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Abstract

Motivation: Microarrays have become acentral tool in biological research. Their applications range from functional
annotation to tissue classification and genetic network inference. A key step in the analysis of gene expression data
is the identification of groups of genes that manifest similar expression patterns. This translates to the algorithmic
problem of clustering genes based on their expression patterns.

Results: We present a novel clustering agorithm, called CLICK, and its applications to gene expression anaysis.
The agorithm utilizes graph-theoretic and statistical techniques to identify tight groups (kernels) of highly similar
elements, which are likely to belong to the same true cluster. Several heuristic procedures are then used to expand
the kernels into the full clusters. We report on the application of CLICK to avariety of gene expression datasets. In
all those applications it outperformed extant algorithms according to several common figures of merit. We also point
out that CLICK can be successfully used for the identification of common regulatory motifsin the upstream regions
of co-regulated genes. Furthermore, we demonstrate how CLICK can be used to accurately classify tissue samples
into disease types, based on their expression profiles. Finally, we present a new java-based graphical tool, called
EXPANDER, for gene expression analysis and visualization, which incorporates CLICK and several other popular
clustering algorithms.

Availability: http://www.cs.tau.ac.il/~rshamir/expander/expander.html.

Contact: rodedeicsi.berkeley.edu.



1 Introduction

Microarray technology has become a central tool in biological and biomedical research. This technology provides a
global, simultaneous view on the transcription level s of many or all genes of an organism under arange of conditions
or processes. The information obtained by monitoring gene expression levels in different developmenta stages,
tissue types, clinical conditions and different organisms can help in understanding gene function and gene networks,
assist in the diagnostic of disease conditions and reveal the effects of medical treatments.

A key step in the analysis of gene expression data is the identification of groups of genes that manifest similar
expression patterns. This tranglates to the agorithmic problem of clustering gene expression data. A clustering
problem usually consists of elements and a characteristic vector for each element. A measure of similarity is defined
between pairs of such vectors. (In gene expression, elements are usualy genes, the vector of each gene contains
its expression levels under each of the monitored conditions, and similarity can be measured, for example, by the
correlation coefficient between vectors.) The goal isto partition the elements into subsets, which are called clusters,
so that two criteria are satisfied: Homogeneity - elements in the same cluster are highly similar to each other; and
separation - elements from different clusters have low similarity to each other.

There is a very rich literature on cluster analysis going back over three decades (cf. (Hartigan, 1975; Everitt,
1993; Mirkin, 1996; Hansen & Jaumard, 1997)). Several algorithmic techniques were previously used in clustering
gene expression data, including hierarchical clustering (Eisen et al., 1998), self organizing maps (Tamayo €t al.,
1999), K-means (Herwig et al., 1999), simulated annealing (Alon et al., 1999), and graph theoretic approaches:
HCS (Hartuv & Shamir, 2000) and CAST (Ben-Dor et al., 1999).

We have developed a novel clustering agorithm that we call CLICK (CLuster Identification via Connectivity
Kernels). The algorithm does not make any prior assumptions on the number of clusters or their structure. At the
heart of the algorithm is a process of recursively partitioning a weighted graph into components using minimum
cut computations. The edge weights and the stopping criterion of the recursion are assigned probabilistic meaning,
which gives the algorithm high accuracy. The speed of the algorithm is achieved by a variety of experimentally
tested heuristic procedures that shortcut, prepend and append the main process.

CLICK was implemented and tested on a variety of biological datasets. On three large-scale gene expression
datasets the algorithm outperformed previously published results, that utilized hierarchical clustering and self or-
ganizing maps. We also show the utility of CLICK in more advanced biological analyses. The identification of
common regulatory motifs in the promoters of co-regulated genes, and the classification of samples into disease
types based on their expression profiles. In the latter problem CLICK achieved success ratios of over 90% on two
real datasets.

We present a new java-based graphical tool, caled EXPANDER (EXPression ANayzer and DisplayER), for
gene expression analysis and visualization. This software contains several clustering methods including CLICK,
K-Means, hierarchical clustering and self organizing maps, all controlled via a graphical user interface. It enables
visualizing the raw expression data and the clustered data in several ways, as well as single-cluster and all-clusters
evaluations via fitness scores and functional enrichment tests.

A preliminary version of this manuscript, containing an early version of CLICK and some initia tests, has
appeared in (Sharan & Shamir, 2000).

2 Preiminaries

Let N = {e1,...,e,} beaset of n elements, and let C = (C,. .., C;) beapartition of NV into subsets. Each subset
is called a cluster, and C is called a clustering solution, or simply a clustering. Two elements ¢ and e; are called
mates with respect to C if they are members of the same cluster in C. In the gene expression context, the elements
are the genes and we often assume that there exists some correct partition of the genesinto “true” clusters. When C
isthe true clustering of IV, elements that belong to the same true cluster are simply called mates.



The input data for a clustering problem is typically given in one of two forms. (1) Fingerprint data — each
element is associated with areal-valued vector, caled itsfingerprint, or pattern, which contains p measurements on
the element, e.g., expression levels of the gene's mMRNA at different conditions (cf. (Eisen & Brown, 1999)). (2)
Smilarity data — pairwise similarity values between elements. These values can be computed from fingerprint data,
e.g., by correlation between vectors. Alternatively, the data can represent pairwise dissimilarity, e.g., by computing
distances. Fingerprints contain more information than similarity data, but the latter is completely generic and can be
used to represent the input to clustering in any application. Note that there isaso apractical consideration regarding
the presentation: The fingerprint matrix is of order n x p while the similarity matrix is of order n x n, and in gene
expression applications often n > p.

Thegoal in aclustering problem isto partition the set of elementsinto homogeneous and well-separated clusters.
That is, we require that elements from the same cluster will be highly similar to each other, while elements from
different clusters will have low similarity to each other. Note that this formulation does not define a single opti-
mization problem: Homogeneity and separation can be defined in various ways, leading to a variety of optimization
problems (cf. (Hansen & Jaumard, 1997)). Even when the homogeneity and separation are precisely defined, those
two objectives are typicaly conflicting: The higher the homogeneity — the lower the separation, and vice versa.

For two elements = and y, we denote the similarity of their fingerprints by S(z,y). We say that a symmetric
similarity function S is linear if for any three vectors u, v, and w, we have S(u,v + w) = S(u,v) + S(u,w). For
example, vector dot-product isalinear similarity function.

Judicious preprocessing of the raw data is key to meaningful clustering. This preprocessing is application de-
pendent and must be chosen in view of the expression technology used and the biological questions asked. The
goal of the preprocessing is to normalize the data and calculate the pairwise element (dis)similarity, if applicable.
Common procedures for normalizing fingerprint data include transforming each fingerprint to have mean zero and
variance one, afixed norm or afixed maximum entry. Statistically based methods for data normalization have also
been developed recently (see, e.g., (Kerr et al., 2000; Yang et al., 2002)).

2.1 Assessment of Solutions

A key question in the design and analysis of clustering techniques is how to evaluate solutions. We present here
figures of merit for measuring the quality of a clustering solution. Different measures are applicable in different
situations, depending on whether a partial true solution is known or not, and whether the input is fingerprint or
similarity data. For other possible figures of merit we refer the reader to (Everitt, 1993; Hansen & Jaumard, 1997,
Yeung et al., 2001).

Suppose at first that the true solution is known, and we wish to compare it to a suggested solution C. The Jaccard
coefficient (cf. (Everitt, 1993)) is defined as the proportion of correctly identified matesin C to the sum of correctly
identified mates plus the total number of disagreements between C and the true solution (a disagreement is a pair
which are mates in one solution and non-mates in the other). Hence, a perfect solution has score one, and the higher
the score — the better the solution. This measure is alower bound for both the sensitivity and the specificity of the
suggested solution.

When the true solution is unknown, we evaluate the quality of a suggested solution by computing two figures of
merit that measure its homogeneity and separation. We define the homogeneity of a cluster as the average similarity
between its members, and the homogeneity of a clustering as the average similarity between mates (with respect to
the clustering). Precisely, if F(7) isthe fingerprint of element 7 and the total number of mate pairsis M then:
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Related measures that take a worst case instead of average case approach are minimum cluster homogeneity:

Hayin = min Yijeci<j S(F(2), F(j))
m
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and maximum average similarity between two clusters:

Hence, a solution improves if Hy,e Of Hyyp increase, and if Sy, OF Sirq, decrease. In computing all the above
measures, singletons are considered as one-member clusters. Note that for fingerprint data and a linear similarity
function, H 4, and S 4, can be computed in O(np) time (Sharan, 2002).

The two types of measures, intra-cluster homogeneity and inter-cluster separation, are inherently conflicting,
as an improvement in one will typically correspond to worsening of the other. There are several approaches that
addressthis difficulty. One approach isto fix the number of clusters and seek a solution with maximum homogeneity.
This is done for example by the classical K-means algorithm. For methods to evaluate the number of clusters see,
e.g., (Hartigan, 1975; Tibshirani et al., 2000; Ben-Hur et al., 2002; Pollard & van der Laan, 2002). Another approach
isto present a curve of homogeneity vs. separation over arange of parameters for the clustering algorithm used (A.
Ben-Dor, private communication). For yet another approach for comparing solutions across a range of parameters,
see (Yeung et al., 2001).

3 TheCLICK Algorithm

In this section we present anovel clustering algorithm, which we call CLICK (CLuster Identification via Connectiv-
ity Kernels). The algorithm builds on the HCS algorithm of Hartuv and Shamir (2000) . It utilizes graph-theoretic
and statistical techniques to identify tight groups (kernels) of highly similar elements, which are likely to belong to
the same true cluster. Several heuristic procedures are then used to expand the kernels into the full clusters.

3.1 TheProbabilistic Framework

A key modeling assumption in developing CLICK isthat pairwise similarity values between elements are normally
distributed: Similarity values between mates are normally distributed with mean g and variance o2, and similarity
values between non-mates are normally distributed with mean g and variance 0%, where ur > pr. This situation
was observed on ssimulated and real data and can be theoretically justified under certain conditions by the Central
Limit Theorem (Sharan, 2002). Another modeling parameter iS ppqtes, the probability that two randomly chosen
elements are mates. We denote by f(z|ur, or) the mates probability density function. We denote by f(z|ur, oF)
the non-mates probability density function.

Aninitial step of the algorithm is estimating the parameters v, g, or, o and ppates, USiNg one of two meth-
ods: (1) In many cases the true partition for a subset of the elements is known. Thisisthe case, for example, if the
clustering of some of the genes in a cDNA oligo-fingerprint experiment is found experimentally (see, e.g., (Hartuv
et al., 2000)), or more generaly, if a subset of the elements has been analyzed using prior biological knowledge
(see, eq., (Spellman et al., 1998)). Based on this partition one can compute the sample mean and sample variance
for similarity values between mates and between non-mates, and use these as maximum likelihood estimates for the
distribution parameters. The proportion of mates among all known pairs can serve as an estimate for p,qses, If the
subset was randomly chosen. (2) In case no additional information is given, these parameters can be estimated using
the EM agorithm (Sharan, 2002).



3.2 TheBasic CLICK Algorithm

The CLICK agorithm works in two phases. In the first phase tightly homogeneous groups of elements, called
kernels, are identified. In the second phase these kernels are expanded to the final clusters. In this section we
describe the kernel identification step.

The input to this phase is a matrix S of similarity values, where §; is the similarity value between elements
e; and e;. When the input is fingerprint data, a preprocessing step computes all pairwise similarity values between
elements, using a given similarity function. The algorithm represents the input data as a weighted similarity graph
G = (V,E,w). In this graph vertices correspond to elements and edge weights are derived from the similarity
values. Note that G is a complete graph. The weight w; of an edge (3, j) reflects the probability that < and j are
mates, and is set to be
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Here f(S;;|i, 7 are mates) = f(S;;|puT, or) is the value of the mates probability density function at §;. Similarly,
f(Si;]4, 7 are non-mates) is the value of the non-mates probability density function at .§;. Hence,
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The Basic-CLICK algorithm can be described recursively as follows. Assume temporarily that all edge weights
are non-negative. Initialy, all elements are active. In each step the algorithm handles some connected component
of the subgraph induced by the active elements. If the component contains a single vertex, then this vertex is
considered asingleton and is inactivated. Otherwise, a stopping criterion (which will be described later) is checked.
If the component satisfies the criterion, it is declared a kernel and inactivated. Otherwise, the component is split
according to a minimum weight cut (a set of edges of minimum total weight, whose removal would disconnect
the graph). The agorithm outputs a list of kernels which serves as a basis for the eventual clusters, and a list of
singletons.

The idea behind the algorithm is the following. Given a connected graph G = (V, E), we would like to decide
whether V' is asubset of some true cluster, or V' contains elements from at least two true clusters. In the former case
we say that G is pure. In order to make this decision we test for each cut C' in G the following two hypotheses:

e HE: C contains only edges between non-mates.
e HE: C contains only edges between mates.

We let Pr(HE |C) denote the posterior probability of H, fori = 0,1. If G is pure then Hf istrue for every cut
C of G. On the other hand, if G is not pure then there exists at least one cut C for which Ef holds. We therefore
determine that G is pure if and only if HE is accepted for every cut C of G. In case we decide that G is pure, we
declare it to be a kernel. Otherwise, we partition V' into two digjoint subsets, according to acut C in G, for which

the posterior probability ratio%lg}g; isminimum. We call such a partition a weakest bipartition of G.

Wiefirst show how to find aweakest bi partition of G. To thisend, we make asimplifying probabilistic assumption
that for a cut C in G the random variables {S;}; j)ec ae pairwise independent given that the corresponding
element pairs are all mates or al non-mates. We also assume that mate relations between pairs (z,j) € C are
pairwise independent. We denote the weight of a cut C by W (C) and its number of edges by |C|. We denote by
f(C|H) thelikelihood that the edges of C' connect only non-mates, and by f(C|E) the likelihood that the edges

of C connect only mates. We let Pr(HS) denote the prior probability of H-, i = 0, 1.



Using Bayes Theorem we conclude that for a complete graph G and for any cut C in G:
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Thus, with our specific edge weight definition, a minimum weight cut of G induces a weakest bipartition of G.
However, the computation of a minimum weight cut in a graph with negative edge weights is NP-hard. We give
in the next section a heuristic procedure to compute a minimum weight cut for a graph with some negative edge
weights.

It remains to show how to decide if G is pure or, equivalently, which stopping criterion to use. For a cut C,
we accept HE if and only if Pr(HY|C) > Pr(HS|C). That is, we accept the hypothesis with higher posterior
probability.

Let C be aminimum weight cut of G. For every other cut C' of G

Pr(HY|C)
Pr(H{'|C)

Pr(HE'|C")

=W(C) <W(C'") =log W .

log

!

Therefore, HY is accepted for C if and only if HY" is accepted for every cut C' in G. Thus, we accept HY and
declare that G isakernel if and only if W(C') > 0. In practice, we also require a kernel to have at least k elements,
with adefault value of k = 15.

3.3 Computing a Minimum Cut

The minimum weight cut problem can be solved efficiently on graphs with non-negative edge weights. Unfortu-
nately, in the basic algorithm one must compute minimum weight cuts in graphs with negative edge weights. This
problem is NP-hard even for a complete graph with edge weights 1 or -1 only (Shamir et al., 2002). We overcome
this problem using a two-phase process. In the first phase we split the input graph iteratively using a heuristic pro-
cedure for computing a minimum weight cut, which is based on a 2-approximation for the related maximum weight
cut problem (MAX-CUT). In the second phase we filter from the resulting components all negative weight edges
and then apply the basic CLICK algorithm.
Our heuristic for computing a minimum weight cut applies two steps:

e MAX-CUT approximation: Let w* be the maximum weight in the input graph. Transform all weights using
the transformation f(w) = w* — w + ¢, for small e > 0, resulting in positive edge weights. Apply a 2-
approximation for MAX-CUT (cf. (Hochbaum, 1997)) on the weight-transformed graph, and let (1, V2) be
the resulting cut.

e Greedy improvement: Starting from (14, V) greedily move vertices between sides so asto decrease the weight
of the implied cut, using the original edge weights.

This heuristic is applied to the input graph recursively, and the recursion stops whenever the output partition for
acomponent isthetrivial one (all vertices are on one side of the partition). We then execute Basic-CLICK on each
resulting component, after filtering negative weight edges from it. For testing if a certain component is akernel, we
find its minimum weight cut in the filtered graph, and evaluate the total weight of the edges connecting the two sides
of the cut in the unfiltered graph. We declare the graph a kerndl if the latter weight is positive.

In order to reduce the running time of the algorithm on large connected components, for which computing a
minimum weight cut is very costly, we screen low weight vertices prior to the execution of Basic-CLICK. The



screening is done as follows: We first compute the average vertex weight W in the component, and multiply it by a
factor which is proportional to the logarithm of the size of the component. We denote the resulting threshold by .
We then remove vertices whose weight is below WW*, and continue to do so updating the weight of the remaining
vertices, until the updated weight of every (remaining) vertex is greater than W*. The removed vertices are marked
as singletons and handled at alater stage.

3.4 TheFull Algorithm

The Basic-CLICK agorithm produces kernels of clusters, which should be expanded to yield the full clusters. The
expansion is done by considering the singletons found. We denote by £ and R the current lists of kernels and
singletons, respectively. Define the similarity between two sets as the average similarity between their elements. An
adoption step repeatedly searches for a singleton v and a kernel K whose similarity is maximum among all pairs
of singletons and kernels. If the value of this similarity exceeds some predefined threshold, then v is added to K
and removed from R. Otherwise, the iterative process ends. For some theoretical justification of the adoption step
see (Ben-Dor et al., 1999). After the adoption step takes place, we start a recursive clustering process on the set R
of remaining singletons. Thisisdone by discarding all other vertices from theinitial graph. We iterate that way until
no change occurs.

At the end of the algorithm a merging step merges similar clusters. The merging is done iteratively, each time
merging two kernels whose similarity is the highest and exceeds a predefined threshold. When two kernels are
merged, they are replaced by a new kernel corresponding to their union. Finally, alast singleton adoption step is
performed. The full CLICK agorithm is described in Figure 1.

In order to handle large datasets efficiently several enhancements were incorporated into CLICK. When the num-
ber of elements exceeds severa thousands, memory requirements for storing all pairwise similarity values become
a serious bottleneck. In this case we partition the set of elements into super-components, each having a limited
size, by gradually increasing a weight threshold for the graph edges. For each super-component we evaluate the
parameters of its similarity distributions and apply the full algorithm to it. The merge step and the last adoption step
are performed later for the whole graph. We also devised a variant of CLICK for clustering fingerprint data using a
linear similarity function. This variant uses properties of the similarity function to perform the adoption and merge
steps considerably faster than otherwise possible. In addition, it allows the user to specify a homogeneity parameter
with a default value of ur, which serves as a lower bound on the homogeneity of the resulting clustering. For full
details on the formation of super-components and handling fingerprint data, see (Sharan, 2002).

4 Resaults

4.1 Implementation and Simulations

We have implemented the CLICK clustering algorithm in C++. Our implementation uses the algorithm of Hao and
Orlin (1994) for minimum weight cut computations. This algorithm has theoretical running time of O(ri,/m) (for a
graph with n vertices and m edges), and was shown to outperform other minimum cut algorithms in practice (Chekuri
et al., 1997). We measured the running times of CLICK on simulated datasets (described below) of various sizes
containing 10 equal-size clusters. The running times, as measured on a Pentium |11 600M Hz, were approximately
linear in the number of parameters, and ranged from few seconds for a dataset of 500 elements, to seven minutes for
adataset of 10,000 elements. Linearity (excluding the initial computation of all pairwise similarities) was observed
on real datasets of up to 150,000 elements. Thisisaresult of the time reduction heuristics incorporated into CLICK.
We have created an environment for simulating expression data and measuring CLICK’s performance on the
synthetic data. We use the following simulation setup: The cluster structure, i.e., the number and size of clusters,
is pre-specified. Each cluster has an associated mean pattern, also called its centroid. Each coordinate of this
centroid is drawn uniformly at random from [0, R] for some R, independently from the other coordinates. Each



element fingerprint is drawn at random according to a multivariate normal distribution around the corresponding
mean pattern with the same standard deviation o for each coordinate. Similar distribution models are used in other
works that model gene expression data (see, e.g., (Ghosh & Chinnaiyan, 2002)).

In our simulations we measured the performance of the algorithm as a function of the cluster structure and
the distance A in standard deviation units between g and ur (due to the nature of the simulations, or ~ o).
This distance can be controlled by changing R. Table 1 presents CLICK’s results for several simulation setups as
measured by the average Jaccard coefficient over 20 runs. The simulated fingerprintsin all cases were of length 200,
and we used o = 5 for all coordinates. It can be seen that CLICK performs well (Jaccard coefficient above 0.8)
on all cluster structures even for distances as low as one standard deviation and, as expected, performance worsens
when the mate and non-mate distributions get closer.

4.2 The EXPANDER Clustering and Visualization Tool

We have devel oped ajava-based graphical tool, called EXPANDER (EXPression ANalyzer and DisplayER), for gene
expression analysis and visualization. This software provides graphical user interface to several clustering methods,
including CLICK. It enables visualizing the raw expression data and the clustered data in several ways. In the fol-
lowing we outline the visualization options and demonstrate them on part of the yeast cell-cycle dataset of (Spellman
etal., 1998), clustered using CLICK. The original dataset contains samples from yeast cultures synchronized by four
independent methods, as well as separate experiments in which some cyclins were induced. Spellman et al. (1998)
identified in this data 800 genes that are cell-cycle regulated. The dataset that we used contains the expression levels
of 698 out of those 800 genes, which have up to three missing entries, over the 72 conditions that cover the « factor,
cdc28, cdclb, and elutriation experiments. (Asin (Tamayo et al., 1999), the 90 minutes data point was omitted from
the cdc15 experiment.) Each row of the 698 x 72 matrix was normalized to have mean 0 and variance 1. CLICK’s
solution for this data contains six clusters and 23 singletons. (For a systematic comparison of CLICK, K-means,
SOM and CAST on this dataset, see (Shamir & Sharan, 2002).)

Clustering Methods: EXPANDER implements several clustering algorithms including CLICK, K-means, hier-
archical clustering and self organizing map (SOM). The user can specify the parameters of each agorithm: Ho-
mogeneity parameter for CLICK, number of clusters for K-means, type of linkage (single, average or complete)
for hierarchical clustering, and grid dimensions for SOM. In addition, the user can upload an external clustering
solution.

Matrix Visualization: EXPANDER can create images for the expression matrix and the similarity matrix (Fig-
ure 2). In these images the matrices are represented graphically by coloring each cell according to its content. Cells
with neutral values are colored black, increasingly positive values with red of increasing intensity, and increasingly
negative values with green of increasing intensity. Each matrix can be shown in two ways: (1) In its raw form;
and (2) after reordering the rows of the matrix so that elements from the same cluster appear consecutively. (The
columns are aso reordered in the similarity matrix.) ldealy, in the reordered expression matrix we expect to see
a distinct pattern for each cluster, while the reordered similarity matrix should be composed of red squares, each
corresponding to a cluster, in black/green background.

When using hierarchical clustering, the solution dendrogram is displayed alongside with the expression matrix,
in which the genes are reordered according to the dendrogram.

Clustering Visualization: EXPANDER provides severa visual images of a clustering solution. A graphical
overview of the solution is produced by showing for each cluster its mean expression pattern along with error bars
indicating the standard deviation in each condition. For an example see Section 4.3. Alternatively, for each single
cluster asuperposition of all the patterns of its members can be shown.



Another data visualization method provided in EXPANDER is principal component analysis (cf. (Johnson &
Wichern, 1982)). Thisisamethod for reducing data dimensionality by projecting high-dimensional data into alow-
dimensional space spanned by the vectors that capture maximum variance of the data. In EXPANDER we reduce
the data dimension to 2, by computing the two axes that capture maximum variance of the data. The projected data
is visuaized as points in the plane. Given a clustering solution the points are colored according to their assigned
clusters.

Asasimple aid for the interpretation of clustering results using biological knowledge, EXPANDER can present
and quantify the enrichment of gene functions in a clustering solution (Figure 3). Given afunctional annotation (an
assignment of an attribute, such as functiona category) of the genes in an input dataset, the abundant functional
categories in each cluster are shown in apie chart. For each such category we compute its enrichment in the cluster
by computing a hypergeometric p-value, as suggested in (Tavazoie et al., 1999).

4.3 Application to Yeast Cell-Cycle Data

CLICK was first tested on the yeast cell cycle dataset of Cho et al. (1998) . That study monitored the expression
levels of 6,218 S. cerevisiae putative gene transcripts (ORFs) measured at 10-minutes intervals over two cell cycles
(160 minutes). We compared CLICK’sresultsto those of GeneCluster (Tamayo et al., 1999). To thisend, we applied
the same filtering and data normalization procedures of (Tamayo et al., 1999). The filtering removes genes that do
not change significantly across samples, leaving a set of 826 genes. The data preprocessing includes the removal of
the 90-minutes time-point and normalizing the expression levels of each gene to have mean zero and variance one
within each of the two cell-cycles.

CLICK clustered the genes into 18 clusters and left no singletons. These clusters are shown in Figure 4. A
summary of the homogeneity and separation parameters for the solutions produced by CLICK and GeneCluster is
shown in Table 2. CLICK obtained better results in all four measured parameters. A putative true solution for a
subset of the genes was obtained through manual inspection by Cho et al. (1998) . Cho et al. identified 416 genes
that have periodic patterns and partitioned 383 of them into five cell-cycle phases according to their peak time. We
calculated Jaccard coefficients for the two solutions based on 250 of these genes that passed the variation filtering.
The results are shown in Table 2. 1t can be seen that CLICK’s solution is much more aligned with the putative true
solution.

4.4 Human Fibroblasts

We analyzed the dataset of lyer et al. (1999) , that studied the response of several human fibroblasts to serum. It
contains expression levels of 8,613 human genes obtained as follows: Human fibroblasts were deprived of serum
for 48 hours and then stimulated by addition of serum. Expression levels of genes were measured at 12 time-points
after the stimulation. An additional data-point was obtained from a separate unsynchronized sample. A subset of
517 genes whose expression levels changed substantially across samples was analyzed by the hierarchical clustering
method of Eisen et al. (1998) . The data was first normalized by dividing each entry by the expression level at time
zero, and taking a logarithm of the result. For ease of manipulation, we aso transformed each fingerprint to have
norm 1. The similarity function used was dot-product, giving values identical to those used in (Eisen et al., 1998).
CLICK clustered the genes into 6 clusters with no singletons. Table 3 presents a comparison between the clustering
quality of CLICK and the hierarchical clustering of (Eisen et al., 1998) on this dataset. The two solutions are
incomparable since CLICK’s solution has better separation while the other solution has better average homogeneity.
In order to directly compare the two algorithms we reclustered the data using CLICK with homogeneity parameter
0.76 (instead of the default value p = 0.65, see Section 3.4), since this value is the average homogeneity of the
hierarchical solution. CLICK produced 6 new clusters and 28 singletons. The solution parameters are given in
Table 3. Note that CLICK performs better in al parameters.



4.5 Human Céll Cycle

We next studied the gene expression dataset of Whitfield et al. (2002) . This dataset contains the expression profiles
of synchronized Hela cells in five independent experiments using three synchronization methods. Whitfield et
al. (2002) identified in the data 874 genes that are cell-cycle regulated. The experiments were done using two kinds
of arrays. We chose to focus on three experiments (76 conditions) that used the larger array, which represents about
29,600 genes, as in the experiments with the smaller array only approximately half the genes were monitored. As
we later performed also regulatory motif analysis, we focused on 497 of the genes, that were identified as cell-cycle
regulated, were represented on the larger array and had promoter sequences in the public database (NCBI Reference
Sequence project (Maglott et al., 2000), release of June 2001). We applied the same data processing methods as
described in (Whitfield et al., 2002) to this reduced dataset of expression levels of 497 genes over 76 conditions.
CLICK’s solution for this data consisted of 9 clusters and 35 singletons. For comparison, we used the partition of
the 497 genes according to their cell cycle phases, as provided in (Whitfield et al., 2002).

In order to assess the clusters according to their biologica relevance we aso retrieved GO annotations (Con-
sortium, 2000) for the genes, and checked the enrichment of each GO category in each of the clusters using a
hypergeometric score. In total, 226 genes had known annotations. The homogeneity and separation parameters for
the two clustering solutions, along with enrichment p-values that are below 0.01, are shown in Table 4. Notably,
CLICK’s solution is superior in all parameters and is more aligned with the biological annotations.

4.6 ldentifying Regulatory Motifs

In a previous work (Sharan et al., 2002) we have shown the utility of CLICK in identifying regulatory sequence
motifs. We outline the method and results bel ow.

Several studies have shown that co-expressed genes tend to share common regulatory elementsin their promoter
regions (Tavazoie et al., 1999; Zhang, 1999; Brazma & Vilo, 2000). This motivates the following two-step ap-
proach for detecting regulatory motifs: (1) Cluster the genes into groups sharing similar expression patterns. (I1) In
each cluster search for sequence patterns that are over-represented in upstream regions of the sequences of cluster
members.

We analyzed the dataset published by Jelinsky et al. (2000). In that experiment, expression levels of al 6,200
ORFsof the yeast S. Cerevisiae were measured over 26 biological conditions in order to study the cellular response
to DNA damage. 2,610 genes that changed by afactor of 3 or morein at least one condition were subjected to cluster
analysis. The clustering reported in (Jelinsky et al., 2000) consists of 18 clusters, obtained by GeneCluster (Tamayo
et al., 1999). In comparison, CLICK identified 33 clusters with more than 10 members. We then applied the
AlignACE motif finding algorithm (Roth et al., 1998; Hughes et al., 2000) to promoter regions (500 bases upstream
of the trandlation start sites) of the genesin each cluster. In total, 26 significant motifs were identified using CLICK’s
clusters, and 30 such motifs were identified using GeneCluster’s. The identified motifs were matched against the
SCPD database of experimentally verified yeast transcription factor binding sites (Zhu & Zhang, 1999). Of CLICK’s
26 motifs, 17 (65%) were verified by SCPD. Of GeneCluster’s 30 motifs, 19 (63%) were verified. 17 of the motifs
were common and 13 of these (76%) were verified. This demonstrates the utility of the approach and aso the
advantage of combining results from different clustering algorithms.

4.7 Tissue classification

An important application of gene expression anaysis is the classification of tissue types according to their gene
expression profiles. Recent studies (Alon et al., 1999; Golub et al., 1999; Alizadeh et al., 2000; van't Veer et al.,
2002) have demonstrated that gene expression data can be used in distinguishing between similar cancer types,
thereby allowing more accurate diagnosis and treatment.

In these studies the data consist of expression levels of thousands of genes in several tissues. The tissues origi-
nate from two or more known classes, e.g., normal and tumor. The analysis aims at studying the typical expression
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profile of each class and predicting the classification of new unlabeled tissues. Classification methods employ su-
pervised learning techniques, i.e., the known classifications of the tissues are used to guide the algorithm in building
aclassifier. These include support vector machines (Ben-Dor et al., 2000; Furey et al., 2000), boosting (Ben-Dor
et al., 2000), clustering (Ben-Dor et al., 2000), discriminant analysis (Xiong et al., 2000) and weighted correla-
tion (Golub et al., 1999). Classification can be improved by first limiting the dataset to genes that are informative
for the required distinction. Several methods have been suggested to choose subsets of informative genes (Ben-Dor
et al., 2000; Dudoit et al., 2002; Furey et al., 2000; Xiong et al., 2000; Xing & Karp, 2001).

Ben-Dor et al. (2000) were the first to demonstrate the strength of clustering in cancer classification problems.
Key to their method is combining the labeling (known classification) information in the clustering process. Suppose
we use a clustering algorithm with at least one free parameter. Given an unlabeled tissue, the clustering algorithm
is applied repeatedly with different parameter values on the set of all tissues (known and unknown). Each solution
is scored by its level of compatibility with the labeling information, and the best solution is chosen. Each unlabeled
tissue is then assigned to the most represented class among the known tissues in its cluster.

The compatibility score for a clustering solution used by Ben-Dor et al. is simply the number of tissue pairs
that are mates or non-mates in both the true labeling and the clustering solution. The clustering algorithm used
in (Ben-Dor et al., 2000) was CAST with Pearson correlation as the similarity function.

We have classified two datasets using CLICK. The first dataset of Alon et al. (1999) contains 62 samples of
colon epithelial cells, collected from colon-cancer patients. They are divided into 40 "tumor’ samples collected from
tumors, and 22 'normal’ samples collected from normal colon tissues of the same patients. Of the ~6,000 genes
represented in the experiment, 2,000 genes were selected based on the confidence in the measured expression levels.
The second dataset of Golub et al. (1999) contains 72 leukemia samples. These samples are divided into 25 samples
of acute myeloid leukemia (AML) and 47 samples of acute lymphoblastic leukemia (ALL). Of the ~7,000 genes
represented in the experiment, 3,549 were chosen based on their variability in the dataset.

The application of CLICK to classify these datasets enumerates several homogeneity parameters for CLICK,
and chooses the solution which is most compatible with the given labels. We used the same similarity function and
compatibility score asin (Ben-Dor et al., 2000). A sampleisnot classified if it is either asingleton in the clustering
obtained, or no class has a mgjority in the cluster assigned to that sample. In order to assess the performance of
CLICK we employed the leave one out cross vaidation (LOOCV) technique, as done in (Ben-Dor et al., 2000).
According to this technique, one trial is performed for each tissue in the dataset. In the ¢-th tria, the algorithm tries
to classify the i-th sample based on the known classifications of the rest of the samples. The average classification
accuracy over al trialsis computed. Table 5 presents a comparison between the classification based on CLICK and
that of CAST, as reported in (Ben-Dor et al., 2000). The results are comparable, with CAST performing dlightly
better on the colon dataset, and CLICK performing better on the leukemia dataset.

Next, wetested CLICK s utility in differentiating between two very similar types of cancer. We concentrated on
part of the leukemia dataset composed of the 47 ALL samplesonly. For these samples an additional sub-classification
into either T-cell or B-cell, is provided. An application of CLICK to this dataset resulted in an almost perfect
classification (see Table 6).

Finally we examined the influence of feature selection on the classification accuracy. To this end, we sorted the
genes in each dataset according to the ratio of their between-sum-of-squares and within-sum-of-sgquares values, as
suggested in (Dudoit et al., 2002). Thisratio is computed by the following formula:

BSS(g) _ Di—1,2 (T, — z4)°
WSS(9)  Yici2 kei(ah —zg:)?

Here i denotes the class number, n; its size, k£ denotes the sample number, z, ; is the average expression level of
gene g at class 4, z, isthe average expression level of gene g, and af; is the expression level of gene g at sample k.
For each LOOCYV iteration we chose the 50 genes with the highest value and performed the classification procedure
on the reduced dataset which contained the expression levels of these 50 genes only. The results of this analysis are
shown in Table 6. For both the colon and leukemia datasets the performance was improved on the reduced dataset.
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5 Concluding Remarks

We presented in this paper anovel clustering algorithm which utilizes graph-theoretic and statistical techniques. At
the heart of the algorithm is a process of recursively partitioning aweighted graph into components using minimum
cut computations. The edge weights and the stopping criterion of the recursion are assigned probabilistic meaning,
which gives the algorithm high accuracy. Our method has, however, several limitations: First, the probabilistic
model is not always suitable, as is the case for example for protein similarity data (Sharan, 2002). Second, our
algorithm cannot identify (with confidence) very small clusters, as small sets of elements may satisfy the kernel
criterion merely by chance. Last, our method is designed to produce a hard partition of the elements into clusters,
although such a partition is not always adequate, e.g., when element classification is hierarchical by nature.

CLICK was tested on several biological datasets, originating from a variety of applications, and was shown to
outperform extant clustering algorithms according to several common figures of merit. It isalso fast, allowing high-
accuracy clustering of large datasets of size over 100,000 in a couple of hours. CLICK is available as part of the
EXPANDER software package for clustering and visualizing gene expression data.
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\ Cluster structure |A=075]| A=1[A=15]A=2] A=25]

5 clusters of size 100 0.81 0.95 0.99 1 1
10 clusters of size 50 0.39 0.8 0.97 1 1
6 clusters of size 50,60,. . .,100 0.75 0.93 0.99 1 1

Table 1: CLICK’s accuracy in simulations: Average Jaccard coefficients over 20 runs. A is specified in standard
deviations.

Program | #Clusters | Homogeneity Separation | Jaccard
H pve ‘ Hhprin | Save ‘ SMaz

CLICK 18 062 | 046 | -0.05| 0.33 0.54
GeneCluster 30 059 | 022 | -001| o081 0.28

Table 2: A comparison between CLICK and GeneCluster on a yeast cell-cycle dataset of Cho et al. (1998). The
Jaccard score is computed with respect to the putative solution of Cho et al. (1998).

Program | #Clusters | Homogeneity Separation

H pye ‘ Hhppin | Save ‘ SMaz
CLICK.1 6 072 | 042 | -0.29 | 0.55
CLICK.2 6 078 | 068 | -019| 054

Hierarchical 10 0.76 | 0.65 | -0.08| 0.75

Table 3: A comparison between CLICK and the hierarchical clustering of Eisen et al. (1998) on the dataset of
response of human fibroblasts to serum (lyer et al., 1999). CLICK.1 represents CLICK’s solution with the default
homogeneity parameter. CLICK.2 represents a solution of CLICK with the homogeneity parameter set to 0.76.

Program #Clusters | Homogeneity Separation | Significantly Enriched Categories (p)
HAve ‘ HMin SAve ‘ SMaw
CLICK 9 044 | 031 | 007 | 033 REP (5 - 10~°), CC (0.002)
(Whitfield et al., 2002) 5 022 | 012 | 0.12| 023 REP (7 -107%)

Table 4: A comparison between the solutions of CLICK and (Whitfield et al., 2002) on a human cell-cycle dataset
of (Whitfield et al., 2002). Abbreviations for GO categories. REP — DNA replication and chromosome cycle; CC —
mitotic cell cycle.
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| Dataset | Method | Correct | Incorrect | Unclassified |

Colon CLICK 87.1 12.9 0.0
CAST 88.7 11.3 0.0

Leukemia | CLICK 94.4 2.8 2.8
CAST 87.5 125 0.0

Table 5: A comparison of the classification quality of CLICK and CAST on the colon data of (Alon et al., 1999)
and the leukemia data of (Golub et al., 1999). For each dataset and clustering algorithm the percents of correct
classifications (in the LOOCYV iterations), incorrect classifications and unclassified elements are specified.

| Dataset | Size | Correct | Incorrect | Unclassified |

Colon 2000 | 87.1 12.9 0.0
50 90.3 9.7 0.0

Leukemia | 3549 | 944 2.8 2.8
50 97.2 2.8 0.0

ALL 3549 | 97.9 0.0 2.1
50 97.9 21 0.0

Table 6: A summary of the classifications obtained by CLICK on the colon data of (Alon et al., 1999), the whole
leukemia dataset of (Golub et al., 1999), and part of the leukemia dataset which contains ALL samples only. For
each dataset classifications were performed with respect to the total number of genes, and with respect to the 50
most informative genes. The percents of correct classifications (in the LOOCYV iterations), incorrect classifications
and unclassified elements are specified.
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Figure Legends

Figurel: Thefull CLICK agorithm. £ and R arethe current lists of kernels and singletons, respectively. Initially,
R contains all elements, and L is empty. The Split procedure partitions the graph induced on the elementsin R into
components, using approximated minimum weight cut computations.

Figure2: Matrix imagesin EXPANDER. A: Theraw yeast cell-cycle data matrix of Spellman et al. (1998). Rows
correspond to genes and columns to conditions. Reds/greens represent over/under-expression levels. B: The data
matrix after clustering the genes into six clusters and reordering the rows accordingly. C: The similarity matrix.
Rows and columns correspond to genes. Reds/greens: higher/lower similarity values. D: The similarity matrix after
clustering the genes and reordering the rows and columns accordingly. (For a clear image, an arbitrary subset of 400
genes and 25 conditions only is shown in A and B.)

Figure3: Functional enrichment. The pie charts show the functional enrichment for CLICK’s clusters 3 (left) and
4 (right) computed on the yeast cell-cycle of Spellman et al. (1998). Only functional categories containing at least
10% of the genes in a cluster are shown. The most enriched categories are transport (in cluster 3, p = 1.7 - 167)
and developmental processes (in cluster 4, p = 1.8 - 1079).

Figure4: CLICK’sclustering of the yeast cell cycle data of (Cho et al., 1998). z-axis. Time points 0-80,100-160
at 10-minutes intervals. y-axis. Normalized expression levels. The solid line in each sub-figure plots the average
pattern for that cluster. Error bars display the measured standard deviation. The cluster size is printed above each
plot.
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While some change occurs do:
Split(Gr).
Let S be the set of resulting components.
For each C € S do:
Remove edges with negative weight from C.
Filter low-degree vertices from C.
Basic-CLICK(C).
Let £’ bethelist of kernels produced.
Let R bethe set of remaining singletons.
Adoption(£', R).
L+ LuL.
Merge(L).
Adoption(L, R).

Figure 1:
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