
Identifying Blocks and Sub-Populations in Noisy

SNP Data

Gad Kimmel1, Roded Sharan2, and Ron Shamir1

1 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
{kgad,rshamir}@tau.ac.il

2 International Computer Science Institute, 1947 Center St., Suite 600, Berkeley
CA-94704.

roded@icsi.berkeley.edu

Abstract. We study several problems arising in haplotype block parti-
tioning. Our objective function is the total number of distinct haplotypes
in blocks. We show that the problem is NP-hard when there are errors
or missing data, and provide approximation algorithms for several of its
variants. We also give an algorithm that solves the problem with high
probability under a probabilistic model that allows noise and missing
data. In addition, we study the multi-population case, where one has to
partition the haplotypes into populations and seek a different block par-
tition in each one. We provide a heuristic for that problem and use it to
analyze simulated and real data. On simulated data, our blocks resemble
the true partition more than the blocks generated by the LD-based al-
gorithm of Gabriel et al. [7]. On single-population real data, we generate
a more concise block description than extant approaches, with better
average LD within blocks. The algorithm also gives promising results on
real 2-population genotype data.

Keywords: haplotype, block, genotype, SNP, sub-population, stratification, al-
gorithm, complexity.

1 Introduction

The availability of a nearly complete human genome sequence makes it possible
to look for telltale differences between DNA sequences of different individuals on
a genome-wide scale, and to associate genetic variation with medical conditions.
The main source of such information is single nucleotide polymorphisms (SNPs).
Millions of SNPs have already been detected [17, 18], out of an estimated total of
10 millions common SNPs [9]. This abundance is a blessing, as it provides very
dense markers for association studies. Yet, it is also a curse, as the cost of typing
every individual SNP becomes prohibitive. Haplotype blocks allow researchers
to use the plethora of SNPs at a substantially reduced cost.

The sequence of alleles in contiguous SNP positions along a chromosomal re-
gion is called a haplotype. A major recent discovery is that haplotypes tend to be
preserved along relatively long genomic stretches, with recombination occurring

2

primarily in narrow regions called hot spots [7, 16]. The regions between two
neighboring hot spots are called blocks, and the number of distinct haplotypes
within each block that are observed in a population is very limited: typically,
some 70-90% of the haplotypes within a block belong to very few (2-5) common
haplotypes [16]. The remaining haplotypes are called rare haplotypes. This find-
ing is very important to disease association studies, since once the blocks and
common haplotypes are identified, one can hopefully obtain a much stronger as-
sociation between a haplotype and a disease phenotype. Moreover, rather than
typing every individual SNP, one can choose few representative SNPs from each
block that suffice to determine the haplotype. Using such tag SNPs allows a
major saving in typing costs.

Due to their importance, blocks have been studied quite intensively recently.
Daly et al. [5] and Patil et al. [16] used a greedy algorithm to find a partition into
blocks that minimizes the total number of SNPs that distinguish a prescribed
fraction of the haplotypes in each block. Zhang et al. [20] provided a dynamic
programming algorithm for the same purpose. Koivisto et al. [14] provided a
method based on Minimum Description Length to find haplotype blocks. Bafna
et al. [2] proposed a combinatorial measure for comparing block partitions and
suggested a different approach to find tag SNPs, that avoids the partition into
blocks. For a recent review on computational aspects of haplotype analysis, see
[12].

In this paper we address several problems that arise in haplotype studies.
Our starting point is a very natural optimization criterion: We wish to find
a block partition that minimizes the total number of distinct haplotypes that
are observed in all the blocks. This criterion for evaluating a block partition
follows naturally from the above mentioned observation, that within blocks in
the human genome, only a few common haplotypes are observed [16, 5, 7]. The
same criterion is used in the pure parsimony approach for haplotype inference,
where the problem is to resolve genotypes into haplotypes, using a minimum
number of distinct haplotypes [11]. In this case, the problem was shown to be
NP-hard [13]. This criterion was also proposed by Gusfield [10] as a secondary
criterion in refinements to Clark’s inference method [3]. Minimizing the total
number of haplotypes in blocks can be done in polynomial time if there are no
data errors, using a dynamic programming algorithm. The problem becomes hard
when errors are present or some of the data are missing. In fact, the problem of
scoring a single given block turns out to be the bottleneck. Note that in practice,
one has to account for rare haplotypes and hence minimize the total number of
common haplotypes.

The input to all the problems we address is a binary haplotype matrix A with
columns corresponding to SNPs in their order along the chromosome and rows
corresponding to individual chromosomal segments typed. Aij is the allele type
of chromosome i in SNP j. The first set of problems that we study concerns the
scoring of a single block in the presence of errors or missing data. In one problem
variant, we wish to find a minimum number of haplotypes such that by making at
most E changes in the matrix, each row vector is transformed into one of them.

3

We call this problem Total Block Errors (TBE). We show that the problem in
NP-hard, and provide a polynomial 2-approximation algorithm when the number
of haplotypes is bounded. In a second variant, we wish to minimize the number
of haplotypes when the maximum number of errors between a given row and its
(closest) haplotype is bounded by e. We call this problem Local Block Errors
(LBE). This problem is shown to be NP-hard too, and we provide a polynomial
algorithm (for fixed e), which guarantees a logarithmic approximation factor. In
a third variant, some of the data entries are missing (manifested as “question
marks” in the block matrix), and we wish to replace each of them by zero or one,
so that the total number of haplotypes is minimum. Again, we show that this
Incomplete Haplotypes (IH) problem is NP-hard. To overcome the hardness we
resort to a probabilistic approach. We define a probabilistic model for generating
haplotype data, including errors, missing data and rare haplotypes, and provide
an algorithm that scores a block correctly with high probability under this model.

Another problem that we address is stratifying the haplotype populations. It
has been shown that the block structure in different populations is different [7].
When the partition of the sample haplotypes into sub-populations is unknown,
determining a single block structure for all the haplotypes can create artificial
solutions with far too many haplotypes. We define the Minimum Block Haplo-
types (MBH) problem, where one has to partition the haplotyped individuals
into sub-populations and provide a block structure for each one, so that the
total number of distinct haplotypes over all sub-populations and their blocks is
minimum. We show that MBH is NP-hard, but provide a heuristic for solving it
in the presence of errors, missing data and rare haplotypes. The algorithm uses
ideas from the probabilistic analysis.

We applied our algorithm to several synthetic and real datasets. We show that
the algorithm can identify the correct number of sub-populations in simulated
data, and is robust to noise sources. When compared to the LD-based algorithm
of Gabriel et al. [7], we show that our algorithm forms a partition into blocks
that is much more faithful to the true one. On a real dataset of Daly et al. [5]
we generate a more concise block description than extant approaches, with a
better average value of the high LD-confidence fraction within blocks. As a final
test, we applied our MBH algorithm to the two largest sub-populations reported
in Gabriel et al. [7]. As this was genotype data, we treated heterozygotes as
missing data. Nevertheless, the algorithm was able to determine that there are
two sub-populations and correctly classified over 95% of the haplotypes.

The paper is organized as follows: In Section 2 we study the complexity of
scoring a block under various noise sources and present our probabilistic scor-
ing algorithm. In Section 3 we study the complexity of the MBH problem and
describe a practical algorithm for solving it. Section 4 contains our results on
simulated and real data.

4

2 Scoring Noisy Blocks

In this section we study the problem of minimizing the number of distinct haplo-
types in a block under various noise sources. This number will be called the score
of the block. The scoring problem arises as a key component in block partitioning
in single- and multiple-population situations.

The input is a haplotype matrix A with n rows (haplotypes) and m columns
(SNPs). A may contain errors (where ’0’ is replaced by ’1’ and vice versa), result-
ing from point mutations or measurement errors, and missing entries, denoted by
’?’. Clearly, if there are no errors or missing data then a block can be scored in
time proportional to its size by a hashing algorithm. Below we define and analyze
several versions of the scoring problem which incorporate errors into the model.
We assume until Section 2.4 that there are no rare haplotypes. In the following
we denote by vi the i-th row vector (haplotype) of A, and by V = {v1, . . . , vn}
the set of all n row vectors.

2.1 Minimizing the Total Number of Errors

First we study the following problem: We are given an integer E, and wish to
determine the minimum number of (possibly new) haplotypes, called centroids,
such that by changing at most E entries in A, every row vector is transformed
into one of the centroids. Formally, let h(·, ·) denote the Hamming distance
between two vectors. Define the following problem:

Problem 1 (Total Block Errors (TBE)). Given a block matrix A and an integer
E, find a minimum number k of centroids v1, . . . , vk, such that

∑
u∈V mini h(u, vi)

≤ E.

Determining if k = 1 can be done trivially in O(nm) time by observing that
the minimum number of errors is obtained when choosing v1 to be the consensus
vector of the rows of A. The general problem, however, is NP-hard, as shown
below:

Theorem 1. TBE is NP-hard.

Proof. We provide a reduction from VERTEX COVER. Given an instance (G =
(V = {1, . . . , m}, F = {e1, . . . , en}), k) of VERTEX COVER, where w.l.o.g.
k < m − 1, we form an instance (A, k + 1, E) of TBE. A is an (n + mn2) × m
matrix, whose rows are constructed as follows:

1. For each of edge ei = (s, t) ∈ F , we form a binary vector vei
with ’1’ in

positions s and t, and ’0’ in all other places.

2. For vertex i ∈ V define the vertex vector ui as the vector with ’1’ in its i-th
position, and ’0’ otherwise. For each i ∈ V we form a set Ui of n2 identical
copies of ui.

5

We shall prove that G has a vertex cover of size at most k iff there is a solution
to TBE on A with at most k + 1 subsets and E = n + n2(m − k) errors.

(⇒) Suppose that G has a vertex cover {v1, . . . , vt} with t ≤ k. Partition the
rows of A into the following subsets: For 1 ≤ i ≤ t the i-th subset will contain all
vectors corresponding to edges that are covered by vi (if an edge is covered by
two vertices, choose one arbitrarily), along with the n2 vectors in Ui. Its centroid
will be vi. The (t+1)-st subset will contain all vectors corresponding to vertices
of G that are not members of the vertex cover, with its centroid being the all-0
vector. It is easy to verify that the number of errors induced by this partition is
exactly n + n2(m − t) ≤ E.

(⇐) Suppose that A can be partitioned into at most t+1 subsets (with t ≤ k)
such that the number E∗ of induced errors is at most E. W.l.o.g. we can assume
that for each i all vectors in Ui belong to the same set in the partition. For
each vertex i ∈ V , the set Ui induces at least n2 errors, unless ui is one of the
centroids. Let l be the number of centroids that correspond to vertex vectors.
Then the number of errors induced by the rest (m − l) sets of vertex vectors is
E′ = (m − l)n2 ≤ (m − k)n2 + n. Hence, k ≤ l ≤ t + 1 ≤ k + 1. Suppose to
the contrary that l = k + 1. Since the Hamming distance of any two distinct
vertex vectors is 2, we get E ′ ≥ 2(m − k − 1)n2 > E (since m > k + 1), a
contradiction. Thus, l = k. We claim that these k vertices form a vertex cover of
G. By the argument above each other vertex vector must belong to the (k+1)-st
subset and, moreover, its centroid must be the all-0 vector. Consider a vector w
corresponding to an edge (u, w). If w is assigned to the (k + 1)-st subset it adds
2 to E∗. Similarly, if w is assigned to one of the first k subsets corresponding
to a vertex v and u, w 6= v then w adds 2 to E∗. Since there are n edges and
the assignment of vertex vectors induced E ′ = n2(m − k) ≥ E − n errors, each
edge can induce at most one error. Hence, each edge induces exactly one error,
implying that every edge is incident to one of the k vertices. ut

Thus, we study enumerative approaches to TBE. A straightforward approach
is to enumerate the centroids in the solution and assign each row vector of A to
its closest centroid. Suppose there are k centroids in an optimum solution. Then
the complexity of this approach is O(kmn2mk), which is feasible only for very
small m and k. In the following we present an alternative approach to a variant
of TBE, in which we wish to minimize the total number of errors induced by the
solution. We devise a (2 − 2

n
)-approximation algorithm for this variant, which

takes O(n2m + knk+1) time.
To describe the algorithm and prove its correctness we use the following

lemma, that focuses on the problem of seeking a single centroid v ∈ V to the
n vectors v1, . . . , vn. Denote ṽb = argminv∈{0,1}m

∑n
i=1 h(v, vi), and let E be

maxv∈V h(v, ṽb).

Lemma 1. Let vb = arg minv∈V

∑n
i=1 h(v, vi). Then

∑n
i=1 h(vb, vi) ≤ (2− 2

n
)E.

Proof. Define s ≡
∑

1≤i<j≤n h(vi, vj). We first claim that s ≤ E(n − 1). Then,

s =
∑

i<j

h(vi, vj) ≤
∑

i<j

[h(vi, ṽb) + h(ṽb, vj)] = (n − 1)
∑

i

h(vi, ṽb) = (n − 1)E .

6

The first inequality follows since the Hamming distance satisfies the triangle
inequality. The last equality follows by using ṽb as the centroid. This proves the
claim.

By the definition of vb, for every vc 6= vb we have

∑

vi∈V

h(vb, vi) ≤
∑

vi∈V

h(vc, vi)

Summing the above inequality for all n vectors, noting that h(v, v) = 0, we get

n
∑

vi∈V

h(vb, vi) ≤ 2
∑

1≤i<j≤n

h(vi, vj) = 2s ≤ 2E(n − 1)

ut

Theorem 2. TBE can be (2 − 2
n
)-approximated in O(n2m + knk+1) time.

Proof. Algorithm: Our algorithm enumerates all possible subsets of k rows in
A as centroids, assigns each other row to its closest centroid and computes the
total number of errors in the resulting solution.

Approximation factor: Consider two (possibly equal) partitions of the
rows of A: Palg = (A1, . . . , Ak), the one returned by our algorithm; and Pbest =

(Â1, . . . , Âk), a partition that induces a minimum number of errors. For 1 ≤ i ≤ k
denote vi

b = arg minv∈Ai

∑
vj∈Ai

h(v, vj) and v̂i
b = arg minv∈Âi

∑
vj∈Âi

h(v, vj).

The number of errors induced by Palg and Pbest are Ealg =
∑k

i=1

∑
v∈Ai

h(vi
b, v)

and Ebest =
∑k

i=1

∑
v∈Âi

h(v̂i
b, v), respectively. Finally, let ni = |Âi| and de-

note by ei the minimum number of errors induced in subset Âi, by the optimal
solution. In particular,

∑k
i=1 ni = n and

∑k
i=1 ei = Ebest.

Since our algorithm checks all possible solutions that use k of the original
haplotypes as centroids and chooses a solution that induces a minimal number
of errors, Ealg ≤ Ebest. By Lemma 1,

∑
v∈Âi

h(v̂i
b, v) ≤ (2 − 2

ni
)ei for every

1 ≤ i ≤ k. Summing this inequality over all 1 ≤ i ≤ k we get

Ealg ≤ Ebest =

k∑

i=1

∑

v∈Âi

h(v̂i
b, v) ≤

k∑

i=1

(2 −
2

ni

)ei ≤

k∑

i=1

(2 −
2

n
)ei = (2 −

2

n
)E .

Complexity: As a preprocessing step we compute the Hamming distance
between every two rows in O(n2m) time. There are O(nk) possible sets of cen-
troids. For each centroid set, assigning rows to centroids and computing the total
number of errors takes O(kn) time. The complexity follows. ut

2.2 Handling Local Data Errors

In this section we treat the question of scoring a block when the maximum
number of errors between a haplotype and its centroid is bounded. Formally, we
study the following problem:

7

Problem 2 (Local Block Errors (LBE)). Given a block matrix A and an integer e,
find a minimum number k of centroids v1, . . . , vk and a partition P = (V1, . . . , Vk)
of the rows of A, such that h(u, vi) ≤ e for every i and every u ∈ Vi.

Theorem 3. LBE is NP-hard even when e = 1.

Proof. We use the same construction as in the proof of Theorem 1. We claim
that the VERTEX COVER instance has a solution of cardinality at most k iff
the LBE instance has a solution of cardinality at most k + 1 such that at most
one error is allowed in each row. The ’only if’ part is immediate from the proof of
Theorem 1. For the ’if’ part observe that any two vectors corresponding to a pair
of independent edges cannot belong to the same subset in the partition, and so is
the case for a vertex vector and any vector corresponding to an edge that is not
incident on that vertex. This already implies a vertex cover of size at most k+1.
Since m > k+1 there must be a subset in the partition that contains at least two
vectors corresponding to distinct vertices. But then either it contains no edge
vector, or it contains exactly one edge vector and the vectors corresponding to
its endpoints. In any case we obtain a vertex cover of the required size. ut

In the following we present an O(log n) approximation algorithm for the
problem.

Theorem 4. There is an O(log n) approximation algorithm for LBE that takes
O(n2me) time.

Proof. Our approximation algorithm for LBE is based on a reduction to SET
COVER. Let V be the set of row vectors of A. Define the e-set of a vector v with
respect to a matrix A as the set of row vectors in A that have Hamming distance
at most e to v. Denote this e-set by e(v). Let U be the union of all e-sets corre-
sponding to row vectors of A. We reduce the LBE instance to a SET COVER
instance (V,S), where S ≡ {e(v) ∩ V : v ∈ U}. Clearly, there is a 1-1 map-
ping between solutions for the LBE instance and solutions for the SET COVER
instance, and that mapping preserves the cardinality of the solutions. We now
apply an O(log n)-approximation algorithm for SET COVER (see, e.g., [4]) to
(V,S) and derive a solution to the LBE instance, which is within a factor of
O(log n) of optimal. The complexity follows by observing that |U | = O(nme).

ut

2.3 Handling Missing Data

In this section we study the problem of scoring an incomplete matrix, i.e., a
matrix in which some of the entries may be missing. The problem is formally
stated as follows:

Problem 3 (Incomplete Haplotypes (IH)). Given an incomplete haplotype matrix
A, complete the missing entries so that the number of haplotypes in the resulting
matrix is minimum.

8

Theorem 5. IH is NP-hard.

Proof. By reduction from GRAPH COLORING [8]. Given an instance (G =
(V, E), k) of GRAPH COLORING we build an instance (A, k) of IH as follows:
Let V = {1, . . . , n}. Each i ∈ V is assigned an n-dimensional row vector vi in A
with ’1’ in the i-th position, ’0’ in the j-th position for every (i, j) ∈ E and ’?’
in all other positions.

Given a k-coloring of G, let V1, . . . , Vk be the corresponding color classes. For
each class Vi = {vj1 , . . . , vji

} we complete the ’?’-s in the vectors corresponding
to its vertices as follows: Each ’?’ in one of the columns j1, . . . , ji is completed
to 1, and all other are completed to 0. The resulting matrix contains exactly k
distinct haplotypes: Each haplotype corresponds to a color class, and has ’1’ in
position i iff i is a member of the color class.

Conversely, given a solution to IH of cardinality at most k, each of the solution
haplotypes corresponds to a color class in G. This follows since any two vectors
corresponding to adjacent vertices must have a column with both ’0’ and ’1’ and,
thus, represent two different haplotypes. ut

2.4 A Probabilistic Algorithm

In this section we define a probabilistic model for the generation of haplotype
block data. The model is admittedly naive, in that it assumes equal allele frequen-
cies and independence between different SNPs and distinct haplotypes. However,
as we shall see in Sections 3 and 4, it provides useful insights towards an effective
heuristic, that performs well on real data. We give a polynomial algorithm that
computes the optimal score of a block under this model with high probability
(w.h.p.). Our model allows for all three types of confusing signals mentioned
earlier: Rare haplotypes, errors and missing data.

Denote by T the hidden true haplotype matrix, and by A the observed one.
Let T ′ be a submatrix of T , which contains one representative of each haplotype
in T (common and rare). We assume that the entries of T ′ are drawn indepen-
dently according to a Bernoulli distribution with parameter 0.5. T is generated
by duplicating each row in T ′ an arbitrary number of times. This completes
the description of the probabilistic model for T . Note that we do not make any
assumption on the relative frequencies of the haplotypes. We now introduce er-
rors to T by independently flipping each entry of T with probability α < 0.5.
Finally, each entry is independently replaced with a ’?’ with probability p. Let
A be the resulting matrix, and let A′ be the submatrix of A induced by the rows
in T ′. Under these assumptions, the entries of A′ are independently identically
distributed as follows: A′

ij = 0 with probability 1−p
2 , A′

ij = 1 with probability
1−p
2 and A′

ij =? with probability p.
We say that two vectors x and y have a conflict in position i if one has value

1 and the other 0 in that position. Define the dissimilarity d(x, y) of x and y as
the number of their conflicting positions (in the absence of ’?’s, this is just the
Hamming distance). We say that x is independent of y and denote it by x ‖ y,
if x and y originate from two different haplotypes in T . Otherwise, we say that

9

x and y are mates and denote it by x ≈ y. Intuitively, independent vectors will
have higher dissimilarity compared to mates. In particular, for any i:

pI ≡ Prob(xi = yi|x ‖ y; xi, yi ∈ {0, 1}) = 0.5, (1)

pM ≡ Prob(xi = yi|x ≈ y; xi, yi ∈ {0, 1}) = α2 + (1 − α)2 > 0.5 .

Problem 4 (Probabilistic Model Block Scoring (PMBS)). Given an incomplete
haplotype block matrix A, find a minimum number k of centroids v1, . . . , vk,
such that under the above probabilistic model, w.h.p., each vector u ∈ A is a
mate of some centroid.

Our algorithm for scoring a block A under the above probabilistic model
is described in Figure 1. It uses a threshold t∗ on the dissimilarity between
vectors, to decide on mate relations. t∗ is set to be the average of the expected
dissimilarity between mates and the expected dissimilarity between independent
vectors (see proof of Theorem 6). The algorithm produces a partition of the rows
into mate classes of cardinalities s1 ≥ s2 ≥ . . . ≥ sl. Given any lower bound γ
on the fraction of rows that need to be covered by the common haplotypes, we
give A the score h = argminj

∑j
i=1 si ≥ γn. We prove below that w.h.p. h is

the correct score of A.

Score(A):

1. Let V be the set of rows in A.
2. Initialize a heap S.
3. While V 6= ∅ do:

(a) Choose some v ∈ V .
(b) H ← {v}.
(c) For every v′ ∈ V \ {v} do:

If d(v, v′) < t∗ then H ← H ∪ {v′}.
(d) V ← V \H.
(e) Insert(S,|H|).

4. Output S.

Fig. 1. An algorithm for scoring a block under a probabilistic model of the data.
Procedure Insert(S,s) inserts a number s into a heap S.

Theorem 6. If m = ω(log n) then w.h.p. the algorithm computes the correct
score of A.

Proof. We prove that w.h.p. each mate relation decided by the algorithm is
correct. Applying a union bound over all such decisions will give the required
result. Fix an iteration of the algorithm at which v is the chosen vertex and let
v′ 6= v be some row vector in A. Let Xi be a binary random variable which is 1
iff vi and v′i are in conflict. Clearly, all Xi are independent identically distributed

10

Bernoulli random variables. Define X ≡ d(v, v′) =
∑m

i=1 Xi and f ≡ (1 − p)2.
Using Equation 1 we conclude:

(X |v′ ‖ v) ∼ Binom(m, f(1 − pI)) ,

(X |v′ ≈ v) ∼ Binom(m, f(1 − pM)) .

We now require the following Chernoff bound (cf. [1]): If Y ∼ Binom(n, s)
then for every ε > 0 there exists cε > 0 that depends only on ε, satisfying:

Prob[|Y − ns| ≥ εns] ≤ 2e−cεns.

Let µ = mf(1− pM). Define ε ≡ (1−pI)−(1−pM)
2(1−PM) and t∗ ≡ εµ. Applying Chernoff

bound we have that for all c > 0:

Prob(X > t∗|v′ ≈ v) ≤ 2e−cεµm <
1

nc
, P rob(X ≤ t∗|v′ ‖ v) < 1

nc .

Since we check whether d(v, v′) < t∗ a total of O(n2) times, applying a union
bound we conclude that the probability that throughout the algorithm some
implied mate relation is incorrect, is bounded by a polynomial in 1

n
. ut

When using the algorithm as part of a practical heuristic (see Section 3), we
do not report the rare haplotypes. Instead, we report only the smallest number of
most abundant haplotypes as computed by the algorithm that together capture
a fraction γ of all haplotypes. In applications in which the error rate α is not

known, t∗ cannot be directly computed. Instead, we calculate the ratio d(v1,v2)
fm

for any two row vectors, and keep these values in a sorted array: d1 ≤ . . . ≤ d(n

2)
.

Next we find (a, b) = argmax
a=di,b=di+1, 1≤i<(n

2)
[b − a]. Then we set t∗ = a+b

2 .

It can be shown that using this strategy the algorithm solves PMBS with high
probability.

3 Minimum Block Haplotypes

Suppose that the matrix A contains haplotypes from several homogeneous pop-
ulations. The partitioning into blocks can differ among populations [7]. Here, we
study how to reconstruct the partitioning of the rows of A into sets called sub-
populations, and the columns in each set into blocks, such that the sum of the
scores of the submatrices corresponding to these blocks is minimized. Formally:

Problem 5 (Minimum Block Haplotypes (MBH)). Given a haplotype matrix A,
find a partition of its rows into sub-populations so that the total number of block
haplotypes is minimized.

We usually know which populations the haplotypes came from, however, in
certain situations, there may be a hidden stratification of the population, that
can dramatically change the conclusions of association studies.

11

Given a partition of the rows, one can compute the score in the noiseless
case using a simple adaptation of the dynamic programming algorithm of [20].
However, the general MBH problem is NP-hard.

Theorem 7. MBH is NP-hard.

For lack of space, the proof is omitted here. Interestingly, the problem can be
solved in polynomial time if each sub-population is required to be a contiguous
set of rows. This may be useful for designing heuristics that permute the matrix
rows for local improvement.

We now present an efficient heuristic for MBH. The algorithm has three com-
ponents: A block scoring procedure; a dynamic programming algorithm to find
the optimum block structure for a single sub-population; and a simulated anneal-
ing algorithm to find an optimum partition into homogeneous sub-populations.
We describe these components below.

The dynamic programming component computes the score for a given sub-
population in a straightforward manner, similar to [20]. Let Ti, 0 ≤ i ≤ m, be
the minimum number of block haplotypes in the submatrix of A induced on the
columns 1, . . . , i, where T0 = 0. For a pair of columns i, j let Bij be the score
of the block induced by the row in S and the columns in {i, . . . , j}. Then the
following recursive formula can be used to compute Tm:

Ti = min
0≤j≤i−1

Tj + Bji .

For scoring a block within the dynamic programming, we use the probabilistic
algorithm described in Section 2.4 with a small modification. Instead of using a
fixed threshold t∗, we compute a different threshold t∗v,v′ for every two vectors
v, v′. This is done by counting the number l of positions, in which none of the

vectors has ’?’, and setting t∗v,v′ = l((1−pM)+(1−PI))
2 . Scoring an n× t block takes

O(tnk) time, where k is a bound on the number of common haplotypes. Hence,
the dynamic programming takes O(mb2nk) total time, where b is an upper bound
on the allowed block size. Additional saving may be possible by precomputing
the pairwise distances of rows in contiguous matrix segments of size up to b.

The goal of the annealing process is to optimize the partition of the haplo-
types into sub-populations. We define a neighboring partition as any partition
that can be obtained from the current one by moving one haplotype from one
group to another. A crucial factor in obtaining a good solution is the initial-
ization of the annealing process. We perform the initialization as follows: We
compute pairwise similarities between every two haplotypes. The similarity Suv

of vectors u and v is calculated as follows: Initially we set Suv = 0. We then slide
a window of size w = 20 along u and v. For each position i we check whether
d((ui, . . . , ui+w−1), (vi, . . . , vi+w−1)) ≤ wα. If this is the case, we increment Suv

and jump to i + w for the next iteration. Otherwise, we jump to i + 1. The
intuition is that rows from the same sub-population should be more similar in
blocks in which they share the same haplotypes and, thus, have better chance to
hit good windows, and accumulate higher score in the scan. We next cluster the

12

haplotypes based on their similarity values, using the K-means algorithm [15].
The resulting partition is taken to be the starting point for the process. To de-
termine the number of sub-populations K, we try several choices and pick the
one that results in the lowest score.

The running time of the practical algorithm is dominated by the cost of
each annealing step. Since an annealing step changes the haplotypes of two sub-
populations only, it suffices to recompute the scores of these sub-populations
only.

4 Experimental Results

4.1 Simulations

We applied our algorithm to simulated and real haplotype data. First, we con-
ducted extensive simulations to check the ability of our algorithm to detect
sub-populations and recognize their block structure. Our simulation setup was
as follows: Each simulated haplotype matrix contained 100 haplotypes and 300
SNPs. The number of sub-populations varied in the simulations. Sub-populations
were of equal sizes. For each sub-population we generated block boundaries using
a Poisson process with rate 20. Each block within a sub-population contained 2-5
common haplotypes covering 90% of the block’s rows (with the rest 10% being
rare haplotypes). Errors and missing data were introduced with varying rates up
to 30%. The haplotype matrix was created according to the probabilistic model
described in Section 2.4.

As a first test we simulated several matrices with 1-4 sub-populations and
applied our algorithm with K ranging from 1 to 8. For each K we computed the
score of the partition obtained, as described in Section 3. In each of the simula-
tions the correct number got the lowest score (Figure 2.A). Next, we simulated
several matrices with 3 sub-populations and different levels of errors and missing
data. Figure 2.B summarizes our results in correctly assigning a haplotype to a
sub-population (the set with the largest overlap with the true one was declared
as correct). It can be seen that the MBH algorithm gives highly accurate results
for missing data and error levels up to 10%.

For comparison, we also implemented the LD-based algorithm of Gabriel et
al. [7] for finding blocks. We compared the block structures output by our algo-
rithm and the LD-based algorithm to the correct one, using an alignment score
similar to the one used in comparison of two DNA restriction enzyme maps [19,
Sec. 9.10]. The score of two partitions P1 and P2 of m SNPs is computed as
follows: We form two vectors of size m − 1, in which ’1’ in position i denotes a
block boundary between SNPs i and i + 1, and ’0’ denotes that the two SNPs
belong to the same block. We then compute an alignment score of these vectors
using an affine gap penalty model with penalties 3, 2 and 0.5 for mismatch, gap
open and gap extension, respectively, and a match score of zero.

We simulated one population with 3000 haplotypes, computed its block struc-
ture with both algorithms and compared them to the true one. We repeated this

13

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of sub−populations tested

S
co

re
1
2
3
4

True number
of sub−
populations

% Errors % Missing entries % Correct
classifications

0 0 99
5 5 98
10 10 95
15 15 84
20 20 71

A B

Fig. 2. Simulation results. A: Determining the number of sub-populations. For each
simulated matrix, containing 1-4 sub-populations, the figure shows the score assigned
by the algorithm to partitions (y-axis) with different number of sub-populations (x-
axis). Simulations were performed with 1% errors and no missing entries. B: Accuracy
of haplotype classification by the MBH algorithm for different noise levels. Data are
for 3 sub-populations.

experiment with different error and missing data rates. The results are shown
in Figure 3.A. It can be observed that our algorithm yields partitions that are
closer to the true ones, particularly as the rate of errors and missing data rises.
An example of the actual block structures produced is shown in Figure 3.B.

4.2 Real Data

We applied our algorithm to two published datasets. The first dataset of Daly et
al. [5] consists of 258 haplotypes and 103 SNPs. We applied our block partition-
ing algorithm with the following parameters: The maximal allowed error ratio
between two vectors, to be considered as resulting from a single haplotype, was
0.02. In addition, we allowed 5% of rare haplotypes, i.e., in scoring a block we
sought the minimum number of different haplotypes that together cover 95% of
the rows.

In order to assess our block partitioning and compare it to the one reported by
Daly et al. [5], we calculated LD-based measures for both partitions. Specifically,
we calculated the LD-confidence values between every pair of SNPs inside the
same block, using a χ2-test. For each block, we calculated the fraction of SNP
pairs in the block whose LD-confidence value exceeded 95% (high LD pairs). The
average fraction over all blocks was computed as the ratio of the total number
of high LD pairs inside blocks to the total number of SNP pairs within blocks.

A comparison between our block partition to the one obtained by Daly et
al. is presented in Table 1. Overall, the two block partitions have similar bound-
aries and similar scores. The average fraction of high LD pairs in blocks for our
partition was 0.823. For the partition of Daly et al. the average fraction was

14

0% 5% 10% 15% 20% 25% 30%
0

50

100

150

200

250

300

350

Error and missing data rates

D
is

ta
nc

e
sc

or
e

A B

Fig. 3. Block structure reconstruction. A: Accuracy in reconstruction by the PMBS
algorithm (solid line) and the algorithm of Gabriel et al. [7] (dashed line). y-axis: the
score of aligning the reconstructed structure with the correct one. x-axis: the noise
rate. B: An example of the block structures produced for an error rate of 1% by our
algorithm (bottom), the LD-based algorithm of [7] (top) and the true solution (middle).
Each block boundary is denoted by a vertical line.

0.796. Another available partition for this data by Eskin et al. [6], was based
on minimizing the number of representative SNPs. Their partition contained 11
blocks and its average fraction of high LD pairs was 0.814.

The second dataset we analyzed, due to Gabriel et al. [7], contains unresolved
genotype data. In order to apply our algorithm to this data, we transformed it
into haplotype data by treating heterozygous SNPs as missing data. Notably, the
fraction of heterozygous sites was relatively small, so the loss in information was
moderate. We considered the two largest populations in the data, A (European)
and D (individuals from Yoruba), consisting of 93 and 90 samples, respectively.
Each population was genotyped in ∼60 different regions in the genome. We
analyzed 6 of those regions that contained over 70 SNPs. In all cases we were
able to detect two different populations in the data and classify correctly over
95% of the haplotypes.

The results are shown in Table 2. The results with three populations were
poorer, due to the smaller size of the third population.

5 Concluding Remarks

We have introduced a simple and intuitive measure for scoring and detecting
blocks in a haplotype matrix: The total number of distinct haplotypes in blocks.
Using this measure along with several error models, we have studied the compu-
tational problems of scoring of a block, and of finding an optimal block structure.
Most versions of the scoring problem that address imperfect data are shown to
be NP-hard. A similar situation occurred with the f score function of Zhang et
al. [20]. We devised several algorithms for different variants of the problem. In
particular, we gave a simple algorithm, which, under an appropriate probabilistic

15

Daly et al. blocks Fraction of high Our blocks Fraction of high
LD pairs LD pairs

1: 1-9 0.78 1: 1-15 0.81
2: 10-15 1
3: 16-24 0.78 2: 16-24 0.78
4: 25-35 0.95 3: 25-36 0.94
5: 36-40 0.70 4: 37-44 0.68
6: 41-45 1
7: 46-77 0.77 5: 45-67 0.84

6: 68-78 0.71
8: 78-85 0.50 7: 79-81 0.33
9: 86-91 0.93 8: 82-90 0.89
10: 92-98 0.95 9: 91-95 1
11: 99-103 1 10: 96-103 0.75

Average 0.796 0.822

Table 1. Comparison between the blocks of Daly et al. [5] and the blocks generated
by our algorithm.

Chromosome:
#SNPs Discovered blocks

% Correct Chromosome:
#SNPs Discovered blocks

% Correct

Region classifications Region classifications

1: 3a 119
1: 1-35, 36-119

95 14: 41a 141
1: 1-48, 49-63, 64-141

100
2: 1-46, 47-119 2: 1-12, 13-63, 64-141

2: 8a 73
1: 1-73

99 6: 24a 121
1: 1-52, 53-121

98
2: 1-73 2: 1-44, 45-121

8: 29a 104
1: 1-27, 28-104

100 9: 32a 110
1: 1-25, 26-110

99
2: 1-40, 41-104 2: 1-38, 39-110

Table 2. Separation to populations and block finding on different regions in part of
the data of [7], which includes populations A and D.

model, scores a block correctly with high probability, in the presence of errors,
missing data and rare haplotypes.

Note that our measure is adequate only when the ratio n/m of the data
matrix is not too extreme: When the number of typed individuals n is very
small and the number of SNPs m is large, our measure might be optimized by
the trivial solution of a single block.

In simulations, our score leads to more accurate block detection than the
LD-based method of Gabriel et al. [7]. While the simulation setup is quite naive,
it seems to act just as favorably for the LD-based methods. The latter methods
apparently tend to over-partition the data into blocks, as they demand a very
stringent criterion between every pair of SNPs in the same block. This crite-
rion is very hard to satisfy as block size increases, and the number of pairwise
comparisons grows quadratically. On the data of Daly et al. [5] we generated a

16

slightly more concise block description than extant approaches, with a somewhat
better fraction of high LD pairs.

We also treated the question of partitioning a set of haplotypes into sub-
populations based on their different block structures, and devised a practical
heuristic for the problem. On a genotype dataset of Gabriel et al. [7] we were
able to identify sub-populations correctly, in spite of ignoring all heterozygous
types. A principled method of dealing with genotype data remains a compu-
tational challenge. While in some studies the partition into sub-populations is
known, others may not have this information, or further, finer partition may
be detectable using our algorithm. In our model we implicitly assumed that
block boundaries in different sub-populations are independent. In practice, some
boundaries may be common due to the common lineage of the sub-populations.
A more detailed treatment of the block boundaries in sub-populations should be
considered when additional haplotype data reveal the correct way to model this
situation.

Acknowledgments

R. Sharan was supported by a Fulbright grant. R. Shamir was supported by
a grant from the Israel Science Foundation (grant 309/02). We thank Chaim
Linhart and Dekel Tsur for their comments on the manuscript.

References

1. N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley and Sons, Inc.,
2000.

2. V. Bafna, B. V. Halldorsson, R. Schwartz, A. Clark, and S. Istrail. Haplotyles
and informative SNP selection algorithms: Don’t block out information. Proc. of

RECOMB, pages 19–27, 2003.

3. A. Clark. Inference of haplotypes from PCR-amplified samples of diploid popula-
tions. Molecular Biology and Evolution, 7(2):111–22, 1990.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, Mass., 1990.

5. M.J. Daly et al. High-resolution haplotype structure in the human genome. Nature

Genetics, 29(2):229–232, 2001.

6. E. Eskin, E. Halperin, and R. M. Karp. Large scale reconstruction of haplotypes
from genotype data. Proc. of RECOMB, pages 104–113, 2003.

7. S. B. Gabriel et al. The structure of haplotype blocks in the human genome.
Science, 296:2225–2229, 2002.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

9. L. Grugliyak and D. A. Nickerson. Variation is the spice of life. Nature Genetics,
27:234–236, 2001.

10. D. Gusfield. Inference of haplotypes in samples of diploid populations: Complexity
and algorithms. Journal of Computational Biology, 8(3):305–323, 2001.

17

11. D. Gusfield. Haplotyping by pure parsimony. Technical Report UCDavis CSE-

2003-2, To appear in the Proceedings of the 2003 Combinatorial Pattern Matching

Conference, 2003.
12. B. V. Halldorsson et al. Combinatorial problems arising in SNP. DMTCS ’03

Conference.
13. E. Hubbell. Finding a parsimony solution to haplotype phase is NP-hard. Per-

sonal’s communication.
14. M. Koivisto et al. An MDL method for finding haplotype blocks and for estimating

the strength of haplotype block boundaries. Proc. PSB 2003.
15. J. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

and Probability, pages 281–297, 1965.
16. N. Patil et al. Blocks of limited haplotype diversity revealed by high-resolution

scanning of human chromosome 21. Science, 294:1719–1723, 2001.
17. R. Sachidanandam et al. A map of human genome sequence variation containing

1.42 million single nucleotide polymorphisms. Nature, 291:1298–2302, 2001.
18. C. Venter et al. The sequence of the human genome. Science, 291:1304–51, 2001.
19. M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and

Genomes. Chapman and Hall, 1995.
20. K. Zhang, M. Deng, T. Chen, M.S. Waterman, and F. Sun. A dynamic program-

ming algorithm for haplotype block partitioning. Proc. Natl. Acad. Sci. USA,
99(11):7335–9, 2002.

