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The study of haplotypes and their diversity in a population is central to disease association

research. We study several problems arising in haplotype block partitioning. Our objective

function is the total number of distinct haplotypes in blocks. We show that the problem

is NP-hard when there are errors or missing data, and provide approximation algorithms

for several of its variants. We also give an algorithm that solves the problem with high

probability under a probabilistic model that allows noise and missing data. In addition, we

study the multi-population case, where one has to partition the haplotypes into populations

and seek a different block partition in each one. We provide a heuristic for that problem

and use it to analyze simulated and real data. On simulated data, our blocks resemble the

true partition more than the blocks generated by the LD-based algorithm of Gabriel et al.

On single-population real data, we generate a more concise block description than extant

approaches, with better average LD within blocks. The algorithm also gives promising results

on real 2-population genotype data.

(haplotype; block; genotype; SNP; sub-population; stratification; algorithm; complexity)

1. Introduction

The availability of a nearly complete human genome sequence makes it possible to look

for telltale differences between DNA sequences of different individuals on a genome-wide

scale, and to associate genetic variation with medical conditions. The main source of such

information is single nucleotide polymorphisms (SNPs). Millions of SNPs have already been

detected (Sachidanandam et al. 2001; Venter et al. 2001), out of an estimated total of 10

millions common SNPs (Grugliyak and Nickerson 2001). This abundance is a blessing, as
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it provides very dense markers for association studies. Yet, it is also a curse, as the cost of

typing every individual SNP becomes prohibitive. Haplotype blocks allow researchers to use

the plethora of SNPs at a substantially reduced cost.

The sequence of alleles in contiguous SNP positions along a chromosomal region is called

a haplotype. A major recent discovery is that haplotypes tend to be preserved along relatively

long genomic stretches, with recombination occurring primarily in narrow regions called hot

spots (Gabriel et al. 2002; Patil et al. 2001). The regions between two neighboring hot spots

are called blocks, and the number of distinct haplotypes within each block that are observed

in a population is very limited: Typically, some 70-90% of the haplotypes within a block

belong to very few (2-5) common haplotypes (Patil et al. 2001). The remaining haplotypes

are called rare haplotypes. This finding is very important to disease association studies,

since once the blocks and common haplotypes are identified, one can hopefully obtain a

much stronger association between a haplotype and a disease phenotype. Moreover, rather

than typing every individual SNP, one can choose few representative SNPs from each block

that suffice to determine the haplotype. Using such tag SNPs allows a major saving in typing

costs.

Due to their importance, blocks have been studied quite intensively recently. Daly et al.

(2001) and Patil et al. (2001) used a greedy algorithm to find a partition into blocks that

minimizes the total number of SNPs that distinguish a prescribed fraction of the haplotypes

in each block. Zhang et al. (2002) provided a dynamic programming algorithm for the

same purpose. Koivisto et al. (2003) provided a method based on Minimum Description

Length to find haplotype blocks. Bafna et al. (2003) proposed a combinatorial measure

for comparing block partitions and suggested a different approach to find tag SNPs, that

avoids the partition into blocks. For an excellent recent review on computational aspects of

haplotype analysis, see (Halldorsson et al. 2003).

In this paper we address several problems that arise in haplotype studies. Our starting

point is a very natural optimization criterion: We wish to find a block partition that mini-

mizes the total number of distinct haplotypes that are observed in all the blocks. This criterion

for evaluating a block partition follows naturally from the above mentioned observation, that

within blocks in the human genome, only a few common haplotypes are observed (Patil et al.

2001; Daly et al. 2001; Gabriel et al. 2002). The same criterion is used in the pure parsimony

approach for haplotype inference, where the problem is to resolve genotypes into haplotypes,

using a minimum number of distinct haplotypes (Gusfield 2003). In this case, the problem
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was shown to be NP-hard (Hubbell 2002) (cf. (Halldorsson et al. 2003)). This criterion was

also proposed by Gusfield (2001) as a secondary criterion in refinements to Clark’s inference

method (Clark 1990). Minimizing the total number of haplotypes in blocks can be done in

polynomial time if there are no data errors, using a dynamic programming algorithm. As

we shall show, the problem becomes hard when errors are present or some of the data are

missing. In fact, the problem of scoring a single given block turns out to be the bottleneck.

Note that in practice, one has to account for rare haplotypes and hence minimize the total

number of common haplotypes.

The input to all the problems we address is a haplotype matrix A with columns corre-

sponding to SNPs in their order along the chromosome and rows corresponding to individual

chromosomal segments typed. Since virtually all SNP sites have two alleles, we adopt the

common assumption that the matrix is binary, after transforming the two distinct alleles at

each site arbitrarily to 0 and 1. Aij is the allele type of chromosome i in SNP j. The first

set of problems that we study concerns the scoring of a single block in the presence of errors

or missing data. In one problem variant, we wish to find a minimum number of haplotypes

such that by making at most E changes in the matrix, each row vector is transformed into

one of them. We call this problem Total Block Errors (TBE). We show that the problem in

NP-hard, and provide a polynomial 2-approximation algorithm to a variant of TBE, where

one wishes to minimize the total number of errors induced by the solution and the number

of common haplotypes is bounded. In a second problem, we wish to minimize the number

of haplotypes when the maximum number of errors between a given row and its (closest)

haplotype is bounded by e. We call this problem Local Block Errors (LBE). This problem

is shown to be NP-hard too, and we provide a polynomial algorithm (for fixed e), which

guarantees a logarithmic approximation factor. In a third variant, some of the data entries

are missing (manifested as “question marks” in the block matrix), and we wish to complete

each of them by zero or one, so that the total number of resulting haplotypes is minimized.

Again, we show that this Incomplete Haplotypes (IH) problem is NP-hard. To overcome the

hardness we resort to a probabilistic approach. We define a probabilistic model for gener-

ating haplotype data, including errors, missing data and rare haplotypes, and provide an

algorithm that scores a block correctly with high probability under this model.

Another problem that we address is stratifying the haplotype populations. It has been

shown that the block structure in different populations is different (Gabriel et al. 2002).

When the partition of the sample haplotypes into sub-populations is unknown, determining
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a single block structure for all the haplotypes can create artificial solutions with far too many

haplotypes. We define the Minimum Block Haplotypes (MBH) problem, where one has to

partition the haplotyped individuals into sub-populations and provide a block structure for

each one, so that the total number of distinct haplotypes over all sub-populations and their

blocks is minimum. We show that MBH is NP-hard, but provide a heuristic for solving it in

the presence of errors, missing data and rare haplotypes. The algorithm uses ideas from the

probabilistic analysis.

We applied our algorithm to several synthetic and real datasets. We show that the

algorithm can identify the correct number of sub-populations in simulated data, and is

robust to noise sources. On simulated data, when compared to the LD-based algorithm

of Gabriel et al. (2002), we show that our algorithm forms a partition into blocks that is

much more faithful to the true one. On a real dataset of Daly et al. (2001) we generate a

more concise block description than extant approaches, with a better average value of high

LD-confidence fraction within blocks. As a final test, we applied our MBH algorithm to the

two largest sub-populations reported in Gabriel et al. (2002). As this was genotype data,

we treated heterozygotes as missing data. Nevertheless, the algorithm was able to determine

that there are two sub-populations and correctly classified over 95% of the haplotypes.

The paper is organized as follows: In Section 2 we study the complexity of scoring a block

under various noise sources and present our probabilistic scoring algorithm. In Section 3 we

study the complexity of the MBH problem and describe a practical algorithm for solving it.

Section 4 contains our results on simulated and real data.

A preliminary version of the results of this paper is to appear in Proceedings of the Third

Workshop on Algorithms in Bioinformatics (WABI) (Kimmel et al. 2003).

2. Scoring Noisy Blocks

In this section we study the problem of minimizing the number of distinct haplotypes in

a single block under various noise sources. This number will be called the score of the

block. The scoring problem arises as a key component in block partitioning in single- and

multiple-population situations.

The input is a haplotype matrix A with n rows (haplotypes) and m columns (SNPs).

A may contain errors (where ’0’ is replaced by ’1’ and vice versa), resulting from point

mutations or measurement errors, and missing entries, denoted by ’?’. Clearly, if there are
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no errors or missing data then a block can be scored in time proportional to its size by

a hashing algorithm. Below we define and analyze several versions of the scoring problem

which incorporate errors into the model. We assume until Section 2.4 that there are no rare

haplotypes. In the following we denote by vi the i-th row vector (haplotype) of A, and by

V = {v1, . . . , vn} the set of all n row vectors.

2.1 Minimizing the Total Number of Errors

First we study the following problem: We are given an integer E, and wish to determine the

minimum number of (possibly new) haplotypes, called centroids, such that by changing at

most E entries in A, every row vector is transformed into one of the centroids. Formally, let

h(·, ·) denote the Hamming distance between two vectors. Define the following problem:

Problem 1 (Total Block Errors (TBE)) Given a binary haplotype matrix A and an in-

teger E, find a minimum number k of centroids v1, . . . , vk, such that
∑

u∈V mini h(u, vi) ≤

E.

Determining if k = 1 can be done trivially in O(nm) time by observing that the minimum

number of errors is obtained when choosing v1 to be the consensus vector of the rows of A.

The general problem, however, is NP-hard, as shown below:

Theorem 1 TBE is NP-hard.

Proof: We provide a reduction from VERTEX COVER (cf. Garey and Johnson 1979).

Given an instance (G = (W = {w1, . . . , wm}, F = {e1, . . . , en}), k) of VERTEX COVER,

where w.l.o.g. k < m− 1, we form an instance (A, k + 1, E) of TBE. A is an (n + mn2)×m

matrix, whose rows are constructed as follows:

1. For each edge ei = (s, t) ∈ F , we form a binary vector vei
with ’1’ in positions s and t,

and ’0’ in all other positions.

2. For vertex wi ∈ W define the vertex vector ui as the vector with ’1’ in its i-th position,

and ’0’ otherwise. For each wi ∈ W we form a set Ui of n2 identical copies of ui.

Finally, define E = n + n2(m− k). We shall prove that G has a vertex cover of size at most

k if and only if there is a solution to TBE on A with at most k + 1 centroids and E errors.
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(⇒) Suppose that G has a vertex cover {w1, . . . , wt} with t ≤ k. Take some cover with

t = k. Partition the rows of A into the following subsets: For 1 ≤ i ≤ t the i-th subset will

contain all vectors corresponding to edges that are covered by vi (if an edge is covered by

two vertices, choose one arbitrarily), along with the n2 vectors in Ui. Its centroid will be

wi. The (t + 1)-st subset will contain all vectors corresponding to vertices of G that are not

members of the vertex cover, with its centroid being the all-0 vector. It is easy to verify that

the number of errors induced by this partition is exactly n + n2(m− k) = E.

(⇐) Suppose that A can be partitioned into at most t + 1 subsets with corresponding

centroids (with t ≤ k) such that the number E∗ of induced errors is at most E. In particular,

examine a partition which induces a minimum number of errors. W.l.o.g., we can assume

that for each i all vectors in Ui belong to the same set in the partition. For each vertex

i ∈ W , the set Ui induces at least n2 errors, unless ui is one of the centroids. Let l be the

number of centroids that correspond to vertex vectors. Then the number E ′ of errors induced

by the remaining (m − l) sets of vertex vectors is at least (m− l)n2. But since E ′ ≤ E∗, it

follows that (m − l)n2 ≤ E = (m − k)n2 + n. Hence, k ≤ l + 1
n

and by integrality k ≤ l.

Now, l ≤ t+1 ≤ k +1. Suppose to the contrary that l = k+1. Since the Hamming distance

of any two distinct vertex vectors is 2, we get E ′ ≥ 2(m− k− 1)n2 > E (since m > k + 1), a

contradiction. Thus, l = k. We claim that these k vertices form a vertex cover of G. By the

argument above, each other vertex vector must belong to the (k+1)-st subset and, moreover,

its centroid must be the all-0 vector. Consider a vector w corresponding to an edge (u, w).

If w is assigned to the (k + 1)-st subset, it adds 2 to E∗. Similarly, if w is assigned to one

of the first k subsets corresponding to a vertex v, and u, w 6= v, then w adds 2 to E∗. Since

there are n edges and the assignment of vertex vectors induced E ′ = n2(m − k) ≥ E − n

errors, each edge can induce at most one error. Hence, each edge induces exactly one error,

implying that every edge is incident to one of the k vertices.

Due to the hardness of TBE, we resort to enumerative approaches. We study the opti-

mization version where E is to be minimized. A straightforward approach is to enumerate the

centroids in the solution and assign each row vector of A to its closest centroid. Suppose there

are k centroids in an optimum solution. Then the complexity of this approach is O(kmn2mk),

which is feasible only for very small m and k. In the following we present an alternative

approach. We devise a (2− 2
n
)-approximation algorithm, which takes O(n2m + knk+1) time.
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To describe the algorithm and prove its correctness we use the following lemma, that

focuses on the problem of seeking a single centroid v ∈ W for the set of vectors W =

{v1, . . . , vn}. Denote ṽb ≡ arg minv∈{0,1}m

∑n

i=1 h(v, vi), and let E ≡
∑

v∈W h(v, ṽb).

Lemma 2 Let vb = arg minv∈W

∑n

i=1 h(v, vi). Then
∑n

i=1 h(vb, vi) ≤ (2− 2
n
)E.

Proof: Define s ≡
∑

1≤i<j≤n h(vi, vj). We first claim that s ≤ E(n− 1). Then,

s =
∑

i<j

h(vi, vj) ≤
∑

i<j

[h(vi, ṽb) + h(ṽb, vj)] = (n− 1)
∑

i

h(vi, ṽb) = (n− 1)E .

The first inequality follows since the Hamming distance satisfies the triangle inequality. The

last equality follows by using ṽb as the centroid. This proves the claim.

By the definition of vb, for every vc 6= vb we have

∑

vi∈V

h(vb, vi) ≤
∑

vi∈V

h(vc, vi)

Summing the above inequality for all n vectors, noting that h(v, v) = 0, we get

n
∑

vi∈V

h(vb, vi) ≤ 2
∑

1≤i<j≤n

h(vi, vj) = 2s ≤ 2E(n− 1)

Theorem 3 TBE can be (2− 2
n
)-approximated in O(n2m + knk+1) time.

Proof: Algorithm: Our algorithm enumerates all possible subsets of k rows in A as

centroids, assigns each other row to its closest centroid and computes the total number of

errors in the resulting solution.

Approximation factor: Consider two (possibly equal) partitions of the rows of A:

Palg = (A1, . . . , Ak), the one returned by our algorithm; and Pbest = (Â1, . . . , Âk), a partition

that induces a minimum number of errors. For 1 ≤ i ≤ k denote vi
b = arg minv∈Ai

∑
vj∈Ai

h(v, vj)

and v̂i
b = arg minv∈Âi

∑
vj∈Âi

h(v, vj). The number of errors induced by Palg and Pbest

are Ealg =
∑k

i=1

∑
v∈Ai

h(vi
b, v) and Ebest =

∑k

i=1

∑
v∈Âi

h(v̂i
b, v), respectively. Finally, let

ni = |Âi| and denote by ei the minimum number of errors induced in subset Âi, by the

optimal solution. In particular,
∑k

i=1 ni = n and
∑k

i=1 ei = E.

Since our algorithm checks all possible solutions that use k of the original haplotypes as

centroids and chooses a solution that induces a minimal number of errors, Ealg ≤ Ebest. By

7



Lemma 2,
∑

v∈Âi
h(v̂i

b, v) ≤ (2− 2
ni

)ei for every 1 ≤ i ≤ k. Summing this inequality over all

1 ≤ i ≤ k we get

Ealg ≤ Ebest =

k∑

i=1

∑

v∈Âi

h(v̂i
b, v) ≤

k∑

i=1

(2−
2

ni

)ei ≤
k∑

i=1

(2−
2

n
)ei = (2−

2

n
)E .

Complexity: As a preprocessing step we compute the Hamming distance between every

two rows in O(n2m) time. There are O(nk) possible sets of centroids. For each centroid set,

assigning rows to centroids and computing the total number of errors takes O(kn) time. The

complexity follows.

2.2 Handling Local Data Errors

In this section we treat the question of scoring a block when the maximum number of errors

between a haplotype and its centroid is bounded. Formally, we study the following problem:

Problem 2 (Local Block Errors (LBE)) Given a block matrix A and an integer e, find

a minimum number k of centroids v1, . . . , vk and a partition P = (V1, . . . , Vk) of the rows of

A, such that h(u, vi) ≤ e for every i and every u ∈ Vi.

Theorem 4 LBE is NP-hard even when e = 1.

Proof: We use the same construction as in the proof of Theorem 1. We claim that the

VERTEX COVER instance has a solution of cardinality at most k if and only if the LBE

instance has a solution of cardinality at most k + 1 such that at most one error is allowed

in each row. The ’only if’ part is immediate from the proof of Theorem 1. For the ’if’ part

observe that any two vectors corresponding to a pair of independent edges cannot belong

to the same subset in the partition, and so is the case for a vertex vector and any vector

corresponding to an edge that is not incident on that vertex. This already implies a vertex

cover of size at most k + 1. Since m > k + 1 there must be a subset in the partition that

contains at least two vectors corresponding to distinct vertices. But then either it contains

no edge vector, or it contains exactly one edge vector and the vectors corresponding to its

endpoints. In any case we obtain a vertex cover of the required size.

Theorem 5 There is an O(log n) approximation algorithm for LBE that takes O(n2me)

time.
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Proof: Our approximation algorithm for LBE is based on a reduction to SET COVER.

Let V be the set of row vectors of A. Define the e-set of a vector v as the set of vectors of the

same length that have Hamming distance at most e to v. Denote this e-set by e(v). Let U be

the union of all e-sets of row vectors of A. We reduce the LBE instance to a SET COVER

instance (V,S), where S ≡ {e(v) ∩ V : v ∈ U}. Clearly, there is a 1-1 correspondence

between solutions for the LBE instance and solutions for the SET COVER instance, and

that correspondence preserves the cardinality of the solutions. We now apply an O(logn)-

approximation algorithm for SET COVER (see, e.g., (Cormen et al. 1990)) to (V,S) and

derive a solution to the LBE instance, which is within a factor of O(log n) of optimal. The

complexity follows by observing that |U | = O(nme).

2.3 Handling Missing Data

In this section we study the problem of scoring an incomplete matrix, i.e., a matrix in which

some of the entries may be missing. The problem is formally stated as follows:

Problem 3 (Incomplete Haplotypes (IH)) Given an incomplete haplotype matrix A,

complete the missing entries so that the number of haplotypes in the resulting matrix is

minimum.

Theorem 6 IH is NP-hard.

Proof: By reduction from GRAPH COLORING (cf. Garey and Johnson 1979). Given

an instance (G = (W, E), k) of GRAPH COLORING we build an instance (A, k) of IH as

follows: Let W = {1, . . . , n}. Each i ∈ W is assigned an n-dimensional row vector vi in A

with ’1’ in the i-th position, ’0’ in the j-th position for every (i, j) ∈ E and ’?’ in all other

positions.

Given a k-coloring of G, let W1, . . . , Wk be the corresponding color classes. For each

class Wi = {v
(i)
j1

, . . . , v
(i)
ji
} we complete the ’?’-s in the vectors corresponding to its vertices

as follows: Each ’?’ in one of the columns v
(i)
j1

, . . . , v
(i)
ji

is completed to 1, and all the others are

completed to 0. The resulting matrix contains exactly k distinct haplotypes: Each haplotype

corresponds to a color class, and has ’1’ in position i if and only if i is a member of the color

class.

Conversely, given a solution to IH of cardinality at most k, each of the solution haplotypes

corresponds to a color class in G. This follows since any two vectors corresponding to
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adjacent vertices must have a column with both ’0’ and ’1’ and, thus, represent two different

haplotypes.

2.4 A Probabilistic Algorithm

In this section we define a probabilistic model for the generation of haplotype block data.

The model is admittedly naive, in that it assumes equal allele frequencies and independence

between different SNPs and distinct haplotypes. However, as we shall see in Sections 3 and 4,

it provides useful insights towards an effective heuristic, that performs well on real data. We

give a polynomial algorithm that computes the optimal score of a block under this model

with high probability (w.h.p.). Our model allows for all three types of confusing signals

mentioned earlier: rare haplotypes, errors and missing data.

Denote by T the hidden true haplotype matrix, and by A the observed one. Let T ′ be

a submatrix of T , which contains one representative of each haplotype in T (common and

rare). We assume that the entries of T ′ are drawn independently according to a Bernoulli

distribution with parameter 0.5. T is generated by duplicating each row in T ′ an arbitrary

number of times. This completes the description of the probabilistic model for T . Note

that we do not make any assumption on the relative frequencies of the haplotypes. We now

introduce errors to T by independently flipping each entry of T with probability α < 0.5.

Finally, each entry is independently replaced with a ’?’ with probability p. Let A be the

resulting matrix, and let A′ be the submatrix of A induced by the rows in T ′. Under these

assumptions, the entries of A′ are independently identically distributed as follows: A′
ij = 0

with probability 1−p

2
, A′

ij = 1 with probability 1−p

2
and A′

ij =? with probability p.

We say that two vectors x and y have a conflict in position i if one has value 1 and the

other 0 in that position. Define the dissimilarity d(x, y) of x and y as the number of their

conflicting positions (in the absence of ’?’s, this is just the Hamming distance). We say that x

is independent of y and denote it by x ‖ y, if x and y originate from two different haplotypes

in T . Otherwise, we say that x and y are mates and denote it by x ≈ y. Intuitively,

independent vectors will have higher dissimilarity compared to mates. In particular, for any

i:

pI ≡ Prob(xi = yi|x ‖ y; xi, yi ∈ {0, 1}) = 0.5, (1)

pM ≡ Prob(xi = yi|x ≈ y; xi, yi ∈ {0, 1}) = α2 + (1− α)2 > 0.5 .
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Problem 4 (Probabilistic Model Block Scoring (PMBS)) Given an incomplete hap-

lotype block matrix A, find a minimum number k of centroids v1, . . . , vk, such that under the

above probabilistic model, with high probability, each vector u ∈ A is a mate of some centroid.

Our algorithm for scoring a block A under the above probabilistic model is described

in Figure 1. It uses a threshold t∗ on the dissimilarity between vectors, to decide on mate

relations. t∗ is set to be the average of the expected dissimilarity between mates and of the

expected dissimilarity between independent vectors (see proof of Theorem 7). The algorithm

produces a partition of the rows into mate classes of cardinalities s1 ≥ s2 ≥ . . . ≥ sl. Given

any lower bound γ on the fraction of rows that need to be covered by the common haplotypes,

we give A the score h = arg minj

∑j

i=1 si ≥ γn. We prove below that w.h.p. h is the correct

score of A.

Score(A):

1. Let V be the set of rows in A.

2. Initialize a heap S.

3. While V 6= ∅ do:

(a) Choose some v ∈ V .

(b) H ← {v′ ∈ V | d(v, v′) ≤ t∗}.

(c) V ← V \H

(d) Insert(S,|H|).

4. Output S.

Figure 1: An algorithm for scoring a block under a probabilistic model of the data. Procedure
Insert(S,s) inserts a number s into a heap S.

Theorem 7 If m = ω(log n) then with high probability the algorithm computes the correct

score of A.

Proof: We prove that with high probability each mate relation decided by the algorithm

is correct. Applying a union bound over all such decisions will give the required result. Fix

an iteration of the algorithm at which v is the chosen vertex and let v ′ 6= v be some row

vector in A. Let Xi be a binary random variable which is 1 if and only if vi and v′
i are in
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conflict. Clearly, all Xi are independent identically distributed Bernoulli random variables.

Define X ≡ d(v, v′) =
∑m

i=1 Xi and f ≡ (1− p)2. Using Equation 1 we conclude:

(X|v′ ‖ v) ∼ Binom(m, f(1− pI)) ,

(X|v′ ≈ v) ∼ Binom(m, f(1− pM)) .

We now require the following Chernoff bound (cf. (Alon and Spencer 2000)): If Y ∼

Binom(n, s) then for every ε > 0 there exists cε > 0 that depends only on ε, satisfying:

Prob[|Y − ns| ≥ εns] ≤ 2e−cεns.

Let µ = mf(1− pM). Define ε ≡ (1−pI)−(1−pM )
2(1−PM )

and t∗ ≡ εµ. Applying Chernoff bound and

using the assumption that m = ω(log n), we have that for all c > 0:

Prob(X > t∗|v′ ≈ v) ≤ 2e−cεm <
1

nc
,

P rob(X ≤ t∗|v′ ‖ v) <
1

nc
.

Since we check whether d(v, v′) < t∗ a total of O(n2) times, applying a union bound we

conclude that the probability that throughout the algorithm some implied mate relation is

incorrect, is bounded by a polynomial in 1
n
.

When using the algorithm as part of a practical heuristic (see Section 3), we do not

report the rare haplotypes. Instead, we report only the smallest number of most abun-

dant haplotypes, as computed by the algorithm, that together capture a fraction γ of all

haplotypes.

3. The Multi-Population Case

Suppose that the matrix A contains haplotypes from several homogeneous populations. The

partitioning into blocks can differ among populations (Gabriel et al. 2002). Here, we study

the question of reconstructing the partition of the rows of A into sets called sub-populations,

and the columns in each set into blocks, such that the sum of the scores of the submatrices

corresponding to these blocks is minimized. Formally:

Problem 5 (Minimum Block Haplotypes (MBH)) Given a haplotype matrix A, find

a partition of its rows into sub-populations so that the total number of block haplotypes is

minimized.
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In practice, we usually have full information on the population from which each of the

haplotypes originates. However, in certain situations, there may be a hidden stratification

of a population, that can affect the conclusions of association studies on it. Problem 5 aims

to address such situations.

3.1 Minimum Block Haplotypes

For a haplotype matrix A and a subset S of its rows, we denote by HA
S the (minimum) total

number of block haplotypes in an optimal partition of S into blocks. Our goal is to find

HA = HA
V . Given a partition P = (P1, . . . , Pr) of the rows of A into sub-populations, we let

HA(P ) =
∑r

i=1 HA
Pi

, that is, the (minimum) total number of block haplotypes in an optimal

partition of each sub-population into blocks. In the following we omit the superscript A when

it is clear from the context. Given a partition P , H(P ) can be polynomially computed in the

noiseless case using a simple adaptation of the dynamic programming algorithm of (Zhang

et al. 2002). However, the general MBH problem is NP-hard.

Theorem 8 MBH is NP-hard.

Proof: We provide a reduction from VERTEX COVER (cf. Garey and Johnson 1979).

Let (G = (V, E), k) be an instance of VERTEX COVER, where |V | = n, |E| = m and

w.l.o.g. n < m. We build an instance (A, n(8m + 4 + 2m2) + 12m + 2k) of (the decision

version of) MBH as follows: We associate with the vertices and edges of G row vectors of

dimension c = (2n + 1)m10. These vectors will constitute the matrix A. Each of the row

vectors v is partitioned into segments, where the segment of length m10 between positions

i− ≡ (i − 1)2m10 + 1 and i+ ≡ (i − 1)2m10 + m10 corresponds to vertex i. The m10 last

positions in v are called its tail.

The content of each segment will be a periodic binary sequence. For an integer k let Sk

be the sequence (0, . . . , 0, 1) of length k, where S0 = (0) and S1 = (1). For convenience we

denote Sk also as S1
k, and use S−1

k to denote the complement of that sequence. Each of the

vector segments consists of repetitions of some Sk or its complement. We denote by Sk(l)

the sequence formed by concatenating copies of Sk up to a total length of l, where the last

copy may be truncated.
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For an ordered sequence of integers 1 = i1 < . . . < il+1 = c + 1, inducing a partition of

[1, . . . , c], we define the following vector set:

Ui1,...,il+1
(k1, . . . , kl) ≡

⋃

r1,...,rl∈{1,−1}

(Sr1

k1
(i2 − i1), . . . , S

rl

kl
(il+1 − il))

In words, Ui1,...,il+1
(k1, . . . , kl) is a set of 2l vectors of dimension c, where the s-th vector

contains in its t-th segment copies of Sr
kt

with r = 1 iff the t-th bit of s is 0.

With each vertex vi we associate the set of 2 · (2 · 4m) · 2 · 2m2 = 64m3 vectors

Vi =
⋃

1≤j≤4m, im2≤k<(i+1)m2

U1,i−,i++1,c−m10+m9i,c+1(0, j, 0, k) .

Thus, each vertex vector has four segments: Till position i− it is all-zeros or all-ones; between

i− and i+ it has one of 4m possible sequences or their complements; till the beginning of

its tail it is again all-zeros or all-ones; and then at a unique position, which depends on the

vertex identity, starts one of 2m2 possible tail sequences for that vertex.

With each edge el : 1 ≤ l ≤ m connecting vertices i and j, where i < j, we associate a

set of 2 · (2 · 4) · 2 · (2 · 4) · 2 = 512 vectors

El =

4l⋃

p=4l−3

U1,i−,i++1,j−,j++1,c+1(0, p, 0, p, 0) .

Thus, each edge vector contains one of 8 possible sequences in its (i−, i+) and (j−, j+)

segments, and these sequences are unique for each edge.

By construction, HVi
= 2 + 8m + 2 + 2m2 = 8m + 4 + 2m2 and HEl

= 16 + 6 = 22. We

now prove that G has a vertex cover of size at most k if and only if A has a partition P with

H(P ) ≤ n(8m + 4 + 2m2) + 12m + 2k.

(⇒) W.l.o.g., let {1, . . . , t} be a vertex cover of size t ≤ k for G. Let Ci be the set

of edges covered by vertex i (for an edge covered by two vertices, choose the one with

smaller index), where Ci = ∅ for i > t. Define Ai ≡ Vi ∪
⋃

j∈Ci
Ej for 1 ≤ i ≤ n. Let

P = (A1, . . . , An). We shall prove that H(P ) is of the required size. Fix i and let Ci =

{e1, . . . , ep}, where ej connects i to sj and, w.l.o.g., i < s1 < . . . < sp. We claim that

HAi
= (8m + 4 + 2m2) + 12p + 2δ, where δ is an indicator that equals 1 if and only if

i ≤ t. Consider the partition of Ai into the following blocks: (1, i−−1), (i−, i+), (i+ +1, s−1 −

1), (s−1 , s+
1 ), . . . , (s+

p−1 + 1, s−p − 1), (s−p , s+
p ), (s+

p + 1, c−m10 +m9− 1), (c−m10 + m9, c). Due

to Vi, Ai has 2 haplotypes in the first block, 8m haplotypes in the second block (which
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corresponds to the segment of vertex i), 2 haplotypes in the segment before last and 2m2

haplotypes in the tail block. In addition, if we add the sets Ej one by one to the same

subpopulation, then every such set, corresponding to the edge (i, sj), adds two new blocks

and 12 haplotypes (2 haplotypes in ((j − 1)+ + 1, j− − 1) and 8 + 2 in (j−, j+)). The only

exception is j = 1, for which two more haplotypes are added in the tail segment. Thus, if

|Ci| = p > 0 then HAi
= (8m + 4 + 2m2) + 12p + 2 and if Ai contains no edge vectors then

HAi
= (8m + 4 + 2m2). The claim follows.

(⇐) Suppose that A has a partition P = (A1, . . . , At) so that H(P ) ≤ n(8m+4+2m2)+

12m+2k. In particular, examine the partition P ∗ for which H ≡ H(P ∗) is minimal. W.l.o.g.

every one of Vi and Ej is completely contained in some Ak. We first claim that no set in

the partition contains both Vi and Vj for i 6= j. Suppose this is not the case. Define a new

partition P ′ in which Vj is moved into a new set. Then H−H(P ′) ≥ (2m2 +2)−8m−4 > 0,

where the first term is due to the tail segments of i and j and the second is due to edge

vectors corresponding to edges incident on j, that are possibly present in the same partition

set as Vi and Vj. Thus, we arrive at a contradiction.

Now consider an edge l connecting vertices i and j, and let Ar ⊇ El. We claim that

Vi ⊂ Ar or Vj ⊂ Ar (in P ∗). To see that observe that in the first case l adds at most

14 haplotypes to H (similar to the argument in the ’only if’ part of the proof), while in

the second case it adds at least 16 haplotypes to H since each of the segments (i−, i+) and

(j−, j+) contains 8 unique haplotypes.

Finally, suppose there are t sets in P ∗ that contain edge vectors. Then H ≥ n(8m + 4 +

2m2) + 12m + 2t, implying that t ≤ k and G has a vertex cover of size at most k.

3.2 A Polynomial Case

We now give a polynomial algorithm for a restricted version of MBH, in which each sub-

population is required to be a contiguous set of rows. We call this variant Minimum Con-

tiguous Block Haplotypes (MCBH). Its solution may be useful for designing heuristics that

permute the matrix rows for local improvement. For clarity, in the discussion below we shall

assume that there exists an oracle that scores a given block in O(1) time. Denote the optimal

solution of MCBH on A by HA.

Theorem 9 MCBH can be solved in O(n2m2) time.
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Proof: Algorithm: Let A be an input haplotype matrix. We give a dynamic programming

procedure to solve MCBH. A key component of the algorithm is a dynamic programming

algorithm, which computes the score for a given sub-population S in a straightforward man-

ner, similar to (Zhang et al. 2002). Let T S
i , 0 ≤ i ≤ m, be the minimum number of block

haplotypes in the submatrix of A induced on the rows in S and the columns 1, . . . , i, where

T S
0 = 0. For a pair of columns i, j let BS

ij be the score of the block induced by the rows in S

and the columns in {i, . . . , j}. Then the following recursive formula can be used to compute

T S
m:

T S
i = min

0≤j≤i−1
T S

j + BS
ji .

We now use a second dynamic programming algorithm to compute HA. Define Pi,

0 ≤ i ≤ n, as the minimum number of block haplotypes in any row partition of A{1,...,i}.

Clearly, P0 = 0 and Pn = HA. The computation of Pi uses the following recursive formula:

Pi = min
1≤j≤i

Pj−1 + T {j,...,i}
m .

Complexity: Computing T S
m for any S takes O(m2) time. Hence, computing HA takes

O(n2m2) time in total.

3.3 A Heuristic

Next, we present an efficient heuristic for MBH. The algorithm has three components: A

block scoring procedure; a dynamic programming algorithm to find the optimum block struc-

ture for a single sub-population; and a simulated annealing algorithm to find an optimum

partition into homogeneous sub-populations. We describe these components below.

The dynamic programming component is as described in the first part of the proof of

Theorem 9. For scoring a block within the dynamic programming procedure, we use the

probabilistic algorithm described in Section 2.4 with a small modification: Instead of using

a fixed threshold t∗, we compute a different threshold t∗v,v′ for every two vectors v, v′. This

is done by counting the number l of positions, in which neither of the vectors has ’?’, and

setting t∗v,v′ = l((1−pM )+(1−PI ))
2

. Scoring an n× t block takes O(tnk) time, where k is a bound

on the number of common haplotypes. Hence, the dynamic programming takes O(mb2nk)

total time, where b is an upper bound on the allowed block size. Additional saving may be

possible by precomputing the pairwise distances of rows in contiguous matrix segments of

size up to b.

16



The goal of the annealing process is to optimize the partition of the haplotypes into

sub-populations. We define a neighboring partition as any partition that can be obtained

from the current one by moving one haplotype from one group to another. The process

proceeds through a sequence of neighboring partitions depending on their scores and the

temperature parameter, in a standard annealing fashion. A crucial factor in obtaining a

good solution is the initialization of the annealing process. We perform the initialization

as follows: We compute pairwise similarities between every two haplotypes. The similarity

Suv of vectors u and v is calculated as follows: Initially we set Suv = 0. We then slide a

window of size w = 20 along u and v (20 is the average size of a block). For each position

i we check whether d((ui, . . . , ui+w−1), (vi, . . . , vi+w−1)) ≤ wα (for a parameter α). If this is

the case, we increment Suv and jump to i + w for the next iteration. Otherwise, we jump

to i + 1. The intuition is that rows from the same sub-population should be more similar in

blocks in which they share the same haplotypes and, thus, have better chance to hit good

windows, and accumulate higher score in the scan. We next cluster the haplotypes based

on their similarity values, using the K-means algorithm (MacQueen 1965). The resulting

partition is taken as the starting point for the annealing process. To determine the number

of sub-populations K, we try several choices and pick the one that results in the lowest score.

The running time of the practical algorithm is dominated by the cost of each annealing

step. Since such step changes the haplotypes of two sub-populations only, it suffices to

recompute the scores of these sub-populations only.

4. Experimental Results

4.1 Simulations

We applied our heuristic algorithm to simulated and real haplotype data. First, we conducted

extensive simulations to check the ability of our algorithm to detect sub-populations and

recognize their block structure. Our simulation setup was as follows: We generated simulated

haplotype matrices with 100 haplotypes and 300 SNPs. The number of sub-populations

varied in the simulations. Sub-populations were of equal sizes. For each sub-population

we generated block boundaries using a Poisson process with rate 20. Each block within a

sub-population contained 2-5 common haplotypes covering 90% of the block’s rows (with the

rest 10% being rare haplotypes). Within each block of each sub-population, the haplotype

matrix was created according to the probabilistic model described in Section 2.4. Errors and
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missing data were introduced with varying rates of up to 30%.

As a first test we simulated several matrices with 1-4 sub-populations and applied our

algorithm with K ranging from 1 to 8. For each K we computed the score of the partition

obtained, as described in Section 3.3. In each of the simulations the correct number got

the lowest score (Figure 2). Next, we simulated several matrices with 3 sub-populations

and different levels of errors and missing data. Table 1 summarizes our results in correctly

assigning haplotypes to sub-populations (the set with the largest overlap with the true sub-

population was declared as correct). It can be seen that the MBH algorithm gives highly

accurate results for missing data and error levels up to 10%.
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True number
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Figure 2: Simulation results: Determining the number of sub-populations. For each sim-
ulated matrix, containing 1-4 sub-populations, the figure shows the score assigned by the
algorithm to partitions (y-axis) with different number of sub-populations (x-axis). Simula-
tions were performed with error level of 1% and no missing entries.

For comparison, we also implemented the LD-based algorithm of Gabriel et al. (2002)

for finding blocks. We compared the block structures produced by our algorithm and by the

LD-based algorithm to the correct one, using an alignment score similar to the one used in

comparison of two DNA restriction enzyme maps (Waterman 1995, Sec. 9.10). The score

of two partitions P1 and P2 of m SNPs is computed as follows: We form two vectors of size
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% Errors % Missing entries % Correct
classifications

0 0 99
5 5 98
10 10 95
15 15 84
20 20 71

Table 1: Accuracy of haplotype classification by the MBH algorithm for different noise levels.
Data are for 3 sub-populations.

m− 1, in which ’1’ in position i denotes a block boundary between SNPs i and i+1, and ’0’

denotes that the two SNPs belong to the same block. We then compute an alignment score

of these vectors using an affine gap penalty model with penalties 3, 2 and 0.5 for mismatch,

gap open and gap extension, respectively, and a match score of zero.

We simulated one population with 3000 haplotypes, computed its block structure with

both algorithms and compared them to the true one. We repeated this experiment with

different error and missing data rates. The results are shown in Figure 3. It can be observed

that our algorithm yields partitions that are closer to the true ones, particularly as the rate

of errors and missing data rises. An example of the actual block structures produced is

shown in Figure 4.

4.2 Real Data

We applied our algorithm to two published datasets. The first dataset of Daly et al. (2001)

consists of 258 haplotypes and 103 SNPs. We applied our block partitioning algorithm

with the following parameters: The maximal allowed error ratio between two vectors, to

be considered as resulting from a single haplotype, was 0.02. In addition, we allowed up

to 5% rare haplotypes, i.e., in scoring a block we sought the minimum number of different

haplotypes that together cover at least 95% of the rows.

In order to assess our block partitioning and compare it to the one reported by Daly et

al. (2001), we calculated LD-based measures for both partitions. Specifically, we calculated

the LD-confidence values between every pair of SNPs inside the same block, using a χ2-test,

as follows: For a pair i, j of SNPs, let Pa,b, where a, b ∈ {0, 1}, be the frequency of occurrence

of a in position i and b in position j of a haplotype. Let p0, p1 (q0, q1) denote the frequencies

of haplotypes with 0 and 1 in the i-th (j-th) SNP, respectively. Define D ≡ P00P11−P01P10.
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Figure 3: Accuracy in block reconstruction by our algorithm (solid line) and the algorithm of
Gabriel et al. (2002) (dashed line). y-axis: The score of aligning the reconstructed structure
with the correct one. x-axis: The noise rate.

D is a measure of linkage disequilibrium, and n D2

p0p1q0q1
is distributed χ2, with one degree of

freedom.

For each block, we calculated the fraction of SNP pairs in the block whose LD-confidence

value exceeded 95% (high LD pairs). The average fraction over all blocks was computed as

the ratio of the total number of high LD pairs inside blocks to the total number of SNP pairs

within blocks.

A comparison between our block partition to the one obtained by Daly et al. is presented

in Table 2. Overall, the two block partitions have similar boundaries and similar scores. The

average fraction of high LD pairs in blocks for our partition was 0.823. For the partition of

Daly et al. the average fraction was 0.796. Another partition was produced for this data by

Eskin et al. (2003) based on minimizing the number of representative SNPs. Their partition

contained 11 blocks and its average fraction of high LD pairs was 0.814.

The second dataset we analyzed, of Gabriel et al. (2002), contains unresolved genotype

data. In order to apply our algorithm to this data, we transformed it into haplotypes by

treating heterozygous SNPs as missing data. Notably, the fraction of heterozygous sites was
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Figure 4: An example of the block structures produced for an error rate of 1% by our
algorithm (bottom), the LD-based algorithm of (Gabriel et al. 2002) (top) and the true
solution (middle). Each block boundary is denoted by a vertical line.

Daly et al. blocks Fraction of high Our blocks Fraction of high
LD pairs LD pairs

1: 1-9 0.78 1: 1-15 0.81
2: 10-15 1
3: 16-24 0.78 2: 16-24 0.78
4: 25-35 0.95 3: 25-36 0.94
5: 36-40 0.70 4: 37-44 0.68
6: 41-45 1
7: 46-77 0.77 5: 45-67 0.84

6: 68-78 0.71
8: 78-85 0.50 7: 79-81 0.33
9: 86-91 0.93 8: 82-90 0.89
10: 92-98 0.95 9: 91-95 1
11: 99-103 1 10: 96-103 0.75

Average 0.796 0.822

Table 2: Comparison between the blocks of Daly et al. (2001) and the blocks generated by
our algorithm.

relatively small, so the loss in information was moderate. We considered the two largest

populations in the data, A (Europeans) and D (individuals from Yoruba), consisting of 93

and 90 samples, respectively. Each population was genotyped in ∼60 different regions in

the genome. We analyzed 6 of those regions that contained over 70 SNPs. In all cases we

were able to detect two different populations in the data and classify correctly over 95% of

the haplotypes. The results are shown in Table 3. The results with three populations were

poorer, due to the smaller size of the third population.
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Chromosome:
#SNPs Discovered blocks

% Correct

Region classifications

1: 3a 119
1: 1-35, 36-119

95
2: 1-46, 47-119

2: 8a 73
1: 1-73

99
2: 1-73

6: 24a 121
1: 1-52, 53-121

98
2: 1-44, 45-121

8: 29a 104
1: 1-27, 28-104

100
2: 1-40, 41-104

9: 32a 110
1: 1-25, 26-110

99
2: 1-38, 39-110

14: 41a 141
1: 1-48, 49-63, 64-141

100
2: 1-12, 13-63, 64-141

Table 3: Separation to sub-populations and block finding on different regions in part of the
data of Gabriel et al. (2002), which includes sub-populations A and D.

5. Concluding Remarks

We have introduced a simple and intuitive measure for scoring and detecting blocks in a

haplotype matrix: The total number of distinct haplotypes in blocks. Using this measure

along with several error models, we have studied the computational problems of scoring of a

block, and of finding an optimal block structure. Most versions of the scoring problem that

address imperfect data are shown to be NP-hard. A similar situation occurred with the f

score function of Zhang et al. (2002). We devised several algorithms for different variants

of the problem. In particular, we gave a simple algorithm, which, under an appropriate

probabilistic model, scores a block correctly with high probability, in the presence of errors,

missing data and rare haplotypes.

Note that our measure is adequate only when the ratio of the number n of typed indi-

viduals to the number m of SNPs is not too extreme: When n is very small and m is large,

our measure might be optimized by the trivial solution of a single block.

In simulations, our score leads to more accurate block detection than the LD-based

method of Gabriel et al. (2002). While the simulation setup is quite naive, it seems to

act just as favorably for the LD-based methods. The latter methods apparently tend to

over-partition the data into blocks, as they demand a very stringent criterion between every
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pair of SNPs in the same block. This criterion is very hard to satisfy as block size increases,

and the number of pairwise comparisons grows quadratically. On the data of Daly et al.

(2001) we generated a slightly more concise block description than extant approaches, with

a somewhat better fraction of high LD pairs.

We also treated the question of partitioning a set of haplotypes into sub-populations

based on their different block structures, and devised a practical heuristic for the problem.

On a genotype dataset of Gabriel et al. (2002) we were able to identify two sub-populations

correctly, in spite of ignoring all heterozygous types. A principled method of dealing with

genotype data remains a computational challenge. While in some studies the partition into

sub-populations is known, others may not have this information, or further, finer partition

may be detectable using our algorithm. In our model we implicitly assumed that block

boundaries in different sub-populations are independent. In practice, some boundaries may

be common due to the common lineage of the sub-populations. A more detailed treatment

of the block boundaries in sub-populations should be considered when additional haplotype

data reveal the correct way to model this situation.
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