decide to skip more than one substring.
In practice, this simple idea reduced the running time-afLIGN by another factor of 2—4.

The second phase constructs two primers from each ofMthalignments. Given an alignment with a
column distribution matrixD 4, HYDEN runs two heuristics —H-CONTRACTION andH-EXPANSION. These al-
gorithms are generalizations of tle®NTRACTION and EXPANSION approximation algorithms, respectively, to
non-binary alphabetsi-CONTRACTION starts with a fully degenerate primer, and discards cherset degener-
ate positions with the smallest countiihy until the primer reaches the required degeneracy, as shokiglre 9.
H-EXPANSION employs an opposite approach. It uses the subsifiegA, from which A was constructed, as an
initial non-degenerate primer, and repeatedly adds tohaacter with the largest count as long as its degeneracy
does not exceed the threshaldas detailed in Figure 10. Notice that the origiaalPANSION algorithm repeats
this procedure for each substringdn However, early experiments demonstrated that if manyefrtput strings
can be covered by a single primer, there is very little défere between primers obtained by expanding different
substrings ind (data not shown). Therefore, HrEXPANSION we chose to expand only one substring from each
alignment. Finally, the second phasetofDEN computes the coverage of tBéV, primers it constructed, and
selects theV, (< 2N,) primers that match the largest number of input stringsh(wih toe mismatches). The

running time of the second phaserof DEN is O(N,kL). Figures 9
and 10 here
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The final phase ofiYDEN tries to improve theV, primers found in the previous phase using a simple hill-
climbing procedure, called-GREEDY. Given a primerP, H-GREEDY checks whether it can remove a character in
a degenerate position i and add a different character in any position instead, satieacoverage of the primer
increases. This process is repeated as long as coveragertving (see Figure 11). Denote bythe number of
iterations performed until a local maximum is reached. Thie@ running time ofi-GREEDY is O(rk®L). In our
experiments; was almost always belo In order to limit the running time in the general case, ongdadix an
upper bound on the number of improvement iterations the algorithm penf thereby setting the total running

time of the third phase aiYDEN to O(N,7k3L). Figure 11
here

HYDEN runs in total time ofO(kL(2:L + N, + N,7k?)). Notice that the input parametedsande are
missing from the formula — the reason is that the performategends linearly otbg d ande, both of which
are accounted for in th@ (k) factor. As we shall demonstrate in the next sectionpeN is sufficiently fast for
designing a primer of length < 30 for a set of hundreds of DNA sequences, eaklp long. Moreover, by
modifying the various parameters, one can control the ofidetween the running time of the program and the
quality of the solution it provides. We report concrete rmgrtimes and parameters in the next section.

HYDEN is a generalization of thé — §)-approximation of MC-DPD that we presented in Section 4.2. If
a set of binary strings of lengthis supplied to the program, ard= 0, the alignment phase does nothing (the
strings are already aligned), the second phase yields fhr@ximation {-CONTRACTION is identical toCON-
TRACTION when|X| = 2), and the final greedy phase may further improve the solutiéga have no theoretical
guarantee on the performancetof DEN in the general case, and, specifically, for genomic sequseofcarbi-
trary length. Nevertheless, as we shall see, the resultediuged in practice for the OR subgenome were highly

satisfactory.
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6 Applications

6.1 Deciphering the Human Olfactory Subgenome

HYDEN was originally developed and implemented as pam®#foG, an experimental scheme for DEciphering
Families Of Genes (Fuchs et al., 200®EFOG provides a powerful means for analyzing the composition of a
large family of genes with conserved regions, and is thus@afly useful in species for which little genomic data
is available. In additionpEFOG can be applied to analyze cDNA libraries of gene familieEFOG consists of
several computational and experimental phases. Firstngvsubset of known gene sequeneesEN is used

to design degenerate primer pairs. The primers are theninge@R to amplify fragments of genes, known as
well as unknown, of the same family. The fragments are clpard an oligofingerprinting (OFP) process (Clark
et al., 1999; Herwig et al., 2000; Meier-Ewert et al., 199&dRBIof et al., 1998) characterizes the clones by
their patterns of hybridization with a series of very sh@&dnfer) oligonucleotides. Another novel algorithm,
calledcLick (Sharan and Shamir, 2000; Sharan et al., 2003), clustecddhes into groups corresponding to the
same gene according to their hybridization patterns. Finapresentatives from each cluster are sequenced and
compared to the known gene sequences. OHrR0G project is joint work with the groups of H. Lehrach (MPI
Berlin) and D. Lancet (Weizmann).

The DEFOG scheme was applied to the human olfactory receptor (OR, ént)shubgenome. The human
genome contains more thdf00 OR genes, of which more tha0% are considered pseudogenes (Glusman
et al., 2001; Zozulya et al., 2001). OR genes have a singlsngazkon of aboutlKbp, and code for seven-
transmembrane domain proteins (Buck and Axel, 1991). Tl lseveral highly conserved regions, primarily
in transmembrane (TM) segments 2 and 7. In contrast, TM setgdeand 5 show a high degree of variability —
a crucial feature for recognizing a huge variety of odor@Rifpel and Lancet, 1999).

Our experiment began with an initial collection of 127 OR ggnwhose full DNA coding sequences of
size 1Kbp were known at the time (Fuchs et al., 2000). This collectomprised our training sedbn which
HYDEN designed the primers. In order to design both 5" and 3’ primete ranHYDEN separately on the first
and last300bp of each OR gene. Altogether, we design8grimers —6 for the 5’ side (denoted L5, L9, L10,
L20, L31 and L131) and for the 3’ side (R5, R20, R28, R73, R110, R147 and R442), oftles = 26,27

and various degeneracies betwdefi08 and442, 368 (the primers were namebn, whereD is 'L’ for 5’ and
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'R’ for 3', and n is the rounded degeneracy of the primer in thousands). Tingeps on each side are quite
similar to one another, and differ mainly in their degengragcept for four special primers — one pair (L9 and
R110) was designed at different positions, closer to then®’ 3l ends of the genes, and another pair (L20 and
R20) was designed on a subset of genes that were poorly nddtgtibe other primers. These four primers were
constructed in order to “fish out” genes that, for some reaaomnot amplified by the other primers. A typical
run of HYDEN on 300bp segments of th&27 OR genes, withk = 26, d = 20,000, ande = 2 (and N}, = 50,

No, = 8,000, N, = 3,000, N, = 100), takes approximately0 minutes, distributed evenly among the three
phases of the program, on a P4GHz PC with256MB RDRAM. Except for the special primers, each primer
matches6% — 90% of the training-set genes with up to two mismatched bases.

Fromthe 13 primers we designed, we sele@tedifferent pairs (see Table 1), and used them in PCR reactions
The degeneracy of a pair of primers is defined as the produleafegeneracies of both primers. The degeneracy
of the pairs we selected ranged betwé&eh- 107 and1.4 - 10'°. To the best of our knowledge, this is the
highest degeneracy ever used successfully in PCR reaetiamgant applications usually use degeneracies lower
than10°. We also experimented with even higher degeneracies (22td0'!), but their yield was usually very
poor, perhaps since the concentration of each individudgaris too low to allow successful PCR amplification.
Most primer pairs coveret)% — 80% of the training-set genes with up to three mismatched basesth sides
combined (we used a threshold of three mismatches, sinlyess@eriments have shown that it predicts successful
PCR amplification reasonably well — data not shown). Table 1

Table 1 summarizes the performance of #eprimer pairs we used in theEFOG experiment. Most of the here
primer pairs yielded a satisfactory number of clones (sevarndreds). Exceptions are L131/R281 clones)
and L31/R442131 clones). The latter was the most degenerate primer pairtiarhvwve could obtain a reasonable
yield. Since only6.8% of the clones were sequenced, we do not know the full numbdistihct genes each
primer pair amplified. Thus, in order to evaluate how well phieners performed in practice, we computed their

sequencing efficacy— the percentage of distinct genes that were obtained by gacter pair, out of the total

number of clones sequenced for that pair (the seventh coiluifable 1 divided by the sixth column). Fbd out
of 12 primer pairs with degeneracy ovel’, sequencing efficacy wa®% — 93%, whereas for al§ primers with
lower degeneracy, it wasy % — 79%.

Figure 12 shows the sequencing efficacy of several of theguiirairs we used, as a function of the degeneracy.
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We excluded pairs that contain a special primer, in ordetltovaa fair comparison between pairs with different
degeneracies. For the same reason, we included only paid)ich the 5’ and the 3’ primers are of length 26
and have comparable degeneracy (to ensure that in all theywaicompare the degeneracy is divided similarly
between the two primers). The pairs that match these aitgg L5/R5, L10/R5, L5/R28, L10/R28, L31/R73,
and L31/R442. Also shown in the figure is the number of igemes (with respect to the training-set) sequenced
from each primer pair, as a percentage of the total numbelooks sequenced for that pair. The correlation
between this number and the sequencing efficacy is very eppar for most primers;0% — 90% of the genes
we sequenced were new; for the six pairs shown in Figure &2atio is much less variant-2% — 75% of the
genes were new. Note that the sequencing efficacy, accaalihg way we compute it, depends not only on the
performance of the primers, in terms of the number of genegdimplified, but also on the clustering and target
selection procedures. For examplesifick assigned the clones of a certain gene to two or more clugtetead

of just one, then we may have sequenced multiple copies bfjivae and the sequencing efficacy would have
dropped. Furthermore, tH124 clones we sequenced includ40 clones from six clusters, which we sequenced
exhaustively in order to obtain statistics on the qualityhef clustering analysis (see (Fuchs et al., 2002)). The

reported sequencing efficacy is therefore lower than treedfficacy of the primers. Figure 12
re

The DEFOG experiment almost tripled the size of our initial OR repegpfrom 127 genes ta358. The
extremely degenerate primers we designed proved venytigtied hey achieved high sensitivity, amplifyir3g0
uniqgue OR genes, and extremely high specificity, yieldinty @4% (4 out of 924) non-OR products. The
combination of the OFP process and thieck clustering software allowed a low-redundancy sequencing —
cluster analysis partitioned thi3, 580 clones we obtained int@39 clusters and 21 singletons (single clone
clusters), from which we sequenced o (6.8%) clones. The full experimental details and results arentego
elsewhere (Fuchs et al., 2002).

After the publication of the first draft of the human genome,amalyzed the performance of the primers on all
full-length OR sequences that were computationally detkit the draft. This set consisted@f9 genes (Glus-
man et al., 2001). These genes served as a testwih which we checked how well the coverage of our primers
extends from the training set to a larger collection of geréste that125 of the training-set genes are also in

the test set, with slight changes. Figure 13 showsltheésmatches coverage of several primer pairs, both for the

1sequences are available in the HORDE database at httinftirimatics.weizmann.ac.ilHORDE
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training set and the test set (Table 1 contains the full daétggin, in order to allow a fair comparison between
the primers, we included only the pairs L5/R5, L10/R5, L3BRR10/R28, L31/R73, and L31/R442, as well as a
couple of additional primers that were designedH®pEN but were not used in the experiment. Figure 13
As expected, primers with higher degeneracy have a largarage in both sets. Also apparent is the sharrlpire
and steady increase in the test-set coverage as the degeimeraases — from0% coverage for non-degenerate
primers t050%—65% for the primers we used ar@t% for a pair with degeneracy - 10'2. In practice, one
cannot use arbitrarily high degeneracies, for two reasbirst, highly degenerate primers have low specificity,
and so they might amplify many non-related sequences. Titliaat prove to be a problem even with the high
degeneracies that we used — ofil4% of the clones we sequenced were not OR genes. Second, apneehti
earlier, PCR gives a poor yield when the degeneracy is vayly, hhich is what limited us to use primer pairs
with degeneracy not higher thard - 10'°. Another conclusion from the above analysis is that thedyasimise
behind theDEFOG scheme proved valid: The training set was indeed a goodgeptative set of the full set, in

terms of primer properties, and facilitated the design @hprs that matched hundreds of additional unknown

genes.

6.2 The Canine Olfactory Subgenome

Encouraged by the results we obtained for the human OR sobgemwe launched a project with the group of D.
Lancet (Weizmann) for analyzing the canine OR subgenomeusdd two approaches: data mining in the Celera
1.3X sequence coverage of the dog genome, and a simplifistbresf DEFOG, in which we skipped the OFP
and clustering phases (i.e., clones were selected for seipgearbitrarily, rather than based on the fingerprints
clustering). Since very few canine OR genes were fully knawthe time, we rarYDEN on the set of19 human
ORs, and designed several primer pairs with degeneracyekeeai2 - 106 and2.2 - 10'°. Despite the significant
differences between the human and canine olfactory systambuman-based primers amplified many ORs from
the dog genome. Thi200 clones sequenced contairet distinct canine OR genes (the full dog OR repertoire is
estimated to contain som&00 genes). About4% of these genes are pseudogenes, similar to the ratio in mouse
(20%) (Young et al., 2002; Zhang and Firestein, 2002), but famftbe ratio in humanx 60%) (Glusman et al.,
2001; Zozulya et al., 2001). This reflects the fact that bath @and mouse are macrosmatic animals, i.e., have a

very acute sense of smell, whereas human is microsmatic fullhgetails of our work on the canine olfactory
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subgenome appear in (Olender et al., 2004). This projecbdstrates thabEFOG can be applied to study an

unsequenced genome using degenerate primers designediagc¢o a related species.

6.3 Olfaction vs. Vision among Primates

Another interesting project that utilizedvDEN is described in (Gilad et al., 2004). In that study, degeteera
primer pairs designed based on human ORs were used to sedu#¥n©R genes in human and ir8 primate
species, for which the genome sequence is not availablegding apes, Old World monkeys (OWMs) and New
World monkeys (NWMs). As expected, the proportion of OR gegenes in human was found to be very high
(aboves0%). In great apes and OWMs, rougHig% of the sequenced ORs are pseudogenes, whereas in NWMs
this ratio is significantly lower — only8% are pseudogenes. However, there is one exception: one N\woiesp

the howler monkey, was found to have a similar proportion Bffi3eudogene8{ %) to that of OWMs and apes.
Gilad et al. noticed that another phenotype that is shargdlynthe howler monkey, OWMs, and apes is full
trichromatic color vision. Thus, the deterioration of tHéaotory subgenome repertoire and the acquisition of
full trichromatic vision occurred independently in two segte evolutionary branches: in the common ancestor
of OWMs and apes, and in the New World howler monkey. This sstggan association between two senses on
an evolutionary genetic scale: as vision improved in sonte@primate species, they became less dependent on

their sense of smell, which led to its decline.
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7 Concluding Remarks

In this work, we introduced DPD — a combinatorial optimipatiproblem aiming for optimal design of de-
generate primers. We defined several variants of the prqotdachstudied their computational complexity. We
developed approximation algorithms for MC-DPD, a simptifieersion of DPD, with binary input strings, and
implementediYDEN, an efficient heuristic for the general case. We execdtameN as part of an experiment for
sequencing the human olfactory subgenomepEN proved quite effective in designing highly degenerate and
yet highly specific primers.

On the theoretical side, one may wish to design approximatigorithms for MC-DPD with better approx-
imation ratio and/or faster running time. Tighter inappnoability bounds could close the gap from the other,
less desirable, direction. Another important advance dbelto generalize the algorithms to cope with arbitrary
length input strings over non-binary alphabets and allognnaitches between the primer and the strings. Approx-
imation algorithms for other DPD variants we defined, nanM3-DPD and MP-DPD, could also have practical
contribution.

On the practical side, a more realistic primer-gene mateciiadel, which takes into account biological aspects
of the PCR procedure, could yield primers with greater siitgi It is known that mismatches at the 3’ terminus
are more detrimental to PCR than internal mismatches (Kwak €994), and that different types of mismatches
have different effects on the reaction, e.g., A:C is lessugiive than A:G (Kwok et al., 1990). In addition, a
situation where one primer is complementary to itself orriother primer should be avoided, since it leads to a
competition among the primers and the sequences and gredtiges the efficiency of the PCR. Other factors
that should be considered are the GC content and meltingaieriype of the primers.

We have recently extendedrDEN, so that it could design several primer pairs. The first gaganstructed
by running the algorithm described in Section 5 twice — fosigring primers on the 5’ and on the 3’ side
of the DNA sequences (the distance between the two regionbeset according to the specific requirements
of the experiment). After the first primer pair is selectelll n@atching sequences are removed, and a second
pair is designed using the remaining sequences. We repegirticess until a sufficiently large fraction of the
input sequences is covered by the primers. This iteratiwequture, described independently in (Souvenir et al.,

2003), is a heuristic for solving MP-DPD. It is useful whennmmdhan one primer pair is required in order to
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reach satisfactory coverage. Another heuristic for sgiWtP-DPD is the programiips, which was reported to
outperform the iterative version efyDEN when applied to the task of designing multiplex PCR expenitsiéor
SNP genotyping (Souvenir et al., 2003). As noted by Souwtrat., the problems solved by the two algorithms
are quite different — mainlyiPs constructs a set of primers for one PCR experiment with ipleltprimers,
whereasHYDEN designs primer pairs for separate experiments (one paiexpariment). If one wishes to use
HYDEN for multiplex PCR, a better approach would be to design a &t primers and a set of 3’ primers
separately. Each set could be constructed using an iteqatdcedure similar to the one described above (but on
one side only), until sufficient coverage is reached. It widhg interesting to compare the performance of this
version ofHYDEN to that ofMIPS. Note that when using several different primers in the sa@R,Pone has to
make sure the primers will not hybridize with one anotherthBaiPs andHYDEN ignore this crucial issue, so
additional tools should be used to check whether the dedigrimers might cross-hybridize.

The first phase ofiYDEN locates many conserved blocks in the given sequences.athstee could per-
form this step using some other available software for cdmgwngapped local multiple alignments, such as
ClustalW (Thompson et al., 1994) or BlockMaker (Henikoféét 1995). For each block found in the first phase,
HYDEN designs primers using heuristics based omdb& TRACTION andEXPANSION approximation algorithms.

It would be interesting to implement tlONTRACTION-X algorithm (or, for practical applications, a generaliza-
tion of it to non-binary alphabets) and compare its perfaroego that ofONTRACTION. Theoretically, at least,
CONTRACTION-x should produce primers with larger coverage.

We hope to exploit the utility of degenerate primers on otfeare families and other species. We are currently

involved in several projects that use degenerate primestsitty gene families and cDNA librariesYDEN is also

being employed by several other labs for various tasks.
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Table 1: Primer pairs used in tiieEFOG experiment on the human OR subgenome. The second columifiepec
the combined degeneracy of the two primers, in millions. el and fourth columns are the percentage of
genes, out of the training set (127 genes) and the test s@tg@rles) respectively, that match the primer pair
with up to 3 mismatched bases. The fifth column specifies tieen of clones we obtained from the amplified
PCR fragments, and the sixth column is the number of reptathem clones that were selected and successfully
sequenced. The last two columns are the number of distimasggeach primer pair yielded — total number of
genes, and new genes (that are not in the training set).

* Pairs in which both primers were of length 26 with roughlyuatidegeneracy, and neither one of them is a

special primer. The performance of these primer pairs ispaoed in Figure 13.
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Primer Degeneracy  3-mismatches coverage Number of clones  umbBrr of genes

pair (x10) training-set  test-set total sequenced total new
L5/R5* 21 73 % 50 % 1,730 173 98 73
L10/R5* 48 74 % 51 % 838 42 31 24
L5/R28* 127 74 % 52 % 901 75 50 36
L9/R20 191 31% 13% 431 43 25 14
L10/R28* 287 74 % 53 % 740 57 39 28
L5/R73 340 77 % 60 % 566 34 27 17
L5/R110 510 51 % 30 % 598 31 22 19
L31/R20 645 66 % 47 % 352 65 45 40
L9/R110 1,019 29 % 11% 621 19 15 11
L9/R147 1,359 48 % 21 % 973 42 34 20
L10/R147 1,529 77 % 55 % 660 53 42 34
L5/R442 2,038 79 % 63 % 649 46 38 32
L31/R73* 2,293 80 % 62 % 1,033 27 25 18
L20/R147 3,058 77 % 51 % 747 67 43 34
L31/R110 3,440 55 % 31% 426 25 21 19
L131/R28 3,624 76 % 57 % 181 14 12 11
L9/R442 4,077 54 % 26 % 748 28 20 14
L31/R147 4,586 78 % 56 % 564 28 26 18
L10/R442 4,586 80 % 63 % 691 46 37 26
L31/R442* 13,759 82 % 65 % 131 9 8 6
Total — 93 % 76 % 13,580 924 300 231
Table 1
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Figure 1: Example of DPD. A primer of lengthand degeneracl? that coverst of the5 input strings. Matches
between the primer and the strings are marked in bold face sringS; is matched from positios with a single

mismatch.
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Figure 2: lllustration of the reduction from CLIQUE to MC-DPThe primerP covers the string§.,, S., and

Se.» Which correspond to the edges of the clique. Asteriskseémptimer stand for degeneracig§(1}).
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Figure 3: lllustration of the reduction from MBP to MP-DPD.
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Figure 4: Example of an execution OODNTRACTION on eight strings. The five<{ k — §) largest leading values

in D are marked in bold face. The primBf covers four input strings =S*, S3, S andS3.
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Figure 5: lllustration of the first two iterations afxPANSION on the eight strings from Figure 4. The fout )
largest leading values iR’ are marked in bold face. The expansior§df(P!) covers four strings, and is identical
to the primer constructed lONTRACTION. The expansion a$? (P?) covers five input strings =S*, 52, S3, S°,

andsS8.
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Figure 6: Example of an execution 0ONTRACTION-x (z = 2) on seven strings. The largest bi-column count
is MD((1,0), (1,4)) = 6, so the first iteration refines positiohs4 to '1’, '0’, respectively. Ignoring position$

and4, the largest remaining countid D((0,0), (3,6)) = 5. Thus, in the second iteration positiohand6 are

set to ’0’. The output primer covers five input strings$%, 52, $*, 5% andS”.
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Figure 7: ThedYDEN algorithm.
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Figure 8: The basic alignment phasedmDEN.
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Figure 9: Thed-CONTRACTIONalgorithm used by YDEN.
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Figure 10: Thed-EXPANSIONalgorithm used by YDEN.

52



Figure 11: The greedy hill-climbing procedure used ByDEN. m(P) denotes the coverage of

primer P.
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Figure 12: Sequencing efficacy of several primer pairs indBeoc experiment. The dotted line shows the

percent of nevgenes, i.e., genes that were not in the training set, out tf@kequenced clones.
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Figure 13: Training-set and test-set 3-mismatches coverage of primer pairs with various degeneracies. Primers
that were actually used in tiEEFOG experiment are marked by asterisks. The horizontal lines mark the size of

the training and test sets.
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The Degenerate Primer Design Problem
Input: n=5k=7,d=12, m =4 (X ={A,C,G,T})
S =TCGGCTTGCAAGCGTACT
S =GGCTTCCAGGTCTTATAAGTC
S35 =GCTTCCACGGTGCGAATCAGGGCTG
Sy =ATTGCTAGGTTCAGGTA
S5 =GCAAGGTATCTTGCCAGCTTTGA

Solution: P = TT{C,G}C{A,C,T}HA,G}G

Figure 1: (Linhart & Shamir)




CLIQUE Minimum Coverage DPD

Input: Graph G= (V, E), Input: n =4, k=>5,d =23,
V=5 |E =4,¢=3 m=(3)=3
U2
| = S., = 11000
S., = 10100
S., = 10010
S., = 01010
V4 !

Solution: Clique = {vy,v2,v4} <= Solution: P = %x0x0

Figure 2: (Linhart & Shamir)




Minimum Bin Packing Minimum Primers DPD

Input: l =4,¢c=5,b=2 Input: n =4, k=10,d=2% p=2
a; =2 S1 = 1100000000
as =1 = So = 0010000000
a3 =3 Ss = 0001110000
as =4 S, = 0000001111
\
Solution: Solution:
Bin 1: a1, a3 — P = xx0x%xx0000
Bin 2: a9, a4 Py = 00%000%%%x

Figure 3: (Linhart & Shamir)




Input: n=8,k=9,d=2"

St 011010101 Column distribution matrix D:
S2: 010010000 — 4 21 6 05 3 7 4
S$3: 111010100 4 6 7 2 8 3 5 1 4
S4: 011111001

S°: 111010101 )

S6: 001111100

S7: 101011110 Output:

S8: 111010001 P: x 1 1 0 1 % % 0 x

Figure 4: (Linhart & Shamir)




Input: n=8,k=9,d=2*
S': 011010101
S2: 010010000
S3: 111010100
... (as in Figure 4)

Starting string: S'

Starting string: S

—

=

=

Column distribution matrix D:
4 2 1 6 0 5 3 7 4
4 6 7 2 8 3 5 1 4

4

D: 0

w O
o

P % 1 1 0 1 % % 0 =x

D: 0

o
o
o

P2 o« 1 % 01 0 % 0 =x

Figure 5: (Linhart & Shamir)




Input: n =7 k=7 d=23

S
S2:
S3:
sS4
S5
S6.
S

1100101

1100000 ==

0111000
1000100
1110111
1000001
1100100

Output:

Bi-column distribution matrix M D:

121314 3,6 6,7
0,0 0 0 0 5 4
0,11 1 1 1 0 2
10| 2 5 6 1 0
1,1 | 4 1 0 1 1
I  Tteration 1
Pr: 1 % % 0 % %

P* .

[} Iteration 2

1 00 x 0 %

Figure 6: (Linhart & Shamir)




HYDEN (I = {S',...,8™; k;d;e}):
Phase 1: Ay,..., Ay, <+ H-Align(I).
Phase 2: Foreach alignment A;, i =1,..., N, do:

P¢ < H-Contraction(I; A;).

Pf + H-Expansion(/; A;).

Sort primers {P¢, P¢ | i=1,...,N,} acc. to coverage.

Phase 3: Foreach primer P € {best N, primers} do:

P < H-Greedy(I; P).

Output the primer with the largest coverage found in Phase 3.

Figure 7: (Linhart & Shamir)




H-Align (I):
Foreach k-long substring T of S*,...,S™ do:
Ar 0.
Foreach string S/, j = 1,...,n do:
Add to A7 the best match in S7 to T.
D 4, < Column distribution matrix of Ay.
H ,, < Entropy score of Dy,.

Output N, alignments with lowest entropy score.

Figure 8: (Linhart & Shamir)




H-Contraction (I;A):
Sort the counts: DA(by,41) < Da(bo,io) < ... < Da(bak,i4k)-
P + Fully degenerate primer ; j < 1.
While d(P) > d and j < 4k do:
P' < P without character b; at position ;.
If d(P') # 0 then P « P'.
Je=Jg+1L
Output P.

Figure 9: (Linhart & Shamir)




H-Expansion (I; A):
Sort the counts: DA (by,41) > Da(bo,io) > ... > Da(bak,iak)-
Let T be the substring from which A was constructed.
P+T;j+1
While j < 4k do:

P' +— P with character b; added at position ;.

If d(P') < d then P « P'.

jg+1L
Output P.

Figure 10: (Linhart & Shamir)
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H-Greedy (I;P):
P* + P, improved < “yes”.
While improved = “yes” do:
improved < “no”.
Foreach degenerate character (b,7) in P do:
P' + P without character b at position i.
Foreach degeneracy (¥',4') not in P do:
P" < P’ with character b’ added at position 7.
m(P") + Coverage of P".
If d(P") < d and m(P") > m(P*) then P* « P".
If m(P*) > m(P) then P < P*, improved « “yes”.
Output P.

Figure 11: (Linhart & Shamir)
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Figure 12: (Linhart & Shamir)
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Figure 13: (Linhart & Shamir)
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