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Abstract

A PCR primer sequence is called degenerateif some of its positions have several possible bases. The

degeneracyof the primer is the number of unique sequence combinations it contains. We study the problem of

designing a pair of primers with prescribed degeneracy thatmatch a maximum number of given input sequences.

Such problems occur when studying a family of genes that is known only in part, or is known in a related species.

We prove that various simplified versions of the problem are hard, show the polynomiality of some restricted

cases, and develop approximation algorithms for one variant. Based on these algorithms, we implemented a pro-

gram calledHYDEN for designing highly-degenerate primers for a set of genomic sequences. We report on the

success of the program in several applications, one of whichis an experimental scheme for identifying all human

olfactory receptor (OR) genes. In that project,HYDEN was used to design primers with degeneracies up to1010
that amplified with high specificity many novel genes of that family, tripling the number of OR genes known at

the time.

Keywords: Degenerate Primers for PCR, Complexity, NP-Hardness, Approximation Algorithms, Olfactory

Receptor Genes.
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1 Introduction

Polymerase chain reaction, or PCR(Mullis et al., 1986), is a ubiquitous technique which amplifies a specific

region of DNA, so that enough copies of that region are available to be adequately tested or sequenced. In order

to use PCR, one must know the exact sequences which lie on either side of the DNA region of interest. These

sequences are used to design two synthetic DNA oligonucleotides, or primers, one complementary to each strand

of the DNA double-helix and lying on opposite sides of the target region. The primers are typically of length20–30.

A PCR primer sequence is called degenerateif some of its positions have several possible bases (Kwok etal.,

1994). For example, in the primer: GGfC,GgAfC,G,TgA, the third position is C or G and the fifth is C, G

or T. The degeneracyof the primer is the number of unique sequence combinations it contains. For example,

the degeneracy of the above primer is6. Degenerate primers are as easy and cheap to produce as regular unique

primers, are useful for amplifying several related genomicsequences, and have been used in various applications.

Most extant applications use low degeneracy of up to hundreds. In this work we study the problem of designing

primers of high degeneracy.

Suppose one has a collection of related target sequences, e.g., DNA sequences of homologous genes, and the

goal is to design primers that will match as many of them as possible. A naı̈ve solution would be to align the

sequences without gaps, count the number of different nucleotides in each position along the alignment and seek

a primer-length window (typically20–30) where the product of the counts is low. Such solution is insufficient

because of gaps, the inappropriate objective function of the alignment, and, most notably, the exceedingly high

degeneracy: When degeneracy is too high, unrelated sequences may be amplified as well, losing specificity. We

may have to compromise by aiming to match many but not necessarily all the sequences. Our goal here is to

develop an ad-hoc method for designing primers that will allow tradeoff between the degeneracy and the coverage

(the number of matched input sequences). We call this problem Degenerate Primer Design (DPD).

Our need to study DPD arose in a joint project with the groups of H. Lehrach (MPI Berlin) and D. Lancet

(Weizmann) for finding new human olfactory receptor (OR) genes. At the outset of the project (which preceded

the publication of the human genome), only127 OR genes were known, and the goal was to selectively amplify

additional OR genes using degenerate primers. The rationale was that primers which match many of the known
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genes, would also amplify many new genes from the same familyas well, whose sequences are closely related.

Most OR genes contain conserved regions, and so the primers would be designed to match such regions. OR

genes contain a single1000bp coding exon, so amplification can be done on the genomic sequence. In gene

families that contain introns, the same technique can be applied to selectively amplify cDNAs. The technique

can be applied to various families, and to extracting genes from a particular family in an unsequenced species

based on the known sequences of family members in a related species. In cDNA analysis, one can use degenerate

primers for amplifying and then measuring frequencies of members of a gene family.

DPD is related to the Primer Selection Problem (PSP) (Pearson et al., 1996), in which the goal is to minimize

the number of (non-degenerate) primers required to amplifya set of DNA sequences. Several algorithms have

been developed to solve this problem, and some take into account various biological considerations and technical

constraints (see, e.g., (Doi and Imai, 1997)). However, forlarge gene families, the number of primers needed to

cover a sufficient portion of the genes without losing specificity is rather large. Furthermore, since the primers are

not degenerate, they do not amplify many of the unknown genes.

Traditionally, degenerate primers were usually designed manually by examining multiple alignments of the

target sequences.CODEHOP(Rose et al., 1998) and DePiCt (Wei et al., 2003) are programsfor designing de-

generate primers for multiply-aligned protein sequences.CODEHOPconstructs a pair of primers for each given

multiple alignment. Each primer consists of a degenerate 3’core region, typically with degeneracy at most128,

and a 5’ non-degenerate consensus sequence that stabilizesannealing.CODEHOPworks well for small sets of

proteins, taking into account the codon usage of the target genome, as well as the desired annealing temperature.

However, it is inappropriate for constructing primers withvery high degeneracy on large sets of long genomic

sequences. DePiCt clusters the sequences using a simple similarity score, and then designs a pair of primers for

each cluster by translating conserved blocks of amino-acids into nucleotides. Another algorithm for designing

multiple degenerate primer pairs, calledMIPS (Souvenir et al., 2003), was developed very recently in the context

of SNP genotyping. (Both DePiCt andMIPS were developed following our initial introduction of DPD in(Lin-

hart and Shamir, 2002)). Souvenir et al. define two variants of the Multiple Degenerate Primer Design problem

(MDPD), in which the goal is to find a minimum number of primersthat together match all the input sequences.

MIPS uses a beam-search technique to progressively construct a set of primers until all sequences are covered.

Since a degenerate primer can be viewed as a motif, DPD is alsorelated to motif finding. However, there are
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marked differences: Motif algorithms (e.g., MEME (Bailey and Elkan, 1995), Random Projections (Buhler and

Tompa, 2002), CONSENSUS (Hertz and Stormo, 1999), AlignACE(Hughes et al., 2000), Multiprofiler (Keich

and Pevzner, 2002), Gibbs Sampler (Lawrence et al., 1993), WINNOWER (Pevzner and Sze, 2000)) usually

produce a profile matrix or a HMM, with no constraint on the maximum degeneracy. Some combinatorial motif

finding algorithms do use consensus with degenerate positions (e.g., ARGO (Vishnevsky et al., 1998)), but their

goal is to find a “surprising” motif, i.e., a pattern that is unlikely given the background sequence probabilities.

In DPD, on the other hand, the “surprise” in a primer is irrelevant, and we care about degeneracy and coverage

instead.

In this work we study the DPD problem from theoretical and practical perspectives. We define and study

several variants of the problem. In one key variant we bound the degeneracy and wish to maximize coverage,

and in another we wish to minimize degeneracy while requiring full coverage. We give conditions under which

the problem is polynomial, but prove that the two variants above and some others are in generalNP-Hard. For

the maximum coverage variant, we provide several polynomial approximation algorithms. We then describe a

practical program calledHYDEN for producing high degeneracy primers. The program is a heuristic that builds

on ideas analyzed in the theoretical part.HYDEN was applied in the context of searching for new human OR

genes, where it designed primer pairs with degeneracy as high as1:4 � 1010, perhaps the highest ever used. Theses

primers were both very sensitive, leading to a3-fold increase in the number of known OR genes, and remarkably

specific, amplifying a negligible number of non-OR sequences. In addition to the experimental results, we ana-

lyze the performance of the primers on a large test set of OR genes, extracted from the first draft of the human

genome (Glusman et al., 2001). We also report results of two other projects that utilizedHYDEN: an experiment

for deciphering the canine olfactory subgenome, and a studyon the degeneration of the olfactory repertoire in

primates.HYDEN is freely available for academic use (http://www.math.tau.ac.il/�rshamir/hyden/HYDEN.htm).

The remainder of the work is organized as follows. In Section2 we give formal definitions of the problems.

Section 3 gives hardness results and polynomial algorithmsfor several problem variants. In Section 4 we give

approximation algorithms. Section 5 describes theHYDEN program, and Section 6 presents the actual performance

of HYDEN in the OR project. A summary and directions for further research are given in Section 7. A preliminary

version of this study appeared as an extended abstract in (Linhart and Shamir, 2002). The application ofHYDEN to

the OR subgenome was reported in (Fuchs et al., 2002).
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2 Problem Definition

Given a set of DNA sequences, our goal is to design a pair of degenerate primers, so that the primers match and

amplify (in the PCR sense) as many of the input sequences as possible. In order to obtain primers that match

a large number of known genes, and thus have a good chance to detect new related ones, one should obviously

use highly degenerate primers. On the other hand, in order toreduce the probability of amplifying non-related

sequences, the degeneracy must be bounded. The problem we faced can thus be informally described as follows.

Given a training set of known genes, design a pair of primers,one for the 5’ side and another for the 3’ side,

so that the primers would amplify many of the genes and would have degeneracy that does not exceed a pre-

defined limit. For this definition we assume that amplification of a gene occurs when the two primers match (in

terms of ungapped local alignment) corresponding subsequences in the gene. The region between the matched

subsequences is then amplified. This version is called the Degenerate Primer Design (DPD) problem.

One can extend the degenerate primer design problem in several ways. First, we may want to design several

primer pairs so that together they cover the whole training set, when one pair is not enough. Second, we may

allow a small number of mismatches between the primers and each amplified gene, as this usually does not inhibit

hybridization. Third, we can set a lower bound on the length of the amplified regions, since analysis of the genes

is impossible when the amplified fragments are too short.

The following notation will help us formally define the problems. Let� denote a finite fixed alphabet. In

the case of DNA sequences,� =fA,C,G,Tg. A degenerate string, or primer, is a stringP with several possible

characters at each position, i.e.,P = p1p2 : : : pk, wherepi � � , pi 6= ;. k is the lengthof the primer. The

number of possible character sets at a single position is� = 2j�j � 1. Thedegeneracyof P is d(P ) =Qki=1 jpij.
For example, the primerP � =fAgfC,GgfA,C,G,TgfGgfTg is of length 5 and degeneracyd(P �) = 8. At

non-degenerate positions, i.e., positions that contain a single character, we shall often omit the brackets. We will

sometimes use an asterisk to denote a fully degenerate position, i.e., a position that includes all possible charac-

ters. Hence,P � =AfC,Gg�GT. An alternative way to describe a primer is using the NC-IUB (Nomenclature

Committee of the International Union of Biochemistry) nucleotide code(NC-IUB, 1985), also termed the IUPAC

(International Union of Pure and Applied Chemistry) nucleotide code. According to this notation,P � can be writ-

ten as: ASNGT. LetÆ(P ) be the number of degenerate positions inP . Since each degenerate position contains
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between two andj�j possible characters,2Æ(P ) � d(P ) � j�jÆ(P ), or: dlogj�j d(P )e � Æ(P ) � blog2 d(P )c.
A primerP 1 = p11p12 : : : p1k is asub-primerof a primerP 2 = p21p22 : : : p2k of the same length, if8i; 1� i � k;p1i � p2i . This relation is denotedP 1 � P 2. Obviously,d(P 1) � d(P 2). Theunionof the primersP 1 andP 2,

denotedP 1 [ P 2, isP 12 wherep12i = p1i [ p2i .
A primer P = p1p2 : : : pk matchesa stringS = s1s2 : : : sl, si 2 �, if S contains a substring that can be

extracted fromP by selecting a single character at each position, i.e.,9j; 0 � j � l � k s.t. 8i; 1 � i �k; sj+i 2 pi. For example, the primerP � matches the string TGAGAGTC starting from the third position. A

mismatchis a positioni at whichsj+i =2 pi. In actual PCR, a few mismatches usually do not prevent hybridization.

Unless stated otherwise, we will not allow mismatches. We are now ready to define several problem variants:

Problem 1 DEGENERATEPRIMER DESIGN (DPD)

Given a set ofn strings and integersk, d, andm, is there a primer of lengthk and degeneracy at mostd that

matches at leastm input strings?

Figure 1 shows a small instance of DPD and a corresponding solution. We defined DPD as a decision problem,

rather than an optimization problem. Ideally, one wishes tooptimize each of the parametersk, m andd. Since

the value ofk is usually predetermined by biological or technical constraints (e.g., in PCR experiments,k is

usually between 20 and 30), we shall focus on optimizing eitherm, thecoverageof the primer, ord, the primer’s

degeneracy. As we will prove later on, these two optimization problems remain difficult to solve even if simplified

further. Specifically, when designing a primer that matchesas many strings as possible, we shall assume that all

input strings are of the same length as the primer. When minimizing the degeneracy of the primer, on the other

hand, we will seek a full coverage of the input strings, i.e.,m = n. Figure 1

here

Problem 2 MAXIMUM COVERAGE DPD (MC-DPD)

Given a set of strings of lengthk and an integerd, find a primer of lengthk and degeneracy at mostd that

matches a maximum number of input strings.

Problem 3 M INIMUM DEGENERACYDPD (MD-DPD)

Given a set of strings and an integerk, find a primer of lengthk and minimum degeneracy that matches all the

input strings.
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In our practical application, the MD-DPD approach yielded primers with degeneracies too high for successful

experiments. We therefore focused on MC-DPD, and applied itwith a variety of degeneracy limits imposed by

technical constraints (Sections 4–6).

We shall now define several generalizations of MC-DPD and MD-DPD. As mentioned earlier, a gene is usually

amplified even if there are a few mismatches between the primer and the gene. In fact, mismatches near the 3’

extension site, i.e., close to the part of the gene that undergoes amplification, are typically more disruptive than

mismatches at the 5’ side of the primer (Kwok et al., 1994). The following problem takes into account errors

(mismatches) between the primer and the strings, but ignores their position (i.e., we assume that all mismatches

are equally disruptive).

Problem 4 M INIMUM DEGENERACYDPD WITH ERRORS(MD-EDPD)

Given a set ofn strings and integersk ande, find a primer of lengthk and minimum degeneracy that matches all

the input strings with up toe errors (mismatches).

Under many circumstances, a single primer might not suffice,i.e., provide satisfactory coverage, due to its

limited degeneracy and the divergence of the input strings.A natural question is whether one could design several

primers that, together, would match all the strings.

Problem 5 M INIMUM PRIMERS DPD (MP-DPD)

Given a set ofn strings of lengthk and an integerd, find a minimum number of primers of lengthk and degeneracy

at mostd, so that each input string is matched by at least one primer.

In MP-DPD we assume that all the input strings are of the same length as the primers. If we remove this

constraint, i.e., allow the strings to have arbitrary length, we get a more general problem. This variant of DPD,

called Multiple DPD (MDPD), is studied in (Souvenir et al., 2003).

Finally, we may want to construct a pair (or several pairs) ofprimers, so that many of the input strings match

both primers. In gene terms, we would like to design one primer for the 5’ side of the genes and another primer

for the 3’ side — only genes that match both the 5’ (sense) and the 3’ (anti-sense) primers are amplified by the

PCR procedure. We require that an amplified gene matches the primers at separate positions, so that there is no

overlap between the match sites.
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Problem 6 MAXIMUM COVERAGE DEGENERATEPRIMER PAIR DESIGN (MC-DPD2)

Given a set ofn strings and integersk, d, find two primers —P1, P2, each one of lengthk and degeneracy at

mostd, so that a maximum number of input strings match both primers, and the match site ofP1 occurs in all

covered strings to the left of the match site ofP2, without overlap between them.

The above definition of MC-DPD2 does not take into account thepositions at which each primer matches

each gene. In particular, for an effective PCR we should require that the distance between the 5’ primer match

site and the 3’ primer match site is large enough (i.e., the amplified region of the gene is sufficiently long for

biological study). This additional constraint does not always pose a problem, as was the case in our application

(see Section 6) — if the genes contain well-separated conserved regions, we could simply look for good 5’ and

3’ primers in different, sufficiently far parts of the genes,and thus ensure that the amplified sequences are long

enough.

The real problem of designing degenerate primers combines ingredients from all the aforementioned DPD

variants. Namely, given a set of input strings, we would liketo construct a small set of degenerate primer pairs,

so that each of the strings matches at least one of the primer pairs with only a few mismatches. We can also

require that each amplified substring is longer than some specified threshold, and incorporate other factors that

influence PCR, such as the positions of the mismatches, GC content, and more (Kwok et al., 1994). Our theoretical

results focus on the simple, restricted DPD variants. As we will see in the next section, even those are hard. Our

heuristics, though, address most of the realistic issues satisfactorily.
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3 Complexity

In this section we shall discuss the computational complexity of the various variants of DPD we defined earlier.

Before we prove the hardness of DPD problems, let’s examine cases, for which we can suggest a polynomial

solution.

3.1 Polynomial-Time Solutions for Restricted Cases

DPD involves several parameters that influence its hardness. We shall now present polynomial-time algorithms

for solving DPD when the primer’s length (k), degeneracy (d), or coverage (m) are bounded.

3.1.1 Bounded Length

First, let us suppose thatk, the length of the primer, is bounded by a constant. Recall that � = 2j�j � 1 is the

number of possible character sets in each position of the primer (� is constant). A straightforward algorithm that

checks all thej�jk possible primers runs in timeO(kLj�jk), whereL is the sum of the lengths of the input strings

(O(kL) is the time it takes to check a single primer, i.e., count the number of input strings it matches). This naı̈ve

algorithm implies:

Theorem 7 DPD is polynomial whenk = O(logL).
Note that real values ofk are bounded (usually,20� 30), but the obtained time bound is impractical.

3.1.2 Bounded Degeneracy

Suppose we bound the degeneracyd of the primer. For the special case ofd = 1, the non-degenerate primer that

matches the maximum number of input strings is clearly a substring of one of the strings. Therefore, we need

to check less thanL candidate substrings (a string of lengthl containsl � k + 1 substrings of lengthk), and

choose the best one. More generally, ifd = O(1), we could consider all< L substrings and continue in one of

two ways. First, we could try to increase the degeneracy of each candidate substring by adding new characters at

various positions. There are no more thanÆ = blog2 dc degenerate positions in a primer whose degeneracy isd
or less, since each such position at least doubles the total degeneracy. At each degenerate position we could try
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all � possible character sets. Thus, there are a total of less thanL�kÆ��Æ degenerate primers to check, and the total

running time isO(kL2�kÆ��Æ).
A different approach would be to take each non-degenerate candidate and expand it using other substrings.

SupposeP 1 is a substring of the input stringS1. P 1 can be viewed as a non-degenerate primer (d(P 1) = 1) that

matchesS1. LetS2 be an input string thatP 1 does not match, and letP 2 be a substring ofS2. Obviously,P 1 6=P 2. LetP 12 = P 1 [ P 2. P 12 is a degenerate primer that matches bothS1 andS2, and its degeneracy is larger

than that ofP 1 andP 2, since it strictly contains them. Now,P 12 can be expanded using a third primer,P 3, which

is a substring of an input string that is not matched byP 12, and so on. We continue to expand the primer as long

as its degeneracy does not exceedd. In each step we consider all substrings of the yet un-matched input strings,

and add (in terms of the union operation) each substring to the primer, in its turn. Since the degeneracy of the

primer increases in each step by at least 1 (more accurately,by a factor of at leastj�j=(j�j � 1)), the number of

steps is no more thand. Therefore, the running time of the algorithm isO(kLLd). In summary:

Theorem 8 DPD is polynomial whend = O(1).
In Section 4 we shall introduce an efficient approximation algorithm that is a judicious variant of the first

approach we have just described — expanding a primer candidate by increasing its degeneracy.

3.1.3 Bounded Coverage

Another simple version of DPD is obtained when the number of strings the primer should match is bounded,

i.e.,m = O(1). As in the case of limited degeneracy, we could enumerate them k-long substrings the primer

matches. If their union is a primer with degeneracyd or less, then it is a valid solution. This algorithm has running

time ofO(kLm). In particular:

Theorem 9 DPD is polynomial whenm = O(1).
3.2 Combining MC-DPD and MD-DPD

In the Maximum Coverage DPD problem, we wish to construct a primer the same length as each of the input

strings and degeneracy� d that matches a maximum number of input strings (Problem 2). This is actually a
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simplified version of DPD: In the original problem, the inputstrings have arbitrary length, whereas in MC-DPD

they all have lengthk, which is also the length of the primer we seek. Another simplified DPD variant we defined

is MD-DPD (Minimum Degeneracy DPD), where we search for a primer with minimum degeneracy that matches

all the input strings (Problem 3). Here, the extra constraint we impose (with respect to the original DPD) is that

we require a full coverage, i.e.,m = n.

As we shall show below, both MC-DPD and MD-DPD areNP-Hard. One may wonder what happens when

we combine the two. In other words, is the DPD problem still difficult to solve when all the input strings are of

lengthk, and we seek a primer with degeneracy at mostd that covers them all? The answer is no — a trivial

polynomial solution is to simply compute the primerP , which is the union of all the input strings, i.e., prepare the

set of characters that appear at each position in the strings. If d(P ) � d, thenP is a feasible solution. Otherwise,

there is no such solution. Interestingly, this polynomial variant of DPD, which we shall denote FCFL-DPD (Full-

Coverage Full-Length DPD), regains itsNP-Hardness when we allow one mismatch between the primer and

each string (see Section 3.3.3), or when we design several primers instead of just one (see Section 3.3.4).

Theorem 10 FCFL-DPD is polynomial.

3.3 NP-Completeness of Variants of DPD

We shall now study the more difficult cases of DPD, for which exact polynomial-time solutions are not likely to

exist.

3.3.1 Maximum Coverage DPD

Our first hardness proof establishes that MC-DPD isNP-Complete, even for a binary alphabet. Since MC-DPD

is a special case of DPD, we conclude that DPD is alsoNP-Complete.

Theorem 11 MC-DPD isNP-Complete forj�j � 2.

Proof: Clearly, the decision version of MC-DPD is inNP . We complete the proof by reduction from the

Maximum Clique(CLIQUE, in short) problem, which isNP-Complete ((Karp, 1972), (Garey and Johnson,

1979, GT19)). Recall that a clique in a graph is a subset of thevertices, in which every two vertices are adjacent.
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CLIQUE: Given a graphG= (V;E) and a positive integerc, is there a clique of sizec in G?

Our reduction is illustrated in Figure 2. W.l.o.g. we can assume thatc > 3. We first setk = jV j (the length of the

primer and the input strings),d = 2c (the degeneracy of the primer), andm = �c2� (the required coverage). Next,

we buildn = jEj strings over the binary alphabet� = f0; 1g. For each edge inG, we prepare a binary string of

lengthk with 1’s at the positions that correspond to the two ends of the edge. Formally, letV = fv1; v2; : : : ; vkg,

ande = fvi; vjg 2 E. The stringSe we construct frome is: Se = s1s2 : : : sk, wheresx is ’1’ if x 2 fi; jg,

and ’0’ otherwise. The reduction is clearly polynomial. Figure 2

here
We now prove the correctness of the reduction. Assume there is a cliqueV 0 of sizec in G — V 0 = fvt1 ; vt2 ; : : : ; vtcg.

Let us examine the primerP that contains degeneracies at the positions that correspond to thec vertices of the

clique and0’s at the rest of the positions:P = p1p2 : : : pk; pi =8>><>>: f0; 1g i 2 ft1; t2; : : : ; tcg0 otherwiseP hasc degenerate positions and two possible characters at each such position, so its degeneracy isd = 2c. The

primer matches every string that corresponds to an edge in the clique, i.e., ife = fi; jg andi; j 2 ft1; t2; : : : ; tcg,

thenP matchesSe. Since there are
�c2� edges in the clique, it follows thatP matches at leastm strings, as

required.

Conversely, suppose there is a primerP = p1p2 : : : pk with degeneracyd � 2c that matches at leastm = �c2� of

the input strings. Sincej�j = 2, it follows that each degenerate position isf0; 1g, and thatd = 2Æ, whereÆ � c
is the number of degenerate positions inP . Denote byf the number of 1’s in the non-degenerate positions inP ,

i.e.: f = jf i j 1 � i � k; pi = 1gj, and letV 0 = fvt1 ; vt2 ; : : : ; vtÆg be the set of vertices that correspond to the

degenerate positions, i.e.,pt1 = pt2 = : : : = ptÆ = f0; 1g.

Claim 12 If c > 3, thenf = 0.

Proof: Notice that all the input strings we constructed contain exactly two 1’s. Thus, iff > 2, thenP does not

match any input string, i.e.,m = 0. Every two vertices inG are connected by no more than one edge. Hence,

if f = 2, we getm � 1 — the primer can only match the string that corresponds to theedgee = fvi; vjg, wherei
andj are the non-degenerate 1’s inP (i.e.,pi = pj = 1). Finally, if f = 1, and letpi = 1, thenP can only match

strings that correspond to edges whose one end isvi and the other end is inV 0, and thereforem � jV 0j = Æ � c.
13



Thus, we showed that iff > 0, it follows thatm � c. On the other hand,m � �c2�, so we get that iff > 0,

then
�c2� � c, which implies thatc � 3, a contradiction.

We now get back to the proof of Theorem 11: According to Claim 12, if c > 3, all the non-degenerate positions in

the primerP are ’0’. Therefore, every input string covered byP contains both its 1’s inP ’s degenerate positions.

In other words, them stringsP matches correspond tom edges in the subgraph induced byV 0. Since a graph

with jV 0j = Æ vertices contains no more than
�Æ2� edges, and sincem � �c2� andÆ � c, we conclude thatm = �c2�

andc = Æ, i.e.,V 0 is a clique of sizec, as required.

MC-DPD can easily be reduced to MC-DPD2, by simply concatenating each input string to itself. It is not

surprising that designing a pair of primers is at least as difficult as finding a single primer.

Corollary 13 MC-DPD2 isNP-Complete forj�j � 2.

3.3.2 Minimum Degeneracy DPD

Our next result establishes that MD-DPD isNP-Complete, too.

Theorem 14 MD-DPD isNP-Complete forj�j � 3.

The proof of the theorem is based on a reduction fromMinimum Set Cover(MSC) ((Karp, 1972), (Garey and

Johnson, 1979, SP5)). Using this reduction and a known hardness result of MSC, we can also show that it is

difficult to approximate the numberof degenerate positions in an optimal primer for MD-DPD:

Corollary 15 AssumingP 6= NP , there exists a constantc > 0 such that there is no polynomial-time algorithm

for MD-DPD, which is guaranteed to create a solution in whichthe number of degenerate positions is within a

factor ofc � logn of the optimum.

The full proofs of Theorem 14 and Corollary 15 are given in (Linhart, 2002).

3.3.3 Minimum Degeneracy DPD with Errors

In Section 3.2, we saw that combining MC-DPD and MD-DPD results in a simple polynomial problem, designated

FCFL-DPD (Theorem 10). If we generalize this problem by allowing up to one mismatch between the primer and
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every input string, we get a special case of MD-EDPD, which isNP-Complete.

Theorem 16 MD-EDPD isNP-Complete forj�j � 2, even ife = 1 and all input strings are of lengthk.

To prove the theorem we use a reduction fromMinimum Vertex Cover((Karp, 1972), (Garey and Johnson, 1979,

GT1)). Again, this allows us also to prove that it is difficultto approximate the number of degenerate positions in

MD-EDPD.

Corollary 17 AssumingP 6= NP , the number of degenerate positions in MD-EDPD, when we allow one mis-

match between the primer and each input string, is not approximable within a factor of1:36 in polynomial time,

even when all strings are of lengthk.

The full proofs of Theorem 16 and Corollary 17 are given in (Linhart, 2002).

3.3.4 Minimum Primers DPD

In the previous section we studied the complexity of a variant of MD-EDPD, which is a generalization, by allowing

mismatches, of FCFL-DPD. Another possible generalizationof this problem is the MP-DPD problem, in which

we seek several primers, rather than just one primer, that together cover the whole set of input strings. In this

section we prove that this problem isNP-Complete.

Theorem 18 MP-DPD isNP-Complete forj�j � 2.

Proof: Our proof is based on a reduction fromMinimum Bin Packing(MBP, in short) ((Garey and Johnson,

1979, SR1)).

MBP: Given l positive integersa1; : : : ; al (the items), and two additional integersc (the capacity) andb (the

number of bins), can the items be partitioned intob subsets, each with a total sum of at mostc?
MBP is StronglyNP-Complete, i.e., there exists a polynomialp, s.t. MBP remainsNP-Complete even if any

instance of lengthl is restricted to contain integers of size at mostp(l). We shall assume this restriction in our

reduction.

Given an instance of MBP, we construct an instance of MP-DPD over� = f0; 1g as follows. LetA = �li=1ai.
For each itemai we prepare a binary stringSi of lengthA. Let Ai be the sum of the firsti � 1 items, i.e.,
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Ai = �i�1i=1ai. The stringSi consists of a prefix ofAi 0’s, followed byai 1’s and a suffix of0’s:Si = si1si2 : : : siA ; sij = 8>><>>: 1 Ai < j � Ai + ai0 otherwise
Finally, we setk = A, d = 2c, and the target number of primersp = b, i.e., we ask whether there areb primers of

lengthA and degeneracy2c that match alll input strings. Figure 3 illustrates the reduction for a small example.

Note that the reduction is polynomial, since all the integers in the input of MBP are bounded byp(l). Figure 3

here
Given a solution to MBP —B1; : : : ; Bb, we construct a solutionP1; : : : ; Pb to MP-DPD as follows. LetTi be

the set of positions at whichSi contains1’s, i.e.,Ti = fAi + 1; : : : ; Ai + aig. For binBi = fai1 ; : : : ; aiug, we

construct the primerPi that matches the corresponding stringsSi1 ; : : : ; Siu :Pi = pi1pi2 : : : piA ; pij = 8>><>>: f0; 1g j 2 Ti1 [ Ti2 [ : : : [ Tiu0 otherwise
The number of degenerate positions inPi is jTi1 j + : : : + jTiu j = ai1 + : : : + aiu � c, as required. Obviously,

since every item belongs to one of the bins, every stringSi is covered by one of the primers.

Conversely, letP1; : : : ; Pb be a solution to MP-DPD. SupposePi contains the character ’1’ at positionj, andj 2 Tw. Then,Pi matches only the stringSw, since all other strings contain a ’0’ at positionj. W.l.o.g.,aw � c
(otherwise, there is clearly no solution to MBP), so we can replacePi by a different primer —P 0i , which consists

of degeneracies at positionsTw, and0’s at the rest of the positions. The degeneracy ofP 0i is at most2c and it

matchesSw, just likePi. Therefore, we can assume w.l.o.g. that the primersP1; : : : ; Pb consist only of0’s and

degeneracies. It is now clear how to construct a solution forMBP. For each primerPi we create a binBi. If

positionsTj are degenerate in the primerPi, then we add itemaj to binBi. The sum of the items we insert into a

single binBi is at mostc, as each degenerate position inPi contributes at most1 to this sum. Finally, since each

string is covered by at least one primer, it follows that the bins we obtain contain all the given items.

Suppose we describe MBP and MP-DPD as optimization functions, rather than decision problems, where

the number of bins and the number of primers, respectively, are to be minimized. Then, the above reduction

is, in effect, an L-reduction that preserves the target value — a solution withb bins to an instance of MBP is

transformed into a solution withb primers to the corresponding instance of MP-DPD, and vice versa. MBP is

not poly-time approximable within a factor of3=2� � for any� > 0 (Garey and Johnson, 1979). Unfortunately,
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this result does not hold when the input to MBP consists of integers bounded by a fixed polynomial — there

are no nontrivial inapproximability results for the strongly NP-Hard version of Bin Packing (Johnson, 2002).

Therefore, we cannot apply the L-reduction to prove that MP-DPD is hard to approximate.

A generalized version of MP-DPD, in which the input strings may have arbitrary length, was shown to beNP-

Hard in (Souvenir et al., 2003). Our result is stronger: evenif we limit all the strings to have the same length as

the desired primers, the problem isNP-Complete.

As noted earlier, ifp = 1, MP-DPD becomes FCFL-DPD, which is a polynomial problem (see Section 3.2).

For d = 1, that is, when no degeneracies are allowed, MP-DPD is the Primer Selection Problem, which isNP-

Complete if the input strings are of arbitrary length (Pearson et al., 1996), and polynomial if they are all of

lengthk — the number of primers required is simply the number of unique input strings. Several hardness and

inapproximability results for variants of PSP are given in (Doi and Imai, 1997).
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4 Approximation Algorithms

In this section we focus on MC-DPD. We developed polynomial approximation algorithms with provable approx-

imation ratios for MC-DPD, whenj�j = 2. We implemented a heuristic for the general DPD problem, which is

based on our approximation algorithms, and applied it to experimental data (see Sections 5 and 6). Before explor-

ing the properties of these algorithms, we shall discuss a couple of simple approximation methods. Unless stated

otherwise, we shall assume the binary alphabet —� = f0; 1g, for which the number of degenerate positions in a

primer is alwaysÆ(P ) = log2 d(P ). An algorithm is said to yield an approximation ratior (r > 1) if the primer

it constructs is guaranteed to match at leastmo=r input strings, wheremo is the coverage of an optimal solution.

4.1 Simple Approximations

Denote byM(P ) the set of input strings matched by a primerP . LetP o be an optimal solution with degeneracyd
to an instance of MC-DPD. Like any other primer with degeneracy d, P o is a union ofd non-degenerate primers

(strings of lengthk): P o = Sdi=1 P i, whereP 1,. . . ,P d constitute allthe non-degenerate sub-primers ofP o, andM(P o) = Sdi=1M(P i). LetPm be a sub-primer with the largest coverage, i.e.,jM(Pm)j = maxdi=1fjM(P i)jg.

Then, obviously,jM(P o)j � d � jM(Pm)j. It is now clear how one can obtain ad-approximation toP : Simply

traverse allk-long substrings of the input strings, and choose a substringP0 that matches a maximum number of

input strings. SincejM(Pm)j � jM(P0)j, we get:jM(P0)j � jM(P o)j=d. The algorithm runs in timeO(kL2),
whereL is the sum of the lengths of the input strings (in MC-DPD,L = nk). The running time can be reduced

to O(kL) using a hash table to store the number of strings matched by each substring. Notice that the output of

the above algorithm is an optimal non-degenerate primerP0, and its approximation ratio isd. We can improve

the algorithm by finding the optimal primerP� with � degenerate positions (1 � � � log2 d). P� approximates

MC-DPD within a factor ofd=2�, since the optimal primerP o can be represented as a union ofd=2� sub-primers,

each one with degeneracy2�, s.t. the set of strings covered byP o is the union of the sets of strings that match the

sub-primers. Unfortunately, findingP� takes exponential time with respect to�.

We now describe another algorithm, which starts with a completely degenerate primer, and gradually “con-

tracts” it. LetP k be a completely degenerate primer of lengthk and degeneracy2k. P k covers all the input

strings: jM(P k)j = n. We shall now reduce the degeneracy ofP k to d, by replacingk � Æ (Æ = log2 d)
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degenerate positions with simple characters. Denote byP ki (i 2 f0; 1g) the primer that begins with the char-

acteri, followed by k � 1 degeneracies. For example, ifk = 3, thenP k0 = 0�� andP k1 = 1��. Clearly,M(P k) = M(P k0 ) [M(P k1 ), so by choosing eitherP k0 or P k1 we get a primer whose coverage is at leastn=2.

Similarly, we can de-degenerate, or refine, the second position in the primer, i.e., replace it with ’0’or ’1’,

whichever is better, and obtain a primer with degeneracy2k�2 that matches at leastn=4 input strings, etc. Af-

terk� Æ steps we have a primer with the required degeneracyd, whose coverage is at leastn=2k�Æ, and therefore

at leastmo=2k�Æ. The total running time of the algorithm isO((k�Æ)n), as it suffices to examine the first(k�Æ)
characters in each input string.

Combining the two approximation algorithms we have just described, we can approximate MC-DPD within a

factor of2k=2: if Æ < k2 , we run the first algorithm; otherwise, we execute the secondalgorithm. In summary:

Proposition 19 MC-DPD can be approximated within a factor of2k=2 in timeO(kL).
4.2 Approximating the Number of Unmatched Strings

In this section we shall describe three approximation algorithms —CONTRACTION, EXPANSIONandCONTRACTION-

X. Unlike the previous algorithms we studied, these algorithms approximate the number of unmatchedstrings. In

other words, instead of expressing MC-DPD as a maximizationproblem, we now treat it as a minimization prob-

lem, designated MC-DPD�, in which the goal is to minimize the number of input strings that the primer does not

match, rather than maximizing the number of strings it does match (we now look at the empty half of the glass).

This does not alter the optimization problem, only the way inwhich we measure the quality of the approximation.

We say that an algorithm approximates MC-DPD� within ratio r (r > 1) if the number of strings not covered by

the primer it designs is no more thanruo, whereuo is the optimal solution value.

The CONTRACTION andEXPANSION algorithms construct the column distribution matrixD(b; i) that holds

the number of appearances, or count, of each character at each position. Formally, denote bySj = sj1sj2 : : : sjk thej-th input string,1 � j � n , then:8 b 2 �; 1 � i � k D(b; i) = jfj j sji = bgj
Let P o = po1po2 : : : pok be an optimal primer of degeneracyd, with Æ = log2 d degenerate positions. SupposeP o
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coversmo input strings. Denote byuo the number of strings thatP o does not match,uo = n � mo. Clearly,8b =2 poi , D(b; i) � uo, and for each non-degenerate positioni in P o, D(poi ; i) � mo. SinceP o containsk � Æ
non-degenerate positions, it follows that there arek � Æ (or more) columns inD with a value at leastmo. Given

a column distribution matrixD, we define the leading valueof columni, denotedv(i), as the largest value in that

column:v(i) = maxfD(b; i) j b 2 �g. Similarly, the leading characterof columni is a characterc(i), whose

count is the leading value:D(c(i); i) = v(i). Let v(i1) � v(i2) � : : : � v(ik) be the leading values inD, sorted

from largest to smallest. The following lemma follows from the discussion above.

Lemma 20 If P o coversmo strings, thenv(ik�Æ) � mo.
4.2.1 TheCONTRACTION Algorithm

The first algorithm we describe is calledCONTRACTION. The algorithm selects thek � Æ largest leading values

in D, and sets the output primerP c to contain thek� Æ corresponding leading characters, and degeneracies at the

rest of the positions, i.e.: 81 � i � k ; pci =8>><>>: c(i) i 2 fi1; : : : ; ik�Ægf0; 1g otherwise
An alternative way to describeCONTRACTION is as follows. The algorithm starts with a fully degenerate primer,

and contracts it iteratively (hence, its name). In each iteration, the algorithm discards the character with the

smallest count. In other words, it examines all the remaining degenerate positions, chooses a positioni that

contains a characterb, whose countD(b; i) is smallest, and removesb from positioni in the primer. The algorithm

stops once the degeneracy of the primer reachesd. In a sense, this is a smart variation of the simple2k�Æ-
approximation algorithm we saw in the previous section —CONTRACTION uses the column distribution matrix to

guide it in selecting good positions to refine, instead of choosing them arbitrarily. Figure 4 illustrates an execution

of CONTRACTION. Figure 4

here
The running time ofCONTRACTION is linear in the length of the input —O(nk), since this is the time it takes

to compute the column distribution matrixD, and thek�Æ largest leading values can be found in timeO(k) (Blum

et al., 1973; Dor and Zwick, 1999). It remains to prove the approximation ratio. At each degenerate position, the

primerP c has no mismatches with the input strings. Therefore, these positions do not affect the coverage of the
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primer, and we can ignore them in our analysis. According to Lemma 20,v(i1); : : : ; v(ik�Æ) � mo. Thus, at each

non-degenerate positionP c has a mismatch with at mostuo input strings. The total number of stringsP c does

not match cannot exceed the sum of the number of mismatches ateach position, which is bounded by(k � Æ)uo.
In conclusion:

Theorem 21 CONTRACTION approximates MC-DPD� within a factor of(k � Æ) in timeO(nk).
4.2.2 TheEXPANSION Algorithm

The second algorithm, calledEXPANSION, performsn iterations. In each iteration, it expands (degenerates) an

input string. In thej-th iteration,EXPANSION computes the matrixD0j :8b 2 f0; 1g ; 1 � i � k ; D0j(b; i) = 8>><>>: 0 sji = bD(b; i) otherwise
Intuitively,D0j(b; i) is the number of strings that will be mismatched due to setting thei-th position in the primer

to sji while theiri-th position isb. EXPANSION then selects theÆ largest leading values inD0j : v0j(i1); : : : ; v0j(iÆ),
and uses them to expandSj and create a primerP j = pj1 : : : pjk, as follows:81 � i � k ; pji = 8>><>>: f0; 1g i 2 fi1; : : : ; iÆgsji otherwise
The output of the algorithm,P e, is the best primerP j it found in then iterations.

Denote bymc andme the number of strings covered by the primersP c andP e, respectively. Lemma 22

establishes thatP e is at least as good asP c, and, therefore,EXPANSION also guarantees a(k� Æ)-approximation

to MC-DPD�. In fact, as the lemma implies, in some casesEXPANSION may find a better primer thanCON-

TRACTION, as demonstrated in Figure 5. On the down side,EXPANSION is slower — its running time isO(n2k),
dominated by the coverage computation of then primers it constructs. Figure 5

here

Lemma 22 me � mc.
Proof: Let Sj be a string covered byP c. We shall prove thatEXPANSION expandsSj into P c, i.e.,P j = P c,
which impliesme � mc. Let v(i1); : : : ; v(ik�Æ) be thek � Æ largest leading values inD. CONTRACTION sets
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positionsi1; : : : ; ik�Æ in P c as the corresponding characters inSj , and the restÆ positions inP c are degener-

ate. Sincej�j = 2, each column inD has two entries, whose sum isn. Therefore, the complement characters

of c(i1); : : : ; c(ik�Æ) have the smallest count inD, so theÆ largest counts inD0j cannot be in those columns. In

other words, theÆ leading values selected in thej-th iteration ofEXPANSION are from the columns:f1 � i �k j i 6= i1; : : : ; ik�Æg. Thus,P j is exactlyP c. Note that if different characters have equal counts, the proof does

not hold. We can easily fix this, by modifying the sort functions of the algorithms, so that leading values with

equal counts are sorted according to their column index in ascending (descending) order inCONTRACTION (EX-

PANSION).

Corollary 23 EXPANSION approximates MC-DPD� within a factor of(k � Æ) in timeO(n2k).
4.2.3 TheCONTRACTION-X Algorithm

We now present an improved version ofCONTRACTION, calledCONTRACTION-X, that yields better approxima-

tions at the expense of longer running times. A similar improvement could be developed for theEXPANSION al-

gorithm, as well. The main idea we employ is to examine several positions simultaneously, and decide which are

best to refine (i.e., de-degenerate), instead of checking the distribution at each position separately. Formally, letx
be a pre-defined integer,1 � x � k � Æ. For simplicity, assumex j (k � Æ). Denote by�b = (b1; : : : ; bx) a binary

vector of lengthx, or x-tuple, and denote by�i = (i1; : : : ; ix); 1 � ij � k, a set ofx distinct positions. Define

the multi-column distribution matrixMD(�b;�i) as the count of thex bits of�b at positionsi1; : : : ; ix in the input

strings, i.e.: MD((b1; : : : ; bx); (i1; : : : ; ix)) = jfj j sji1 = b1; : : : ; sjix = bxgj
LetP o be an optimal primer, and denote byuo the number of input strings it does not match.CONTRACTION-

X starts with a completely degenerate primer,P x = px1 : : : pxk, pxj = f0; 1g, and iteratively refines it. In the first

iteration, it selects anx-tuple with the largest count and sets thex corresponding positions in the primer to contain

the bits of thex-tuple. In other words, ifMD(�b0; �i0) = maxfMD(�b;�i)g, then:81 � j � x ; pxi0j = b0j . In the next

iteration,CONTRACTION-X continues to refineP x in a similar fashion. It examines allx-tuples in positions that

are still degenerate, i.e., that were not refined in the first iteration, selects anx-tuple with the largest count, and
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sets the corresponding positions inP x accordingly. The algorithm performsk�Æx iterations, as above, and reports

the obtained primerP x. Since in each iteration it refinesx new positions, the output primer contains exactlyÆ
degeneracies, as required. Ifx - (k � Æ), and denoter = (k � Æ)mod x, thenCONTRACTION-X performsbk�Æx c
iterations as above, and an additional iteration, in which it refines onlyr positions, that is, it computes the count

of everyr-tuple at each subset ofr positions that are still degenerate, selects the largest one, and refines those

positions accordingly.

A sample execution ofCONTRACTION-X on seven input strings, withk = 7, Æ = 3 andx = 2, is illustrated

in Figure 6. Notice that forx = 1, CONTRACTION-X is identical toCONTRACTION. In the other extreme case,

whenx = k � Æ, CONTRACTION-X effectively considers allk-long primers withÆ degeneracies, and it therefore

always yields an optimal primer. The multi-column distribution matrix is also utilized in Multiprofiler, a motif

finding algorithm that has recently been reported to detect particularly subtle motifs (Keich and Pevzner, 2002). Figure 6

here

Theorem 24 CONTRACTION-X approximates MC-DPD� within a factor of dk�Æx e in timeO(�kx�n(k � Æ)) and spaceO(�kx�nx).
Proof: Suppose thatx j (k � Æ). Let us examine thej-th iteration ofCONTRACTION-X. At the beginning of

the iteration, the primerP x contains at leastÆ+ x degenerate positions (actually, it contains exactlyk� (j � 1)x
degeneracies). W.l.o.g.,P o contains exactlyÆ degeneracies (otherwise, we can add degeneracies to it, without

changing its coverage). Thus, there are at leastx degenerate positions inP x that are not degenerate inP o. Denote

themi1; : : : ; ix. P o does not matchuo input strings, hence:maxfMD(�b;�i)g �MD((poi1 ; : : : ; poix); (i1; : : : ; ix)) � n� uo
Therefore, in each iteration,CONTRACTION-X refinesx positions, s.t. thex-tuple it sets at these positions has

mismatches with at mostuo input strings. The total number of stringsP x does not match is, in the worst case, the

sum of the number of mismatched strings in each iteration, which is at mostk�Æx uo. If x - (k � Æ), the algorithm

performsbk�Æx c+ 1 iterations, so the number of stringsP x does not cover is at mostdk�Æx euo.
The matrixMD contains2x�kx� entries, and can be computed in timeO(2x�kx�nx). SinceMD might be sparse,

especially whenx is relatively large, a more efficient representation ofMD in terms of time, as well as space, is

an arrayA of
�kx� hash tables — the entryA(�i) in the array contains a hash table with the counts of allx-tuples that

appear at positions�i in the input strings. For each�i � f1; : : : ; kg; j�ij = x, and for each input string, we add the
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x-tuple at positions�i in the string to the hash tableA(�i) (with an initial count of1), or increment the count of thex-tuple if it already exists inA(�i). A contains the count of a total ofO(�kx�n) x-tuples. The construction ofA takesO(�kx�nx) time and space. In each iteration ofCONTRACTION-X we find a pair(�b;�i) with the maximum count

in the sub-matrix ofMD induced by the degenerate positions inP x (i.e., we ignore a column�i = (i1; : : : ; ix)
if 9j, s.t. pxij 6= f0; 1g). A single iteration can be performed in time linear in the size ofA, or O(�kx�nx) —

for each of theO(�kx�n) entries inA, we check in timeO(x) whether itsx positions are still degenerate inP x,

and find the largest count among all those entries. The total running time is, thus,O(�kx�n(x + xdk�Æx e)), orO(�kx�n(k � Æ)).
4.2.4 Non-Binary Alphabets

So far, we have discussed several approximation algorithmsfor MC-DPD whenj�j = 2. However, in many

real-life applications the alphabet is not binary, as is thecase when designing primers for genomic sequences

(j�j = 4). The simple approximations described in Section 4.1 are easily generalized to large alphabets, as we

shall now show. LetP o be an optimal primer of lengthk and degeneracyd for a given set ofn strings over�.

Letmo be the coverage ofP o. The primerP o is a union ofd non-degenerate primers, and the number of strings

covered byP o is at most the sum of the coverage of these non-degenerate primers. Hence, an optimal non-

degenerate primer, which is simply ak-long substring that appears in the largest number of input strings, covers

at leastmo=d strings.

As in the binary case, we can also devise a simple contractionalgorithm for non-binary alphabets. For con-

venience, denote� = j�j, andÆ0 = blog� dc. A completely degenerate primer of lengthk has degeneracy�k
and coveragen. By replacing the first degeneracy in the primer with a simplecharacter (one that gives the largest

coverage) we get a primer with degeneracy�k�1 that covers at leastn=� strings. We similarly refine posi-

tions2; : : : ; k � Æ0, and obtain a primer with degeneracy at mostd and whose coverage is at leastn=�k�Æ0
, and

therefore at leastmo=�k�Æ0
.

Both algorithms we have just outlined run in timeO(kL), as explained in Section 4.1. Combining them, we

get aj�jdk=2e-approximation algorithm for MC-DPD: ifd � j�jdk=2e, then�k�Æ0 � j�jdk=2e, so we run the

second algorithm; otherwise, we run the first algorithm (compare to Proposition 19).
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Proposition 25 Whenj�j > 2, MC-DPD can be approximated within a factor ofj�jdk=2e in timeO(kL).
Unfortunately, the results we obtained in Section 4.2 for the CONTRACTION andEXPANSION algorithms do

not hold for non-binary alphabets. There are two complications in large alphabets. First, there is more than one

possibility for a degenerate position. Whenj�j = 2, every degenerate position in the primer isf0; 1g, whereas

when j�j > 2 we need to choose one among several possible degeneracies (subsets of� with more than one

character) at each degenerate position. Second, there is the additional complexity in deciding how to partition

the degeneracy between the positions. In the binary case, the degeneracy is always of the form2Æ, whereÆ is the

number of degenerate positions. However, whenj�j > 2, the number of degenerate positions could be any one

of many values. For example, ifd = 16 and j�j = 4, there may be four degenerate positions (each one with

degeneracy2), three (4; 2; 2), or only two (4; 4). In the next section, we describe heuristics for MC-DPD with

non-binary alphabets that are based onCONTRACTION andEXPANSION, and perform well in practice.
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5 Implementation: The HYDEN Program

We developed and implemented an efficient heuristic, calledHYDEN (Linhart and Shamir, 2003), for designing

highly degenerate primers. The input toHYDEN is a list of DNA sequences and a set of integers that specify the

length of the primer, its maximum degeneracy, and the numberof mismatches it is allowed to have with every

sequence it covers.HYDEN constructs a primer with the specified length and degeneracythat covers many of the

given sequences. It does so by running a 3-phase algorithm, outlined in Figure 7. In the first phase,HYDEN locates

conserved regions in the DNA sequences by finding ungapped local alignments with a low entropy score. In the

second phase, it designs primers using variants of theCONTRACTION and EXPANSION algorithms. Finally, it

uses a greedy hill-climbing procedure to improve the primers, and selects the one with the largest coverage as the

output. HYDEN is written in C++, and runs under Windows and Linux.HYDEN is freely available for academic

use (http://www.math.tau.ac.il/�rshamir/hyden/HYDEN.htm). Figure 7

here

Formally, letI = fS1; : : : ; Sn; k; d; eg be the input toHYDEN, whereS1; : : : ; Sn aren strings over� =fA,C,G,Tg
with a total length ofL characters, andk, d, ande are the length, degeneracy, and mismatches parameters, respec-

tively. Let Na, Na0 , Ng andNh be additional integer parameters, whose roles will be explained soon. Denote

by A an ungapped local alignment (alignment, in short) of the input strings, that is, a set ofn substrings of

lengthk (actually,A is a multi-set, since it may contain several copies of a substring). Denote byDA the column

distribution matrix of the substrings inA. In order to determine how well-conserved the alignment is,and thereby

estimate how likely we are to construct a good primer from it,we compute its entropy score,HA:HA = � kXi=1Xb2� DA(b; i)n � log2 DA(b; i)n
The lower the entropy score is, the less variable are the columns ofA, and, intuitively, the greater the chances

are for finding a primer that covers many of the substrings inA. The first phase ofHYDEN, calledH-ALIGN ,

exhaustively enumerates all substrings of lengthk in the input strings, and generates an alignment for each one, as

follows (see Figure 8). LetT = t1t2 : : : tk be a substring of lengthk. In each input stringSj , H-ALIGN finds the

best match toT in terms of Hamming distance, i.e., thek-long substringT j of Sj that has the smallest number of

mismatched characters withT . The substringsT 1; : : : ; Tn (one of which isT itself) form the alignmentAT . After

considering allO(L) different substrings in the input,H-ALIGN obtainsO(L) alignments. TheNa alignments
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with the lowest entropy score are passed to the second phase.H-ALIGN runs in timeO(kL2). Fortunately, a few

simple heuristics, which we describe below, reduce the running time considerably with marginal impact on the

quality of the results. Figure 8

here
LetAh � A be an arbitrary subset of an alignmentA, jAhj = Nh. Provided thatNh is not too small, we can

useAh in order to estimate how well-conservedA is, or, in other words, we may assume thatHAh � HA. Thus,

a more efficient version ofH-ALIGN iterates allk-long substrings, and aligns onlyNh input strings to each one.

Then, theNa0 substrings, whose alignments received the lowest (partial) entropy scores, are re-aligned against

all n input strings, their full entropy score,HA, is computed, and the bestNa (� Na0) alignments are passed to

the next stage. If all input strings have approximately the same length, then this efficient version ofH-ALIGN runs

in timeO(kL(Nhn L + Na0)). Another improvement we applied exploits the fact that alignments obtained from

highly overlapping substrings are very similar. Therefore, if the alignment we get from a substringsi : : : si+k�1
has a high entropy score, there is no point in checking the next substring:si+1 : : : si+k, as it is highly unlikely to

yield good results, too. In fact, if the entropy score is verypoor, we may decide to skip more than one substring.

In practice, this simple idea reduced the running time ofH-ALIGN by another factor of 2–4.

The second phase constructs two primers from each of theNa alignments. Given an alignmentA with a

column distribution matrixDA, HYDEN runs two heuristics —H-CONTRACTION andH-EXPANSION. These al-

gorithms are generalizations of theCONTRACTION andEXPANSION approximation algorithms, respectively, to

non-binary alphabets.H-CONTRACTION starts with a fully degenerate primer, and discards characters at degener-

ate positions with the smallest count inDA until the primer reaches the required degeneracy, as shown in Figure 9.

H-EXPANSION employs an opposite approach. It uses the substringT 2 A, from whichA was constructed, as an

initial non-degenerate primer, and repeatedly adds to it a character with the largest count as long as its degeneracy

does not exceed the thresholdd, as detailed in Figure 10. Notice that the originalEXPANSION algorithm repeats

this procedure for each substring inA. However, early experiments demonstrated that if many of the input strings

can be covered by a single primer, there is very little difference between primers obtained by expanding different

substrings inA (data not shown). Therefore, inH-EXPANSION we chose to expand only one substring from each

alignment. Finally, the second phase ofHYDEN computes the coverage of the2Na primers it constructed, and

selects theNg (� 2Na) primers that match the largest number of input strings (with up toe mismatches). The

running time of the second phase ofHYDEN isO(NakL). Figures 9

and 10 here
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The final phase ofHYDEN tries to improve theNg primers found in the previous phase using a simple hill-

climbing procedure, calledH-GREEDY. Given a primerP , H-GREEDYchecks whether it can remove a character in

a degenerate position inP and add a different character in any position instead, so that the coverage of the primer

increases. This process is repeated as long as coverage is improving (see Figure 11). Denote byr the number of

iterations performed until a local maximum is reached. Then, the running time ofH-GREEDY isO(rk3L). In our

experiments,r was almost always below5. In order to limit the running time in the general case, one could fix an

upper bound�r on the number of improvement iterations the algorithm performs, thereby setting the total running

time of the third phase ofHYDEN toO(Ng�rk3L). Figure 11

here
HYDEN runs in total time ofO(kL(Nhn L + Na0 + Ng�rk2)). Notice that the input parametersd ande are

missing from the formula — the reason is that the performancedepends linearly onlog d ande, both of which

are accounted for in theO(k) factor. As we shall demonstrate in the next section,HYDEN is sufficiently fast for

designing a primer of lengthk � 30 for a set of hundreds of DNA sequences, each1Kbp long. Moreover, by

modifying the various parameters, one can control the tradeoff between the running time of the program and the

quality of the solution it provides. We report concrete running times and parameters in the next section.

HYDEN is a generalization of the(k � Æ)-approximation of MC-DPD� that we presented in Section 4.2. If

a set of binary strings of lengthk is supplied to the program, ande = 0, the alignment phase does nothing (the

strings are already aligned), the second phase yields the approximation (H-CONTRACTION is identical toCON-

TRACTION whenj�j = 2), and the final greedy phase may further improve the solution. We have no theoretical

guarantee on the performance ofHYDEN in the general case, and, specifically, for genomic sequences of arbi-

trary length. Nevertheless, as we shall see, the results it produced in practice for the OR subgenome were highly

satisfactory.
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6 Applications

6.1 Deciphering the Human Olfactory Subgenome

HYDEN was originally developed and implemented as part ofDEFOG, an experimental scheme for DEciphering

Families Of Genes (Fuchs et al., 2002).DEFOG provides a powerful means for analyzing the composition of a

large family of genes with conserved regions, and is thus especially useful in species for which little genomic data

is available. In addition,DEFOG can be applied to analyze cDNA libraries of gene families.DEFOG consists of

several computational and experimental phases. First, given a subset of known gene sequences,HYDEN is used

to design degenerate primer pairs. The primers are then usedin PCR to amplify fragments of genes, known as

well as unknown, of the same family. The fragments are cloned, and an oligofingerprinting (OFP) process (Clark

et al., 1999; Herwig et al., 2000; Meier-Ewert et al., 1998; Radelof et al., 1998) characterizes the clones by

their patterns of hybridization with a series of very short (8-mer) oligonucleotides. Another novel algorithm,

calledCLICK (Sharan and Shamir, 2000; Sharan et al., 2003), clusters theclones into groups corresponding to the

same gene according to their hybridization patterns. Finally, representatives from each cluster are sequenced and

compared to the known gene sequences. TheDEFOG project is joint work with the groups of H. Lehrach (MPI

Berlin) and D. Lancet (Weizmann).

The DEFOG scheme was applied to the human olfactory receptor (OR, in short) subgenome. The human

genome contains more than1000 OR genes, of which more than60% are considered pseudogenes (Glusman

et al., 2001; Zozulya et al., 2001). OR genes have a single coding exon of about1Kbp, and code for seven-

transmembrane domain proteins (Buck and Axel, 1991). They have several highly conserved regions, primarily

in transmembrane (TM) segments 2 and 7. In contrast, TM segments 4 and 5 show a high degree of variability —

a crucial feature for recognizing a huge variety of odorants(Pilpel and Lancet, 1999).

Our experiment began with an initial collection of 127 OR genes, whose full DNA coding sequences of

size1Kbp were known at the time (Fuchs et al., 2000). This collection comprised our training set, on which

HYDEN designed the primers. In order to design both 5’ and 3’ primers, we ranHYDEN separately on the first

and last300bp of each OR gene. Altogether, we designed13 primers —6 for the 5’ side (denoted L5, L9, L10,

L20, L31 and L131) and7 for the 3’ side (R5, R20, R28, R73, R110, R147 and R442), of lengthsk = 26; 27
and various degeneracies between4; 608 and442; 368 (the primers were namedDn, whereD is ’L’ for 5’ and
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’R’ for 3’, and n is the rounded degeneracy of the primer in thousands). The primers on each side are quite

similar to one another, and differ mainly in their degeneracy, except for four special primers — one pair (L9 and

R110) was designed at different positions, closer to the 5’ and 3’ ends of the genes, and another pair (L20 and

R20) was designed on a subset of genes that were poorly matched by the other primers. These four primers were

constructed in order to “fish out” genes that, for some reason, are not amplified by the other primers. A typical

run of HYDEN on 300bp segments of the127 OR genes, withk = 26, d = 20; 000, ande = 2 (andNh = 50,Na0 = 8; 000, Na = 3; 000, Ng = 100), takes approximately10 minutes, distributed evenly among the three

phases of the program, on a P41:4GHz PC with256MB RDRAM. Except for the special primers, each primer

matches76%� 90% of the training-set genes with up to two mismatched bases.

From the 13 primers we designed, we selected20 different pairs (see Table 1), and used them in PCR reactions.

The degeneracy of a pair of primers is defined as the product ofthe degeneracies of both primers. The degeneracy

of the pairs we selected ranged between2:1 � 107 and 1:4 � 1010. To the best of our knowledge, this is the

highest degeneracy ever used successfully in PCR reactions— extant applications usually use degeneracies lower

than105. We also experimented with even higher degeneracies (up to2:2 � 1011), but their yield was usually very

poor, perhaps since the concentration of each individual primer is too low to allow successful PCR amplification.

Most primer pairs covered70%� 80% of the training-set genes with up to three mismatched bases in both sides

combined (we used a threshold of three mismatches, since early experiments have shown that it predicts successful

PCR amplification reasonably well — data not shown). Table 1
here

Table 1 summarizes the performance of the20 primer pairs we used in theDEFOG experiment. Most of the

primer pairs yielded a satisfactory number of clones (several hundreds). Exceptions are L131/R28 (181 clones)

and L31/R442 (131 clones). The latter was the most degenerate primer pair for which we could obtain a reasonable

yield. Since only6:8% of the clones were sequenced, we do not know the full number ofdistinct genes each

primer pair amplified. Thus, in order to evaluate how well theprimers performed in practice, we computed their

sequencing efficacy— the percentage of distinct genes that were obtained by eachprimer pair, out of the total

number of clones sequenced for that pair (the seventh columnin Table 1 divided by the sixth column). For10 out

of 12 primer pairs with degeneracy over109, sequencing efficacy was79%� 93%, whereas for all8 primers with

lower degeneracy, it was57%� 79%.

Figure 12 shows the sequencing efficacy of several of the primer pairs we used, as a function of the degeneracy.
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We excluded pairs that contain a special primer, in order to allow a fair comparison between pairs with different

degeneracies. For the same reason, we included only pairs, in which the 5’ and the 3’ primers are of length 26

and have comparable degeneracy (to ensure that in all the pairs we compare the degeneracy is divided similarly

between the two primers). The pairs that match these criteria are L5/R5, L10/R5, L5/R28, L10/R28, L31/R73,

and L31/R442. Also shown in the figure is the number of newgenes (with respect to the training-set) sequenced

from each primer pair, as a percentage of the total number of clones sequenced for that pair. The correlation

between this number and the sequencing efficacy is very apparent — for most primers,70%� 90% of the genes

we sequenced were new; for the six pairs shown in Figure 12, the ratio is much less variant —72%� 75% of the

genes were new. Note that the sequencing efficacy, accordingto the way we compute it, depends not only on the

performance of the primers, in terms of the number of genes they amplified, but also on the clustering and target

selection procedures. For example, ifCLICK assigned the clones of a certain gene to two or more clusters,instead

of just one, then we may have sequenced multiple copies of that gene and the sequencing efficacy would have

dropped. Furthermore, the924 clones we sequenced include140 clones from six clusters, which we sequenced

exhaustively in order to obtain statistics on the quality ofthe clustering analysis (see (Fuchs et al., 2002)). The

reported sequencing efficacy is therefore lower than the true efficacy of the primers. Figure 12

here
The DEFOG experiment almost tripled the size of our initial OR repertoire, from 127 genes to358. The

extremely degenerate primers we designed proved very effective: They achieved high sensitivity, amplifying300
unique OR genes, and extremely high specificity, yielding only 0:4% (4 out of 924) non-OR products. The

combination of the OFP process and theCLICK clustering software allowed a low-redundancy sequencing —

cluster analysis partitioned the13; 580 clones we obtained into239 clusters and121 singletons (single clone

clusters), from which we sequenced only924 (6:8%) clones. The full experimental details and results are reported

elsewhere (Fuchs et al., 2002).

After the publication of the first draft of the human genome, we analyzed the performance of the primers on all

full-length OR sequences that were computationally detected in the draft. This set consisted of719 genes (Glus-

man et al., 2001)1. These genes served as a test set, with which we checked how well the coverage of our primers

extends from the training set to a larger collection of genes. Note that125 of the training-set genes are also in

the test set, with slight changes. Figure 13 shows the3-mismatches coverage of several primer pairs, both for the

1Sequences are available in the HORDE database at http://bioinformatics.weizmann.ac.il/HORDE
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training set and the test set (Table 1 contains the full data). Again, in order to allow a fair comparison between

the primers, we included only the pairs L5/R5, L10/R5, L5/R28, L10/R28, L31/R73, and L31/R442, as well as a

couple of additional primers that were designed byHYDEN but were not used in the experiment. Figure 13

here
As expected, primers with higher degeneracy have a larger coverage in both sets. Also apparent is the sharp

and steady increase in the test-set coverage as the degeneracy increases — from10% coverage for non-degenerate

primers to50%–65% for the primers we used and74% for a pair with degeneracy4 � 1012. In practice, one

cannot use arbitrarily high degeneracies, for two reasons.First, highly degenerate primers have low specificity,

and so they might amplify many non-related sequences. This did not prove to be a problem even with the high

degeneracies that we used — only0:4% of the clones we sequenced were not OR genes. Second, as mentioned

earlier, PCR gives a poor yield when the degeneracy is very high, which is what limited us to use primer pairs

with degeneracy not higher than1:4 � 1010. Another conclusion from the above analysis is that the basic premise

behind theDEFOGscheme proved valid: The training set was indeed a good representative set of the full set, in

terms of primer properties, and facilitated the design of primers that matched hundreds of additional unknown

genes.

6.2 The Canine Olfactory Subgenome

Encouraged by the results we obtained for the human OR subgenome, we launched a project with the group of D.

Lancet (Weizmann) for analyzing the canine OR subgenome. Weused two approaches: data mining in the Celera

1.3X sequence coverage of the dog genome, and a simplified version of DEFOG, in which we skipped the OFP

and clustering phases (i.e., clones were selected for sequencing arbitrarily, rather than based on the fingerprints

clustering). Since very few canine OR genes were fully knownat the time, we ranHYDEN on the set of719 human

ORs, and designed several primer pairs with degeneracy between1:2 � 106 and2:2 � 1010. Despite the significant

differences between the human and canine olfactory systems, the human-based primers amplified many ORs from

the dog genome. The1200 clones sequenced contained246 distinct canine OR genes (the full dog OR repertoire is

estimated to contain some1200 genes). About14% of these genes are pseudogenes, similar to the ratio in mouse

(20%) (Young et al., 2002; Zhang and Firestein, 2002), but far from the ratio in human (> 60%) (Glusman et al.,

2001; Zozulya et al., 2001). This reflects the fact that both dog and mouse are macrosmatic animals, i.e., have a

very acute sense of smell, whereas human is microsmatic. Thefull details of our work on the canine olfactory
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subgenome appear in (Olender et al., 2004). This project demonstrates thatDEFOG can be applied to study an

unsequenced genome using degenerate primers designed according to a related species.

6.3 Olfaction vs. Vision among Primates

Another interesting project that utilizedHYDEN is described in (Gilad et al., 2004). In that study, degenerate

primer pairs designed based on human ORs were used to sequence 100 OR genes in human and in18 primate

species, for which the genome sequence is not available, including apes, Old World monkeys (OWMs) and New

World monkeys (NWMs). As expected, the proportion of OR pseudogenes in human was found to be very high

(above50%). In great apes and OWMs, roughly30% of the sequenced ORs are pseudogenes, whereas in NWMs

this ratio is significantly lower — only18% are pseudogenes. However, there is one exception: one NWM species,

the howler monkey, was found to have a similar proportion of OR pseudogenes (31%) to that of OWMs and apes.

Gilad et al. noticed that another phenotype that is shared only by the howler monkey, OWMs, and apes is full

trichromatic color vision. Thus, the deterioration of the olfactory subgenome repertoire and the acquisition of

full trichromatic vision occurred independently in two separate evolutionary branches: in the common ancestor

of OWMs and apes, and in the New World howler monkey. This suggests an association between two senses on

an evolutionary genetic scale: as vision improved in some ofthe primate species, they became less dependent on

their sense of smell, which led to its decline.
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7 Concluding Remarks

In this work, we introduced DPD — a combinatorial optimization problem aiming for optimal design of de-

generate primers. We defined several variants of the problem, and studied their computational complexity. We

developed approximation algorithms for MC-DPD, a simplified version of DPD, with binary input strings, and

implementedHYDEN, an efficient heuristic for the general case. We executedHYDEN as part of an experiment for

sequencing the human olfactory subgenome.HYDEN proved quite effective in designing highly degenerate and

yet highly specific primers.

On the theoretical side, one may wish to design approximation algorithms for MC-DPD with better approx-

imation ratio and/or faster running time. Tighter inapproximability bounds could close the gap from the other,

less desirable, direction. Another important advance would be to generalize the algorithms to cope with arbitrary

length input strings over non-binary alphabets and allow mismatches between the primer and the strings. Approx-

imation algorithms for other DPD variants we defined, namelyMD-DPD and MP-DPD, could also have practical

contribution.

On the practical side, a more realistic primer-gene matching model, which takes into account biological aspects

of the PCR procedure, could yield primers with greater sensitivity. It is known that mismatches at the 3’ terminus

are more detrimental to PCR than internal mismatches (Kwok et al., 1994), and that different types of mismatches

have different effects on the reaction, e.g., A:C is less disruptive than A:G (Kwok et al., 1990). In addition, a

situation where one primer is complementary to itself or to another primer should be avoided, since it leads to a

competition among the primers and the sequences and greatlyreduces the efficiency of the PCR. Other factors

that should be considered are the GC content and melting temperature of the primers.

We have recently extendedHYDEN, so that it could design several primer pairs. The first pair is constructed

by running the algorithm described in Section 5 twice — for designing primers on the 5’ and on the 3’ side

of the DNA sequences (the distance between the two regions can be set according to the specific requirements

of the experiment). After the first primer pair is selected, all matching sequences are removed, and a second

pair is designed using the remaining sequences. We repeat this process until a sufficiently large fraction of the

input sequences is covered by the primers. This iterative procedure, described independently in (Souvenir et al.,

2003), is a heuristic for solving MP-DPD. It is useful when more than one primer pair is required in order to
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reach satisfactory coverage. Another heuristic for solving MP-DPD is the programMIPS, which was reported to

outperform the iterative version ofHYDEN when applied to the task of designing multiplex PCR experiments for

SNP genotyping (Souvenir et al., 2003). As noted by Souveniret al., the problems solved by the two algorithms

are quite different — mainly,MIPS constructs a set of primers for one PCR experiment with multiple primers,

whereasHYDEN designs primer pairs for separate experiments (one pair perexperiment). If one wishes to use

HYDEN for multiplex PCR, a better approach would be to design a set of 5’ primers and a set of 3’ primers

separately. Each set could be constructed using an iterative procedure similar to the one described above (but on

one side only), until sufficient coverage is reached. It would be interesting to compare the performance of this

version ofHYDEN to that ofMIPS. Note that when using several different primers in the same PCR, one has to

make sure the primers will not hybridize with one another. Both MIPS andHYDEN ignore this crucial issue, so

additional tools should be used to check whether the designed primers might cross-hybridize.

The first phase ofHYDEN locates many conserved blocks in the given sequences. Instead, we could per-

form this step using some other available software for computing ungapped local multiple alignments, such as

ClustalW (Thompson et al., 1994) or BlockMaker (Henikoff etal., 1995). For each block found in the first phase,

HYDEN designs primers using heuristics based on theCONTRACTION andEXPANSIONapproximation algorithms.

It would be interesting to implement theCONTRACTION-X algorithm (or, for practical applications, a generaliza-

tion of it to non-binary alphabets) and compare its performance to that ofCONTRACTION. Theoretically, at least,

CONTRACTION-X should produce primers with larger coverage.

We hope to exploit the utility of degenerate primers on othergene families and other species. We are currently

involved in several projects that use degenerate primers tostudy gene families and cDNA libraries.HYDEN is also

being employed by several other labs for various tasks.
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Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., and Pääbo, S. (2004). Loss of olfactory receptor genes coincides

with the acquisition of full trichromatic vision in primates. PLoS Biology, 2(1):E5.

Glusman, G., Yanai, I., Rubin, I., and Lancet, D. (2001). Thecomplete human olfactory subgenome.Genome

Research, 11:685–702.

Henikoff, S., Henikoff, J., Alford, W., and Pietrokovski, S. (1995). Automated construction and graphical presen-

tation of protein blocks from unaligned sequences.Gene, 163:GC:17–26.

Hertz, G. and Stormo, G. (1999). Identifying DNA and proteinpatterns with statistically significant alignments

of multiple sequences.Bioinformatics, 15(7/8):563–577.

Herwig, R., Schmidt, A., Steinfath, M., O’Brian, J., Seidel, H., Meier-Ewert, S., Lehrach, H., and Radelof, U.

(2000). Information theoretical probe selection for hybridisation experiments.Bioinformatics, 16:890–898.

Hughes, J., Estep, P., Tavazoie, S., and Church, G. (2000). Computational identification of cis-regulatory elements

associated with groups of functionally related genes in saccharomyces cerevisiae.J. Mol. Biol., 296(5):1205–

1214.

Johnson, D. (2002). Private communication.

Karp, R. (1972). Reducibility among combinatorial problems. In Miller, R. and Thatcher, J., editors,Complexity

of Computer Computations, pages 85–103. Plenum Press, New-York.

Keich, U. and Pevzner, P. (2002). Finding motifs in the twilight zone. InProc. 6th Annual International Confer-

ence on Research in Computational Molecular Biology (RECOMB 2002), pages 195–204.

Kwok, S., Chang, S., Sninsky, J., and Wang, A. (1994). A guideto the design and use of mismatched and

degenerate primers.PCR Methods and Appl., 3:S39–47.

37



Kwok, S., Kellogg, D., McKinney, N., Spasic, D., Goda, L., Levenson, C., and Sninsky, J. (1990). Effects

of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1

model studies.Nucleic Acids Research, 18:999–1005.

Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., and Wootton, J. (1993). Detecting subtle sequence

signals: a Gibbs sampling strategy for multiple alignment.Science, 262:208–214.

Linhart, C. (2002). The degenerate primer design problem. Masters the-

sis, School of Computer Science, Tel Aviv University, November 2002,

http://www.math.tau.ac.il/�chaiml/biology/dpd thesis.ps.gz.

Linhart, C. and Shamir, R. (2002). The degenerate primer design problem.Bioinformatics, 18, Suppl. 1:S172–

S180.

Linhart, C. and Shamir, R. (2003). HYDEN – A software for designing degenerate primers:

http://www.math.tau.ac.il/�rshamir/hyden/HYDEN.htm.

Meier-Ewert, S., Lange, J., Gerst, H., Herwig, R., Schmitt,A., Freund, J., Elge, T., Mott, R., Herrmann, B., and

Lehrach, H. (1998). Comparative gene expression profiling by oligonucleotide fingerprinting.Nucleic Acids

Research, 26:2216–2223.

Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., andErlich, H. (1986). Specific enzymatic amplification

of dna in vitro: the polymerase chain reaction.Cold Spring Harbor Symposium in Quantitative Biology,

51:263–273.

NC-IUB (1985). Nomenclature for incompletely specified bases in nucleic acid sequences — recommendations

1984.Biochemical Journal, 229:281–286.

Olender, T., Fuchs, T., Linhart, C., Shamir, R., Adams, M., Kalush, F., Khen, M., and Lancet, D. (2004). The

canine olfactory subgenome.Genomics, 83(3):361–372.

Pearson, W., Robins, G., Wredgs, D., and Zhang, T. (1996). Onthe primer selection problem in polymerase chain

reaction experiments.Discrete Applied Mathematics, 71:231–246.

38



Pevzner, P. and Sze, S. (2000). Combinatorial approaches tofinding subtle signals in DNA sequences. InProc.

8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), pages 269–278.

Pilpel, Y. and Lancet, D. (1999). The variable and conservedinterfaces of modeled olfactory receptor proteins.

Protein Science, 8:969–977.

Radelof, U., Hennig, S., Seranski, P., Steinfath, M., Ramser, J., Reinhardt, R., Poustka, A., Francis, F., and

Lehrach, H. (1998). Preselection of shotgun clones by oligonucleotide fingerprinting: An efficient and

high throughput strategy to reduce redundancy in large-scale sequencing projects.Nucleic Acids Research,

26:5358–5364.

Rose, T., Schultz, E., Henikoff, J., Pietrokovski, S., McCallum, C., and Henikoff, S. (1998). Consensus-degenerate

hybrid oligonucleotide primers for amplification of distantly related sequences.Nucleic Acids Research,

26:1628–1635.

Sharan, R., Maron-Katz, A., and Shamir, R. (2003). CLICK andEXPANDER: A system for clustering and

visualizing gene expression data.Bioinformatics, 19(14):1787–1799.

Sharan, R. and Shamir, R. (2000). CLICK: A clustering algorithm with applications to gene expression analysis.

In Proc. 8th International Conference on Intelligent Systemsfor Molecular Biology (ISMB 2000), pages

307–316.

Souvenir, R., Buhler, J., Stormo, G., and Zhang, W. (2003). Selecting degenerate multiplex PCR primers. InProc.

3rd Workshop on Algorithms in Bioinformatics (WABI 2003), pages 512–526.

Thompson, J., Higgins, D., and Gibson, T. (1994). CLUSTALW:Improving the sensitivity of progressive multiple

sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice.

Nucleic Acids Research, 22:4673–4680.

Vishnevsky, O., Podkolodnaya, O., and Babenko, V. (1998). Search for degenerate oligonucleotide motifs in tran-

scription factor binding sites and eukaryotic promoters (computer system ARGO). InProc. 1st International

Conference on Bioinformatics of Genome Regulation and Structure, pages 144–146.

Wei, X., Kuhn, D., and Narasimhan, G. (2003). Degenerate primer design via clustering. InProc. 2nd IEEE

Computer Society Bioinformatics Conference (CSB 2003), pages 75–83.

39



Young, J., Friedman, C., Williams, E., Ross, J., Tonnes-Priddy, L., and Trask, B. (2002). Different evolution-

ary processes shaped the mouse and human olfactory receptorgene families.Human Molecular Genetics,

11(5):535–546.

Zhang, X. and Firestein, S. (2002). The olfactory receptor gene superfamily of the mouse.Nature Neuroscience,

5(2):124–133.

Zozulya, S., Echeverri, F., and Nguyen, T. (2001). The humanolfactory receptor repertoire.Genome Biology,

2:RESEARCH0018.

40



Table 1: Primer pairs used in theDEFOGexperiment on the human OR subgenome. The second column specifies

the combined degeneracy of the two primers, in millions. Thethird and fourth columns are the percentage of

genes, out of the training set (127 genes) and the test set (719 genes) respectively, that match the primer pair

with up to 3 mismatched bases. The fifth column specifies the number of clones we obtained from the amplified

PCR fragments, and the sixth column is the number of representative clones that were selected and successfully

sequenced. The last two columns are the number of distinct genes each primer pair yielded — total number of

genes, and new genes (that are not in the training set).

* Pairs in which both primers were of length 26 with roughly equal degeneracy, and neither one of them is a

special primer. The performance of these primer pairs is compared in Figure 13.
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Primer Degeneracy 3-mismatches coverage Number of clones Number of genes

pair (�106) training-set test-set total sequenced total new

L5/R5* 21 73 % 50 % 1,730 173 98 73

L10/R5* 48 74 % 51 % 838 42 31 24

L5/R28* 127 74 % 52 % 901 75 50 36

L9/R20 191 31 % 13 % 431 43 25 14

L10/R28* 287 74 % 53 % 740 57 39 28

L5/R73 340 77 % 60 % 566 34 27 17

L5/R110 510 51 % 30 % 598 31 22 19

L31/R20 645 66 % 47 % 352 65 45 40

L9/R110 1,019 29 % 11 % 621 19 15 11

L9/R147 1,359 48 % 21 % 973 42 34 20

L10/R147 1,529 77 % 55 % 660 53 42 34

L5/R442 2,038 79 % 63 % 649 46 38 32

L31/R73* 2,293 80 % 62 % 1,033 27 25 18

L20/R147 3,058 77 % 51 % 747 67 43 34

L31/R110 3,440 55 % 31 % 426 25 21 19

L131/R28 3,624 76 % 57 % 181 14 12 11

L9/R442 4,077 54 % 26 % 748 28 20 14

L31/R147 4,586 78 % 56 % 564 28 26 18

L10/R442 4,586 80 % 63 % 691 46 37 26

L31/R442* 13,759 82 % 65 % 131 9 8 6

Total — 93 % 76 % 13,580 924 300 231

Table 1
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Figure 1: Example of DPD. A primer of length7 and degeneracy12 that covers4 of the5 input strings. Matches

between the primer and the strings are marked in bold face. The stringS3 is matched from position3 with a single

mismatch.
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Figure 2: Illustration of the reduction from CLIQUE to MC-DPD. The primerP covers the stringsSe1 , Se3 andSe4 , which correspond to the edges of the clique. Asterisks in the primer stand for degeneracies (f0; 1g).
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Figure 3: Illustration of the reduction from MBP to MP-DPD.
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Figure 4: Example of an execution ofCONTRACTION on eight strings. The five (= k � Æ) largest leading values

in D are marked in bold face. The primerP c covers four input strings —S1, S3, S5 andS8.
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Figure 5: Illustration of the first two iterations ofEXPANSION on the eight strings from Figure 4. The four (= Æ)
largest leading values inD0 are marked in bold face. The expansion ofS1 (P 1) covers four strings, and is identical

to the primer constructed byCONTRACTION. The expansion ofS2 (P 2) covers five input strings —S1,S2,S3,S5,
andS8.
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Figure 6: Example of an execution ofCONTRACTION-X (x = 2) on seven strings. The largest bi-column count

isMD((1; 0); (1; 4)) = 6, so the first iteration refines positions1, 4 to ’1’, ’0’, respectively. Ignoring positions1
and4, the largest remaining count isMD((0; 0); (3; 6)) = 5. Thus, in the second iteration positions3 and6 are

set to ’0’. The output primer covers five input strings —S1, S2, S4, S6 andS7.
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Figure 7: TheHYDEN algorithm.

49



Figure 8: The basic alignment phase inHYDEN.
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Figure 9: TheH-CONTRACTIONalgorithm used byHYDEN.
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Figure 10: TheH-EXPANSIONalgorithm used byHYDEN.
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Figure 11: The greedy hill-climbing procedure used byHYDEN. m(P ) denotes the coverage of

primerP .
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Figure 12: Sequencing efficacy of several primer pairs in theDEFOG experiment. The dotted line shows the

percent of newgenes, i.e., genes that were not in the training set, out of all the sequenced clones.
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Figure 13: Training-set and test-set 3-mismatches coverage of primer pairs with various degeneracies. Primers

that were actually used in theDEFOGexperiment are marked by asterisks. The horizontal lines mark the size of

the training and test sets.
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The Degenerate Primer Design ProblemInput: n = 5, k = 7, d = 12, m = 4 (� =fA,C,G,Tg)S1 =TCGGCTTGCAAGCGTACTS2 =GGCTTCCAGGTCTTATAAGTCS3 =GCTTCCACGGTGCGAATCAGGGCTGS4 =ATTGCTAGGTTCAGGTAS5 =GCAAGGTATCTTGCCAGCTTTGASolution: P = TTfC,GgCfA,C,TgfA,GgG
Figure 1: (Linhart & Shamir)
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CLIQUE Minimum Coverage DPDInput: Graph G= (V;E), Input: n = 4, k = 5, d = 23,jV j = 5, jEj = 4, c = 3 m = �32� = 3
bà

bà bà bà
bà

�������
��

����hhhhhhhhhhhh
\\\\\\\\\\\v1
v2 v3 v4

v5e1 e2 e3 e4 =) Se1 = 11000Se2 = 10100Se3 = 10010Se4 = 01010+Solution: Clique = fv1; v2; v4g (= Solution: P = ��0�0
Figure 2: (Linhart & Shamir)
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Minimum Bin Packing Minimum Primers DPDInput: l = 4, c = 5, b = 2 Input: n = 4, k = 10, d = 25, p = 2a1 = 2 S1 = 1100000000a2 = 1 =) S2 = 0010000000a3 = 3 S3 = 0001110000a4 = 4 S4 = 0000001111+Solution: Solution:Bin 1: a1, a3 (= P1 = ��0���0000Bin 2: a2, a4 P2 = 00�000����
Figure 3: (Linhart & Shamir)
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Input: n = 8, k = 9, d = 24S1: 011010101 Column distribution matrix D:S2: 010010000 =) 4 2 1 6 0 5 3 7 4S3: 111010100 4 6 7 2 8 3 5 1 4S4: 011111001S5: 111010101 +S6: 001111100S7: 101011110 Output:S8: 111010001 P c: � 1 1 0 1 � � 0 �
Figure 4: (Linhart & Shamir)
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Input: n = 8, k = 9, d = 24S1: 011010101 Column distribution matrix D:S2: 010010000 =) 4 2 1 6 0 5 3 7 4S3: 111010100 4 6 7 2 8 3 5 1 4. . . (as in Figure 4) +Starting string: S1 ) D0: 0 2 1 0 0 0 3 0 44 0 0 2 0 3 0 1 0+P 1: � 1 1 0 1 � � 0 �Starting string: S2 ) D0: 0 2 0 0 0 0 0 0 04 0 7 2 0 3 5 1 4+P 2: � 1 � 0 1 0 � 0 �
Figure 5: (Linhart & Shamir)
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Input: n = 7, k = 7, d = 23S1: 1100101 Bi-column distribution matrix MD:S2: 1100000 =)S3: 0111000S4: 1000100S5: 1110111S6: 1000001S7: 1100100 + Iteration 1P x : 1 � � 0 � � �+ Iteration 2Output: P x : 1 � 0 0 � 0 �

1,2 1,3 1,4 . . . 3,6 . . . 6,70,0 0 0 0 . . . 5 . . . 40,1 1 1 1 . . . 0 . . . 21,0 2 5 6 . . . 1 . . . 01,1 4 1 0 . . . 1 . . . 1

Figure 6: (Linhart & Shamir)
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HYDEN (I = fS1; : : : ; Sn; k; d; eg):Phase 1: A1; : : : ; ANa  H-Align(I).Phase 2: Foreach alignment Ai, i = 1; : : : ; Na do:P ci  H-Contraction(I;Ai).P ei  H-Expansion(I;Ai).Sort primers fP ci ; P ei j i = 1; : : : ; Nag acc. to coverage.Phase 3: Foreach primer P 2 fbest Ng primersg do:P  H-Greedy(I;P ).Output the primer with the largest coverage found in Phase 3.
Figure 7: (Linhart & Shamir)
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H-Align (I):Foreach k-long substring T of S1; : : : ; Sn do:AT  ;.Foreach string Sj , j = 1; : : : ; n do:Add to AT the best match in Sj to T .DAT Column distribution matrix of AT .HAT Entropy score of DAT .Output Na alignments with lowest entropy score.
Figure 8: (Linhart & Shamir)
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H-Contraction (I;A):Sort the counts: DA(b1; i1) � DA(b2; i2) � : : : � DA(b4k; i4k).P  Fully degenerate primer ; j  1.While d(P ) > d and j � 4k do:P 0  P without character bj at position ij .If d(P 0) 6= 0 then P  P 0.j  j + 1.Output P .
Figure 9: (Linhart & Shamir)
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H-Expansion (I;A):Sort the counts: DA(b1; i1) � DA(b2; i2) � : : : � DA(b4k; i4k).Let T be the substring from which A was constructed.P  T ; j  1.While j � 4k do:P 0  P with character bj added at position ij.If d(P 0) � d then P  P 0.j  j + 1.Output P .
Figure 10: (Linhart & Shamir)
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H-Greedy (I;P ):P �  P , improved \yes".While improved = \yes" do:improved \no".Foreach degenerate character (b; i) in P do:P 0  P without character b at position i.Foreach degeneracy (b0; i0) not in P do:P 00  P 0 with character b0 added at position i0.m(P 00) Coverage of P 00.If d(P 00) � d and m(P 00) > m(P �) then P �  P 00.If m(P �) > m(P ) then P  P �, improved \yes".Output P .
Figure 11: (Linhart & Shamir)

11



7 7.5 8 8.5 9 9.5 10 10.5
0

10

20

30

40

50

60

70

80

90

100

log
10

(degeneracy)

%
 o

f d
is

tin
ct

 g
en

es
 o

ut
 o

f s
eq

ue
nc

ed
 c

lo
ne

s
all genes
new genes

Figure 12: (Linhart & Shamir)
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