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Methods

Refinement and expansion of signaling pathways:
The osmotic response network in yeast

Irit Gat-Viks' and Ron Shamir

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

The analysis of large-scale genome-wide experiments carries the promise of dramatically broadening our
understanding on biological networks. The challenge of systematic integration of experimental results with
established biological knowledge on a pathway is still unanswered. Here we present a methodology that attempts to
answer this challenge when investigating signaling pathways. We formalize existing qualitative knowledge as a
probabilistic model that depicts known interactions between molecules (genes, proteins, etc.) as a network and
known regulatory relations as logics. We present algorithms that analyze experimental results (e.g., transcription
profiles) vis-a-vis the model and propose improvements to the model based on the fit to the experimental data. These
algorithms refine the relations between model components, as well as expand the model to include new components
that are regulated by components of the original network. Using our methodology, we have modeled together the
knowledge on four established signaling pathways related to osmotic shock response in Saccharomyces cerevisiae. Using
over 100 published transcription profiles, our refinement methodology revealed three cross talks in the network. The
expansion procedure identified with high confidence large groups of genes that are coregulated by transcription
factors from the original network via a common logic. The results reveal a novel delicate repressive effect of the
HOG pathway on many transcriptional target genes and suggest an unexpected alternative functional mode of the
MAP kinase Hogl. These results demonstrate that, by integrated analysis of data and of well-defined knowledge, one
can generate concrete biological hypotheses about signaling cascades and their downstream regulatory programs.

[Supplemental material is available online at www.genome.org.]

Genome-wide expression profiles (Gasch et al. 2000; Hughes et
al. 2000) have paved the way to systems biology approaches that
aim to elucidate system architecture by large-scale data analysis.
A variety of sophisticated computational methods have been de-
veloped toward this goal (Eisen et al. 1998; Ihmels et al. 2002;
Beer and Tavazoie 2004; Friedman 2004). An essential and im-
portant part of these analyses is the biological interpretation of
the computational results based on knowledge available in the
literature. The common practice is to first perform the computa-
tional analysis and then to explain the results using prior knowl-
edge (Tavazoie et al. 1999). However, several studies have shown
the advantage of integrating the existing knowledge as part of
the analysis (Ideker et al. 2001; Gardner et al. 2003; Covert et al.
2004; Gat-Viks et al. 2004). In this study we propose a new
method that aims to achieve a better understanding of a signal-
ing pathway by integrated analysis of genome-wide datasets and
prior knowledge, in a way that improves that knowledge system-
atically. The method suggests new hypotheses which can be vali-
dated by additional focused experiments.

We formalize the current information on the studied bio-
logical system in a mathematical model. Cellular signaling net-
works are characterized by signal transduction pathways that are
triggered by environmental stimulation and control the cellular
response. For such biological systems, a large body of qualitative
knowledge is available today, both on the structural and on the
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logical relations between the components. In many cases, the
information is still informal and thus not amenable to math-
ematical manipulation. For example, many transcription factors
have been established as activators or repressors, but their stoi-
chiometric coefficients are unknown. To properly formalize such
qualitative knowledge, we use Bayesian networks, a probabilistic
framework for modeling complex systems such as signaling cas-
cades (Sachs et al. 2002; Friedman 2004). Our model formalizes
the current knowledge about the structure (“topology”) of the
network, i.e., which system components interact, and its logic,
which dictates the level of each component based on the level of
its upstream effectors (Gat-Viks et al. 2006). The topology tells
“which component acts on which other components” and the
logic tells “how that action takes place.”

The model predicts the levels of the system’s variables
(genes, proteins, etc.) under each condition and is improved sys-
tematically in a process that seeks structural and logical changes
that increase the fit between predicted and observed variable lev-
els. In particular, we propose two methods for model improve-
ment (Fig. 1): The first refines the model by adding interactions
and modifying logics, without adding variables. The second ex-
pands the model to include additional variables beyond the origi-
nal model. We focus on the identification of regulatory modules,
i.e., sets of coregulated genes that are regulated by the same
model components via a common logic. In the standard cluster-
ing approach, after identifying a group of coregulated genes, the
regulating transcription factors are revealed by overrepresenta-
tion of their DNA binding motifs, or by enrichment in chip-ChIP
data (Beer and Tavazoie 2004). In contrast, using our methodol-
ogy, the newly discovered modules are added to the model, and
thus their regulators and the logic of their regulation are deter-
mined as part of the analysis. Consequently, the expression of
the modules is directly explained by the model.
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Figure 1. Overview of the model improvement methodology. Model
formalization: The current qualitative knowledge on the studied biologi-
cal system is formalized as a Bayesian network (top right; see also Fig. 2).
The illustrated model contains several molecular types: environmental
stimulations (dark gray), signaling proteins and transcription factors (light
gray), and mRNAs (white). The refinement and expansion procedures
take as input the network model and high throughput measurements on
network’s components (top left), and search systematically for model
improvements that maximize a probabilistic improvement score. The
score measures the increase of fit between the model predictions and the
observed data. The model refinement procedure (middle left) seeks struc-
tural and logical changes in existing model components, which attain the
best score. Structural refinements are marked by dashed connections.
The model expansion procedure (middle right) assigns systematically new
target genes to regulatory modules, based on their fit to the predicted
expression of the module. In the illustration, three regulatory modules
were formed. They contain known and novel target genes (white circles).
All genes in the same module share the same logic (black diamonds).

We have chosen to apply our methodology in the analysis of
the cellular response of Saccharomyces cerevisiae to hyper-osmotic
and calcium stresses. This response is mediated by a signaling
network that involves the PKA signaling pathway, the HOG and
mating/pseudohyphal growth MAPK cascades, and the calcineu-
rin pathway. Based on 106 transcription profiles (Gasch et al.
2000; Harris et al. 2001; Yoshimoto et al. 2002; O’Rourke and
Herskowitz 2004), the refinement procedure suggests three miss-
ing cross-talk connections in the network, which all have inde-
pendent support in the literature. The expansion procedure was
applied to six known regulatory modules and 78 putative sets of
regulators and yielded 10 statistically significant modules. We
discover both HOG pathway-dependent induced and repressed
novel modules, and show that these modules are distinct from
the known HOG pathway-dependent response. Remarkably, our
analysis indicates that Hogl MAP kinase acts in several distinct
functional modes. The expanded network contains many tran-
scriptional regulatory feedback and feedforward loops. This rich
circuitry is probably part of the osmotic adaptation and provides
rapid and transient response to osmotic changes.

Several features distinguish our computational methodol-
ogy from extant network reconstruction methods. Recently, a
few advanced methods sought to improve system models system-
atically, both for quantitative metabolic networks (Klipp et al.
2005; Herrgard et al. 2006) and for physical interaction networks
(Calvano et al. 2005; Yeang et al. 2005). Our approach differs in
that it uses informal qualitative knowledge, including regulatory

logics, which is crucial for modeling of the activation and down-
regulation of signaling cascades. Bayesian networks were used for
de novo reconstruction of system models (Friedman 2004). In
contrast, here the Bayesian network represents the existing well-
characterized system model, and the analysis seeks its improve-
ment. In addition, we use a discriminative improvement score,
rather than a classical Bayesian score, in order to identify signifi-
cant and specific model changes. Concerning modules identifi-
cation, extant methods approximate the regulator’s protein ac-
tivity by its mRNA expression (Bar-Joseph et al. 2003; Segal et al.
2003; Tamada et al. 2003). A key advantage of our methodology
is that we use the model to predict the activity of the regulators,
and then use these levels to identify the modules. Since the tran-
scription factor activity levels are more directly related to their
targets’ expression, better module identification is possible.

Overall, the results show that, by formalizing the qualitative
knowledge available and analyzing the system model jointly
with relevant large-scale data, it is possible to extend the current
understanding on biological systems and to analyze regulatory
mechanisms in a new level of detail.

Results

We selected for our analysis 106 gene expression profiles from
four large-scale microarray studies in yeast (Gasch et al. 2000;
Harris et al. 2001; Yoshimoto et al. 2002; O’Rourke and Hersko-
witz 2004). The profiles measure the yeast response to osmotic
and calcium stresses and the effect of genetic perturbations in the
osmotic response pathways. Originally, these studies applied
clustering algorithms on the data. The following results show
that, by integrated analysis of the data and the model, we find
regulatory relations and mechanisms that could not be revealed
using the data alone.

The computational approach

We formalize the biological knowledge in a Bayesian network
model (Gat-Viks et al. 2006), which represents dependencies
among interacting components. The components, or variables,
are mRNAs, proteins, external inputs, etc. The model provides a
structure and a logic for each variable. The structure (or topology)
is represented by a graph diagram, where the nodes represent the
variables, and arcs represent influence among variables (e.g.,
transcription factor binding to a gene promoter, phosphoryla-
tion by a kinase, etc.). For each graph node, the nodes that have
arcs directed into it are its regulators, or its regulatory unit. Each
variable can be in one of several discrete states, indicating, for
example, the activity of a protein variable, or the expression level
of a mRNA variable. In the logic component of the model, a
variable’s state is determined by the combination of states of its
regulators according to its specified discrete function, which
might represent a complex relationship among multiple regula-
tors. The logic is formulated probabilistically in order to allow for
uncertainty about the available biological knowledge (Fig. 2A).
In order to allow formulation of the available qualitative
knowledge, we have chosen to model the logics as discrete func-
tions using discrete states. However, the actual cellular concen-
trations are continuous levels, and hence our model must trans-
form continuous levels into discrete logical states. The observed
level (or observation) is the result of a measurement in a biological
experiment, e.g., the measured concentration of mRNAs or a me-
tabolite, or the measured phosphorylation of a protein which
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Figure 2. The computational approach. (A) Modeling the current
knowledge. Nodes represent the variables of the model and arcs are
known regulatory relations. Here, the state of variable C depends on the
states of its regulators A and B according to a specific logic. In the com-
binatorial logic of C (left), the state of C is 1 if, and only if, at least one of
its regulators has state 1. In the probabilistic modeling (right), each pos-
sible state of C is assigned a probability depending on our confidence in
the current biological knowledge (here, 90% confidence). (B) Improving
the model. The model refinement and expansion procedures look for
model changes that improve the model significantly. The improvement
score compares between the fit of a possible modified model and that of
the null (original) model. The plots are a schematic representation of
these two models in cases of refinement (top) and expansion (bottom). In
expansion, when adding a new gene, the null model assumes that the
gene expression can be explained sufficiently by the environmental
stimulation. The alternative hypothesis is a model-dependent gene, i.e.,
the gene is regulated by our signaling network. We expand the model
only if the improvement score is significant, i.e., the signaling network
explains the expression much better than the environmental stimulation
only.

indicates its activity. The predicted level is the probabilistic expec-
tation of the variable given the model and the experimental pro-
cedure applied (i.e., the genetic perturbations and the environ-
mental stimulation performed in the experiment). Hence, the
predicted levels of protein activities (predicted activities) constitute
additional information that is not available from microarray ex-
periments. The predicted levels of mRNA variables (predicted ex-
pression) are compared to the observed expression, and reveal
important information on the quality of the model. In particular,
points of disagreement between observed and predicted expres-
sion levels indicate where our understanding of the biological
system is lacking. Mathematically, the quality of the model is
evaluated by a Bayesian score, which measures the closeness of the
observations to the predicted levels (see Methods).

Naively, the model can be improved by searching in the
space of all possible model improvements (i.e., either refine-
ments or expansions) for the model with the best Bayesian score.
However, in order to propose only trustable hypotheses, we in-
troduce here a new improvement score, which measures the differ-
ence between the Bayesian scores of the modified and the origi-
nal model. Hence, we seek model improvements with signifi-
cantly high improvement scores. In the case of model
refinement, the improvement score compares the Bayesian score
before and after introducing the logical or structural changes
(Fig. 2B). In the more complicated case of model expansion,
among all genes that respond to the environmental changes, we
wish to identify specifically the model-dependent genes, which are
affected by model components. We wish to exclude other re-

sponding genes (model-independent genes), such as ribosomal pro-
teins, which respond to the environmental stimuli, but probably
independently of our model and through another signaling
pathway. Both types respond to the environmental changes, but
only the model-dependent responding genes are influenced by
genetic perturbations in model components. Hence, the expan-
sion improvement score compares the scores of adding a gene in
a model-dependent and in a model-independent fashion (Fig.
2B). A gene with a significant improvement score is considered a
model-dependent gene and is assigned to the module (i.e., regu-
latory unit and logic) that obtained the highest improvement
score (see Methods).

The osmotic response network model in yeast

Building on literature reports, we modeled the response of yeast
cells to calcium and hyper-osmotic stresses. The model formal-
izes the HOG, mating/pseudohyphae growth, calcineurin, and
the PKA signaling pathways. The signaling cascades act together
to affect the activity of many regulators (Hogl, Skol, Msnl,
Hotl, Msn2/4, Crz1, Stel2) that govern the complex expression
of target genes by diverse combinatorial logics. For each pathway,
our model includes the environmental stresses, the signaling cas-
cades, the transcription factors, and their known targets (Fig. 3).
Each variable has three to five possible states. Supplement A cata-
logs all variables, connections, and logics in the model, along
with their source in the literature. All the literature sources used
for the modeling do not rely, directly or indirectly, on the 106
profiles that we use here. Note that the mating and pseudohy-
phal growth pathways are modeled together. Since they share
most of their components (up to the Kss1/Fus3 MAPKs and their
upstream activators; O’Rourke and Herskowitz 1998), and our
dataset does not include any experiment that can distinguish
between them, a separate modeling of the pathways will not
improve our results. In practice, our joint modeling of mating/

Osmolarity
pathway

]
&
&

£

Mating/Pseydo
Pathwg

Figure 3. A model of the yeast response to osmotic and calcium stress.
The model contains (left to right) the calcineurin pathway, PKA signaling
pathway, the HOG MAPK pathway, including its SIn1-Ssk1 and Shol-
Ste11 upstream branches, and the mating/pseudohyphal growth path-
ways. The network, constructed based on literature reports, contains en-
vironmental conditions (dark gray), signaling components (light gray
ovals), transcription factors (double ovals) and their transcriptional tar-
gets (white ovals). Targets sharing the same regulatory logics (i.e., in the
same module) are indicated by black diamonds. Arrows are well-
established relations (solid lines) or relations predicted by the refinement
procedure (dashed lines). The logic by which each component is gov-
erned by its regulators is described in Supplement A. The dual role of the
MAPKKK Ste11 in the HOG and mating pathways is formalized by refin-
ing two different model variables called Ste11 and Ste11™, respectively.
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pseudohyphae pathways reduces model size and thus increases
efficiency and accuracy.

Network refinements

Given the dataset of 106 transcription profiles and the osmotic
response model, the refinement procedure looks for structure
and logic modifications with high improvement scores. Three
new connections providing the most significant improvement
(marked as dashed arcs in Fig. 3) indicate cross talk in the model.
The three predicted connections are not well-established, and
thus were not included in the original model, but each has an
independent support in the literature (Supplemental Table S1).
First, the model predicts a down-regulation of the HOG pathway
by the calcineurin pathway (Crz14Pbs2/Hogl, improvement
score P-value < 0.0005, see Methods). Indeed, Shitamukai et al.
(2004) support this claim by showing that calcium ions induce
Hog1 hyperphosphorylation in ¢rz1 mutants. Calcium ions acti-
vate Crz1 through the calcineurin pathway and activate Hogl
through the HOG pathway. Crz1 down-regulates Hogl and thus
there is hyperphosphorylation of Hogl in a strain lacking Crz1.
Second, Hog1 prevents osmolarity-induced activation of the mat-
ing/pseudohyphae pathway. The predicted inhibitory connec-
tion is directed from Hog1 to the mating MAPKKK Stel1 or to its
downstream mating components, but not to the osmosensor
Shol (P-value < 0.005). Indeed, the data show strong inhibition
of the mating/pseudohyphae targets in shol mutant (Supplemen-
tal Fig. S1A), and thus the refinement procedure could not pre-
dict that the inhibition is directed to Shol, but only to its down-
stream components. O’Rourke and Herskowitz (1998) suggested
this cross talk based on measurements of morphological changes
and mating phenotypes.

Third, an alternative mechanism is proposed for HOG
pathway activation in severe osmotic shock. Significant im-
provements (P-value < 0.0005) were obtained for the connec-
tions: Osmotic Stress — Ssk2/22 and Osmotic Stress — Pbs2. The
HOG pathway is still active in sskIshol, ssklstell mutants,
but not in pbs2 or hogl mutants (Supplemental Fig. S1B), and
thus a third input to Ssk2/22 or Pbs2 was added by the refine-
ment procedure. Van Wuytswinkel et al. (2000) provide an inde-
pendent support for the existence of such additional input to
Pbs2. Note that O’Rourke and Herskowitz (2004) already ob-
served this effect in their dataset, but here we succeed to identify
it automatically.

The model expansion process

A regulatory module is a set of genes that are regulated by the
same regulatory unit via the same logic. To expand the network
model, we focused on identifying such modules whose regula-
tory units are part of the original model. In principle, the space of
possible modules is huge: All subsets of variables in the model
may participate in a regulatory unit with any possible logic. In
practice, we tested putative regulatory units of one or two vari-
ables, including the six known units depicted in Figure 3. Alto-
gether, the number of tested units was 78, among them 72 pu-
tative units, each with up to 3° = 19,683 possible discrete logics,
and six known units, each with its known logic (see details in
Supplemental Fig. S2). All 5700 measured yeast genes were con-
sidered as possible targets, each with three possible states.

For each target gene, the expansion procedure searches heu-
ristically for the unit and logic that best predict its expression as
a function of the predicted activity of the regulators. The pre-

dicted activities represent the post-transcriptional effects that are
formalized in our model, such as the regulator’s phosphorylation
(and hence activation) by the MAPK Hogl. An alternative ap-
proach is to approximate activity with expression levels (Fried-
man et al. 2000; Tamada et al. 2003), but this approach cannot
handle the major post-translational regulation events in the os-
motic signaling cascade (Supplemental Fig. S3).

As described above, in order to avoid inclusion of nonspe-
cific targets, the expansion procedure computes the improve-
ment score and thus discriminates between model-dependent re-
sponding genes and model-independent responding genes (see
Methods and Fig. 2B). According to this analysis, while about
71% of the yeast genes respond to the osmotic stress, only 15%
are specifically dependent on the model. On the other hand, the
fact that a fifth of the stress response is characterized as model-
dependent highlights the important role of the osmotic-specific
stress mechanisms in the general cellular machinery of response
to stress.

Since small modules could have been generated at random
given the large space of regulatory units and logics searched, we
focused further analysis on novel modules containing at least 20
genes, and known modules of at least 10 genes. Five novel mod-
ules and five known ones passed this filter. When performing
expansion using randomly shuffled condition labels (experimen-
tal procedures), no module with more than three genes was
found (Supplemental Fig. S5), indicating that it is unlikely to
obtain our large modules at random.

Transcriptional modules discovered

The known regulatory units of Msn2/4, Stel12, Hot1/Msn1, Crz1,
and Skol attained modules containing 52, 32, 15, 13, and 12
genes, respectively (Fig. 4; Supplement C). The Crz1-Skol unit
was assigned only its known ENAI target gene. We discovered
three novel modules regulated by Hogl with different logics (re-
ferred to as HoglA, B, and C), one module controlled by both
Hogl and calmodulin (called Hogl/Ca), and one module regu-
lated by Ssk2/22 or Ssk1, called Ssk2/22 (Supplement C).

The predicted regulatory units do not necessarily control
their target genes directly. For example, the Msn2/4-module con-
tains YAP4, (currently known as CINS), GCY1, and DCS2, but,
actually, Msn2 regulates the YAP4 gene, which encodes a tran-
scription factor; the up-regulation leads to increased activity of
Yap4, which in turn up-regulates transcription of GCYI and
DCS2 (Nevitt et al. 2004). Calmodulin and Ssk2/22 probably af-
fect their targets indirectly, since they are cytoplasmatic kinases
and have no DNA binding domain. The prediction that their
regulatory effect does not involve downstream elements in the
model has some support in the literature (Ohya et al. 1991;
Yuzyuk et al. 2002).

A key advantage of our methodology is that the activity of
the modules can be predicted by the model and compared with
the observed levels. Cases of disagreement between the predicted
and observed levels are of particular interest, since they highlight
spots of incomplete understanding in the biological system. For
example, the Stel2 module shows inconsistency in the case of
ssk1shol mutants exposed to 0.5 M KCl and the sskI mutants
exposed to 0.125 M KCl (marked in Fig. 4; an extended version of
this module appears in Supplement C). An increase in transcrip-
tion is observed, in contrast to the predicted reduction. The in-
accurate modeling is probably due to incomplete understanding
of the inhibitory effect of Hogl on the mating/pseudohyphal
growth pathway.
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Figure 4. Expansion of the osmotic network model. The expansion algorithm assigns known and novel target genes to known modules (black
diamonds). Each module is represented by a matrix showing the expression of its target genes (rows) across the 106 conditions (columns). Known target
genes that were assigned to their module correctly/incorrectly are marked with white/black circles to the right of the corresponding row (known targets
were excluded from the model before expansion, to allow validation and to avoid circularity). The predicted expression levels in each condition appear
as a separate row above the matrix. The logic of each module, obtained by the refinement procedure, appears near the matrix. We show in color only
logic entries with significant improvement score. In general, there is high agreement between model predictions and observed levels. The few cases of
disagreement (e.g., columns marked by blue arrows in the Ste12 module) highlight our incomplete understanding (and hence modeling) of the
biological system. The full details on each module appear in Supplement C, including lists of correct/incorrect target genes, and their sources in the

literature.

Transcriptional modules evaluation

A unique feature of our methodology is that a module and its
regulators are identified together in the same process. In order to
evaluate the methodology, we excluded all known transcrip-
tional targets from the model and then constructed the modules.
We then tested the accuracy of assigning known targets to mod-
ules. An extended collection of 126 known targets and their lit-
erature sources is available in Supplement C. Among them, 37
genes were assigned to modules, and 17 additional genes were
assigned to very small modules which were filtered from in our
analysis. Out of the 37 genes assigned to modules, 30 genes were
assigned correctly to their known regulators, and one gene was
assigned incorrectly (marked in Fig. 4). Six additional Msn2/4
targets were assigned to the Hog1A novel module, which is also
hypothesized to be regulated by Msn2/4 (see below). Hence, we
obtain 97% specificity (correct/assigned = 36/37; see Supplemen-
tal Table S2). To get such high specificity, we pay the cost of low
(29%) sensitivity (correct/known = 36/126).

In another evaluation of the predicted modules and their
regulators, we tested each module for enrichment in transcrip-
tion factor (TF) binding using TF-DNA binding profiles (Harbison
et al. 2004). For each TF whose binding profile in relevant con-
ditions is available, the enrichment test supports the predicted
regulatory unit (Supplemental Fig. S6A): The Stel2 module is
bound by Stel2, Digl, Mcm1, and Tecl in mating/PH growth
induction (pheromone and Butanol treatment); the Msn2/4
module is bound by the Msn2/4 in stress conditions (acidic and
H,0, treatment); and the Skol module is bound by Sko1 in YPD
medium. Indeed, Skol-dependent repression is constitutively ac-
tive (bound) under normal conditions and derepressed under

osmotic shock. In addition, for the modules of Ste12 and Msn2/
4, sequence analysis shows that the known TF binding site motifs
are highly enriched in the promoters of the genes in the pre-
dicted module (Supplement D).

To validate the biological significance of the predicted gene
sets, we tested the functional coherence and separation of gene
sets. We used 87 gene expression profiles of 10 stress conditions
from Gasch et al. (2000) that were not included in the set of 106
profiles used for constructing the modules (stationary phase,
heat shock, Diamide, Menadione, H,0O,, amino acid starvation,
nitrogen depletion, hypo-osmotic shock, DTT, and various car-
bon sources). We found significant coregulation of the genes in
each module and significant separation between modules
(Supplemental Fig. S6B,C). The module predicted to be regulated
by Msn2/4 shows strong coregulated response in all stress con-
ditions, in agreement with the known general stress functional-
ity of the Msn2/4 transcription factors.

Separating gene sets that differ only in a few experiments
using standard clustering algorithms is a hard task, since the
minor expression differences might be the result of noise. A
unique feature of our approach is the ability to separate genes
using both data and prior model, rather than data only. Hence, if
the model can predict two modules with slight differences,
these differences become significant, and the targets will be parti-
tioned into two modules. For example, the targets of HoglB
module and Ssk2/22 module were separated by the model,
even though they are very similar according to our data (Supple-
mental Fig. S6D). The separation is corroborated using indepen-
dent data of heat shock stress (Gasch et al. 2000), in which the
expression patterns of these two gene sets are significantly dif-
ferent (KS-test P-value < 10~ ?; Supplemental Fig. S6E). Another
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example for separation of two similar Msn2/4 modules is given
below.

The transcription factors Msn2/4 regulate two distinct
modules

In our analysis, we identified the known Msn2/4 module (Fig.
5A). In addition, several indications suggest that Hog1A, one of
the novel modules (Fig. 5B), is also regulated through Msn2/4.
First, Hog1A is enriched in Msn2/4 targets: Among 24 module
genes known to be Msn2/4 targets (based on expression experi-
ments in Msn2/4 knockout mutants from Rep et al. 2000), 11 are
in the Msn2/4 module, and seven are targets of the HoglA mod-
ule (Fig. 5A,B, hyper geometric enrichment P-value < 10~'7,
10~ 2, respectively), and the rest were assigned to various other

0.5SMXCL
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WT  hogl pbs2 stell shol stell sskl shol

Msn2c
Msn4c

-501

L2 00 000

Figure 5. Expression profiles of two modules associated with Msn2/4.
(A) The known Msn2/4 module. (B) The novel Hog1A module. The con-
ditions are time series measurements in response to 0.5 M KCl osmotic
shock. Below the predicted expression vector and the observed expres-
sion matrix (the same presentation as in Fig. 4), the average fold induc-
tion of the module is shown. Both modules are hypothesized to be regu-
lated by Msn2/4 and include many known Msn2/4 targets (marked with
circles). However, their expression patterns are clearly distinct: The
Hog1A module depends much more strongly on the presence of Hog1 in
severe osmotic shock. In wild type (WT), the expression level in both
modules is ~3, but in hogl, pbs2, sski1stel1, and ssk1shol the expression
levels differ significantly: ~0.5 in Hog1A and ~2 in Msn2/4 module (KS-
test P-value < 10~ *). The two rightmost columns in A and B show the
expression level of the modules in Msn2 and Msn4 overexpression mu-
tants. Although the predicted expression in these conditions is low in the
Hog1A module, the observed level in both modules is high, indicating
that both modules are regulated by Msn2/4. (C,D) Promoter analysis.
Each line represents the 500-bp sequence upstream of the transcription
start site for the gene in that row. Green boxes represent occurrences of
the STRE motif (a known Msn2/4 binding site); blue arrows represent the
new motif KMCTWGAA discovered in this analysis. This motif exhibits a
non-uniform distribution along the promoter in terms of location and
orientation. The novel motif supports the separation of the Msn2/4 tar-
gets into two distinct modules.

logics. Second, a significant enrichment in binding of Msn4 to
the promoters of HoglA module genes was observed in ChIP
experiments (Harbison et al. 2004) (P < 10~ 7; Supplemental Fig.
S6A). Third, the HoglA module is highly expressed in strains
overexpressing Msn4 (Gasch et al. 2000) (two right columns in
Fig. 5A; KS-test P-value < 10~ '2). Fourth, Hogl1A exhibits highly
significant response in all stress conditions (Supplemental Fig.
S6B), in agreement with the central role of Msn2/4 in general
stress response. Finally, the Msn2/4 STRE binding motif was
highly enriched in the Hog1A module (P-value < 10~ %; Fig. 5D).

To provide additional evidence that the two transcriptional
modules are distinct, we performed promoter sequence analysis.
Remarkably, a new motif was discovered to be highly enriched
only in the novel module (KMCTWGAA, enrichment P-
value < 10~ '*) and it may contribute to the unique behavior of
the module (Fig. 5C,D). This novel motif exhibits a very strong
bias in orientation and distance from the transcription start site
of the regulated genes (hyper geometric P-value <2 X 10™%).

HOG pathway-dependent repression of genes

It was previously demonstrated that Hogl-dependent genes are
either induced or repressed in hogl mutants. The prevalent view
in the literature is that the genes induced by hogl mutants are
associated with pheromone response and pseudohyphal growth
(O’Rourke and Herskowitz 2004). Indeed, among nineteen genes
that are specifically up-regulated in hogl mutants (Rep et al.
2000), all 11 genes with high score (improvement score > 0.05)
were assigned to the module of the mating/pseudohyphae TF
Ste12. Surprisingly, our results revealed four additional modules
that increase specifically in the hogl mutant (Fig. 6A; Supplement
C). In contrast with the Stel2 targets (Fig. 6B), the novel modules
respond neither to pheromone nor to perturbation in the mat-
ing/pseudohyphal growth pathway (Supplemental Fig. S7) and
are not bound by the TFs Ste12, Tec1, or Digl/2 (Supplemental
Fig. S6A). Taken together, these observations suggest that Hogl
plays an additional role in inhibiting expression that is not re-
lated to the cross talk between the HOG and mating/
pseudohyphae pathways.

Multiple functional modes of Hogl

The refinement procedure suggested the existence of an alterna-
tive third mechanism that activates the HOG pathway in severe
osmotic stress, in addition to the two known upstream branches
of the pathway (Shol-Stell and SIn1-Ssk1; Fig. 3). This refine-
ment was suggested since the transcription of some of the clas-
sical HOG pathway targets (regulated by Hot1, Msn1, and Sko1)
does not depend on the two upstream branches in 0.5 M KCI (Fig.
6B). However, the transcription level of the known Msn2/4 tar-
gets does depend on the two branches (Fig. 6B). This suggests that
Hog1 has two different activity modes, and that one of the modes
is only functional while interacting with Msn2/4. To test this
prediction computationally, we added to the model, in addition
to a Hogl variable that is controlled by three inputs (the two
HOG pathway upstream branches, and a third uncharacterized
input), an additional variable called Hog1®, which is controlled
solely by the two HOG pathway upstream branches (Supplemen-
tal Fig. S2). We applied the module identification process on this
extended model.

Remarkably, although the classical HOG pathway targets
seem to be activated by a third input, four novel modules
(Hog1A, HoglB, Hogl1C, and Hog1/Ca) are predicted to be regu-
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Figure 6. HOG pathway-dependent repression of genes, and multiple functional modes of Hog1.
Each plot shows the average fold induction (in log2 scale) of novel gene modules (A) or known targets
of TFs (B) in wild type (WT) and seven HOG pathway mutants exposed to 0.5 M KCl. Black/white
coloring indicates average fold induction above/below 0.1. (A) The novel modules Hog1A, Hog1B, and
Hog1/Ca (the Hog1C and Ssk2/22 modules [data not shown] are similar to Hog1B in this view). (B) The
known target genes of Ste12 (KSS1, TEC1, FUST, FUS3, MSG5, KAR4, CLN1, PGUT), Hog1 (HOR2, GRE2,
STL1, ENAT, GLR1, GPD1, HALT, CHA1, AHP1, YGR043C, YGRO52W (reserved name FMP48), YML131W;
Hohmann 2002), and Msn2/4 (Rep et al. 2000). Expression of the novel modules Hog1B and Hog1/Ca
(A, middle and bottom) increases in the absence of Hogl. Although the whole Hogl-dependent
inhibition response is known to be regulated by Ste12, one can clearly see that these novel modules
differ significantly from the Ste12 targets (B, top), indicating existence of Hog1-dependent in spite of
Stel2-independent inhibition. The known Hog1/Msn1/Sko1 and Msn2/4 targets (B, middle and bot-
tom) have distinct expression pattern (KS-test P-value < 10~ °): The Msn1/Hot1/Sko1 targets have
higher expression in the ssk1stel1 and ssk1shol mutants compared to hog! and pbs2 mutants, indi-
cating that Hog1 can be activated also by a third additional input. In contrast, the Msn2/4 targets have
a similar expression pattern in all four of these mutants, indicating that Hog1 is dependent on the two
upstream branches of the HOG pathway. Surprisingly, the novel modules” expression pattern (A) also
suggests dependency on the two HOG branches. One can clearly see that two of these modules
(Hog1B and Hog1/Ca) differ significantly from the known Msn2/4 targets (the distinction between
Msn2/4 and the third module Hog1A is discussed in Fig. 5). Taken together, this suggests that Hog1
has two distinct functional modes that involve a different combination of transcription factors. An
extended version of the novel modules appears in Supplement C.

feedforward loops (Fig. 7). The algo-
rithm predicts that the expression of
SHO1 is down-regulated by the MAPK
Hogl, suggesting down-regulation of
one arm of the HOG pathway upon os-
motic shock. In the nucleus, active Hog1
interacts with the Msn1 transcription ac-
tivator, the Rpd3 histone deacetylase,
and the Tupl transcriptional cofactor,
all important for activation of the re-
sponse to osmotic shock (Proft and
Struhl 2002; De Nadal et al. 2004). The
feedforward loop predicted between
Hog1 and each of these factors (exempli-
fied in Fig. 7B on MSN1) may encourage
transient activation signals, allowing rapid
system shutdown (Shen-Orr et al. 2002).

From the refinement results de-
scribed above, we concluded that Hogl
somehow prevents cross talk with the
mating/pseudohyphae pathway. Consis-
tent with this observation, the STE7,
STE12, and SHO1 genes, which are trans-
lated into components of that pathway,
are down-regulated by Hogl. On the
other hand, the phosphatase Ptp3 inac-
tivates the mating kinase Fus3, and its
gene PTP3 is up-regulated by Hogl.
These predictions suggest that transcrip-
tion regulation is part of the mechanism
by which Hogl prevents cross talk be-
tween the MAP kinase pathways.

Stel2 up-regulates the FUS3 and
KSS1 genes, forming a positive feedback
loop (exemplified in Fig. 7B on FUS3)
that can increase stability and reduce re-
sponse time to environmental stimuli
(Shen-Orr et al. 2002). We also identified
a negative feedback loop via Stel2 up-
regulation of MSGS, indicating that the
pathway has also an autoregulatory de-
activation mode. Note that, upon os-

lated by Hog1®® and indeed seem to be dependent on the two
upstream branches, similarly to Msn2/4 (Fig. 6; Supplement C).
Several indications suggest that one of these modules, Hog14, is
actually regulated through Msn2/4 (as detailed above; Fig. 5). But
surprisingly, the Hog1B, Hog1C, and Hogl/Ca modules are not
enriched according to any of these criteria, and thus it seems that
their regulation does not involve Msn2/4. Therefore, there is a
strong indication that Hog1l has multiple functional modes that
probably go beyond its functionality in particular combinatorial
regulation with Msn2/4. Supporting this new hypothesis, some
of these functional modes have opposite effects (there are both
repressed and induced Hogl®-dependent modules). The Hogl
functional modes can be explained in many ways, such as dis-
tinct Hog1 activity as a TF (in the nucleus) and as a kinase (in the
cytoplasm), or differences in activity of other mediators, e.g.,
nuclear translocators or phosphatases.

Transcriptional feedback in the osmotic response network

Many components of the osmotic and mating MAPK pathways
were included in modules, thereby forming both feedback and

motic shock, all the predicted targets that are components of the
mating/pseudohyphae pathway (SHO1, CDC24, STE7, KSS§1,
FUS3, MSGS, PTP3, STE12, and TEC1) behave similarly: They are
expressed only in the absence of active Hog1. Yet, the expansion
procedure identifies SHO1, STE7, PTP3, and STE12 as Hogl-
dependent, while CDC24, KSS1, FUS3, MSGS, and TECI1 are iden-
tified as Stel2-dependent. Indeed, experimental results not used
in the computational process support these predictions: Only the
predicted Ste12-dependent genes are up-regulated by pheromone
that specifically activates the mating pathway (Supplemental Fig.
$8). Several mechanisms for the adaptive regulation of the osmo-
larity pathway have been described (Hohmann 2002). The results
here provide additional insight on the way transcriptional regu-
lation might take part in the osmotic adaptation.

Discussion

Signaling and transcriptional networks are intertwined and in-
fluence each other in a complex manner. In this study, focusing
on the osmotic response system in S. cerevisiae, we show that, by
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Feed-forward loops

Feedback loops

Figure 7. Complex transcriptional feedback in the yeast osmotic net-
work model. (A) We highlight in color model variables whose correspond-
ing genes were included in a module. Regulatory units are shown as
diamonds, where the incoming arcs indicate the regulators they contain,
and outcoming dashed arcs indicate their (direct or indirect) targets. For
each regulatory unit, we use a different color for its target genes and the
relevant edges. For example, the unit of Ste12 (orange) has TECT, FUS3,
KSS1, and MSG5 among its targets. Unlike previous maps, the same dia-
mond might represent several different regulatory logics, and the arcs
distinguish between positive (—) and negative (1) feedback. The rich
circuitry observed is probably part of the cellular adaptation and provides
rapid and transient response to osmotic stress. (B) A few network motifs
discovered in A. Rectangles indicate target genes, and ovals are proteins.

modeling together the available knowledge on signaling cascades
and transcriptional regulation, we could improve our under-
standing of both systems in two important ways: The signaling
pathways are refined based on known transcriptional regulation
effects, and transcriptional regulatory modules are generated us-
ing known cascades of events along signaling pathways.

A large amount of curated qualitative knowledge on biologi-
cal systems is available today. The formulation of such knowl-
edge is shown here to be surprisingly instrumental in improving
our biological understanding. Our computational framework en-
ables modeling of the existing knowledge in the presence of feed-
back loops in the network, formalization of the uncertainty in
this knowledge, and integration of high throughput data. In ad-
dition, the model can accommodate partial noisy measurements
of diverse biological entities (Gat-Viks et al. 2006). We make ma-
jor modeling simplifications: The regulatory relations are discrete
logical functions, and the model describes the steady state of the
system. As expected, the prediction and improvement processes
that we propose here also have limitations: They are sensitive to
the size and complexity of the model (e.g., number of variables,
interactions, and feedback loops), the certainty in the logics, and
the amount of data available. The robustness of our methods to
these parameters still needs further exploration. We do have
strong positive indication for the robustness of the prediction
process and logical refinement procedure on small networks
(Gat-Viks et al. 2006; www.cs.tau.ac.il/~rshamir/metareg). The

robustness of the expansion procedure is yet needed to be system-
atically explored, although the biological validations in this study
are highly promising. In the future, we hope this study will lead
to creation of more sophisticated mathematical models and robust
improvement algorithms for the analysis of genome-wide datasets.

A key advantage of our module identification approach is
that we use a discriminative scoring scheme which specifically
identifies modules along with their model regulators. Conse-
quently, we can detect modules on a finer level than was previ-
ously possible (for example, novel HOG pathway-dependent re-
pressed modules). Our method outperforms extant methods
mainly because it exploits prior knowledge on the signaling path-
ways and on the experimental procedure. This prior knowledge
helps to detect minute expression differences that are the result
of distinct regulatory mechanisms, and thus the method can dis-
card better differences that are due to noise. The main limitation
in our module identification approach is that it requires high
quality of prior knowledge on the signaling pathways, whereas
many biological systems are only partially known. To overcome
this obstacle, the model should be corrected by applying a re-
finement procedure before elucidating the modules. In the cur-
rent study, we did not allow refinement steps that cause global
effects, such as novel feedbacks or disconnected networks. We
hope that, within the formalism of our model, it will be possible
to develop techniques to handle those cases as well.

Although there is much to be developed both in the mod-
eling and the algorithmic parts, by extending the concepts de-
rived here, it is clear that simultaneous analysis of qualitative
knowledge with high throughput data is a useful approach. The
approach is applicable to other types of perturbations, such as
siRNA, to other environmental conditions, such as pharmaceu-
tical agents, and to other molecular data, such as protein activity
levels measured by microarrays. High throughput phosphoryla-
tion measurements might allow an automated construction of
kinase signaling modules using known signaling pathways. As
new databases of curated knowledge on signaling pathway are
developed (such as BioModels [Le Novere et al. 2006], Reactome
[Joshi-Tope et al. 2005], and SPIKE [www.cs.tau.ac.il/~spike]), it
will be easier to obtain the prior information on many biological
systems and apply the methodology to them.

Methods

Model formalization

Our model consists of variables and relations among them, for-
mulating prior knowledge. The model variables X,. . .X,, express
diverse biological entities (e.g., mRNAs, proteins, metabolites,
and phenotypes), and arcs between variables represent biological
regulations (e.g., transcription and translation regulation, post-
translational modifications). Each variable X; is regulated by a
regulatory unit Pa,, i.e., the set of variables that have arcs into X;.
Each variable in Pa; is called a regulator of X;. Each variable can
be in one of several (typically three) discrete states, and its state
in any condition is assumed to be determined by its logic, i.e., a
discrete function of its regulators’ states in that condition. Note
that this assumption implies that the relevant conditions are in
steady state. In order to model our uncertainty about the prior
knowledge, the logic of a variable X; is formulated probabilisti-
cally as our belief that the variable attains a certain state given
the state of its regulatory unit. It is represented by the conditional
probability 6'(X; | Pa;). This approach allows us to model uncer-
tainty in prior biological knowledge and to distinguish between
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regulatory logics that are known at high level of certainty and
those that are more speculative. In practice, biological experi-
ments provide continuous observations and we do not know in
advance how to translate them into discrete states. Hence, each
logical variable X; is associated with an observed real-valued vari-
able Y;, and the conditional distribution ' (X; | Y;) specifies the
probability of the variable X; to attain a certain state given its
observed real value. In this work, we discretize the observed val-
ues using a mixture of Gaussians model.

Our probabilistic model defines a Bayesian score, which
evaluates the fit of the model predictions to the data, measured as
the log likelihood of the data given the model:

1 . .
log Pr(X, Y|Model) = log| - H 0'(X; | Pa;) - WX, | Y,-))

where Z is a normalization constant. The conditional probabili-
ties 6' are known from our prior knowledge on the biological
system, and ¢ is determined by maximizing a likelihood score
using an EM-procedure. The ' parameters depend strongly on
the particular model, and thus we reoptimize them during each
step of the improvement procedures. Given the probabilistic
model, we predict the levels of variables (e.g., the activity level of
proteins, the expression levels of mRNAs) using a standard proba-
bilistic inference method called Loopy Belief Propagation
(Kschischang and Loeliger 2001). As described in Gat-Viks et al.
(2006), the above model is represented by a Bayesian network in
case of acyclic dependencies, or by factor graph (Kschischang and
Loeliger 2001), in the more general case where feedback loops,
that are essential in many biological systems, are present.

Expression profiles

We compiled a dataset of 106 relevant transcription profiles se-
lected from four large-scale studies (Gasch et al. 2000; Harris et al.
2001; Yoshimoto et al. 2002; O’Rourke and Herskowitz 2004). In
addition to gene expression measurements, for each profile the
experimental procedure is recorded, i.e., the environmental con-
ditions and the genetic perturbations in the experiment. This
information is used for generating model predictions. The com-
plete list of conditions and their experimental procedures are
available in Supplement B. The analysis was applied on 5700
genes that were measured in at least 100 of the conditions.

Model refinements

The refinement procedure searches for a structure modification
(an added arc in the network with an accompanying logic) that
improves the model significantly. Each such modified model is
evaluated by the fit of its predictions to the data, measured by the
Bayesian score. The score is computed by an EM-algorithm that
locally maximizes the free parameters of the model: the discreti-
zation parameters ' and the logic of the new regulation (Gat-
Viks et al. 2006). To evaluate the significance of the improve-
ment achieved by a particular modification to the model, we
compared the likelihood scores distributions (across the 106 pro-
files) of the original and the modified model. The null hypothesis
assumes that both models provide equal scores in each condi-
tion. The alternative hypothesis suggests higher scores for the
modified model. The improvement score is the P-value generated
using non-parametric paired Wilcoxon test. All P-values pre-
sented are Bonferroni corrected. The same improvement score was
used for learning the regulatory logics of the six known modules.

Identification of transcriptional modules

We consider all possible regulatory units of one or two regulators
out of twelve candidate regulators. These regulators include two

environmental stimuli variables (Calcium stress and Turgor pres-
sure) and 10 signaling network variables (Supplement Fig. S2).
Note that the regulatory units are of two types: Variables gov-
erned by units that consist only of environmental stimuli are not
affected by genetic perturbations in the model, and thus will be
called model-independent modules (and their genes will be
called model-independent genes). In contrast, the model-
dependent modules (which contain model-dependent genes) are
controlled by at least one signaling network regulator and thus
influenced by genetic perturbations of model components (Fig. 2B).

Our expansion procedure seeks for each candidate gene the
unit that governs it based on an improvement score. In particu-
lar, given a target gene and its candidate regulatory unit, the
procedure applies a greedy search in the space of regulatory logics
and discretization parameters using an EM-like procedure in or-
der to achieve a locally maximum Bayesian score. When assign-
ing genes to regulatory units, one should take caution about
model dependence decision. Many of the reactions observed in
stress and perturbation conditions can be attributed to general
stress response, even if they match model predictions (Supple-
mental Fig. S4). To specifically discriminate model-dependent
genes from model-independent genes, we require that they
should be predicted significantly better by some model-
dependent module than using model-independent ones. Math-
ematically, we define the improvement score obtained by a gene
assignment to a regulatory unit as the difference between its
original Bayesian score and the best model-independent
Bayesian score obtained for the same gene. This approach can be
viewed as hypothesis testing, where the null hypothesis is a
model-independent response, and we reject it only if the alter-
native model-dependent hypothesis is much more convincing.

In practice, 71% of the genome (4051 genes) attained sig-
nificant Bayesian score in either a model-dependent fashion
(68.2%, 3887 genes) or a model-independent one (51.5%, 2935
genes) (we used a cutoff of 0.1 computed based on the shuffled
data, see Supplemental Fig. S4); 876 genes (15.3%) that obtained
improvement score =10 were used to construct model-
dependent modules.

Our analysis is focused on model-dependent modules, but
the expansion algorithm outputs also model-independent mod-
ules. Supplemental Figure S9 exemplifies one such module,
which is strongly repressed by hyper-osmotic stress and enriched
with ribosomal proteins. Indeed, the expression of the module
genes appears by and large unaffected by the genetic perturba-
tions in our dataset.

Module significance

To evaluate modules’ significance, we tested for enrichment
(hyper-geometric P-value) of each module’s genes in each of the
sets of TF targets (identified at P < 0.01) reported in Harbison et
al. (2004) (Supplemental Fig. S6A). In addition, enrichment was
computed on up-regulated and down-regulated gene sets in in-
dependent expression profiles from Gasch et al. (2000) (exclud-
ing the conditions included in the training data, and all other
hyper-osmotic conditions and genetic perturbations in model
variables, Supplemental Fig. S6B). Separation between modules
was computed by KS-test for the difference in the expression
profile distributions of each module across the same independent
conditions (Supplemental Fig. S6C). All P-values presented are
Bonferroni corrected.

Promoter analysis

We performed promoter analysis on the set of target genes in
each module, aiming to find regulatory signals and putative tran-
scription factor binding sites. For each set we searched the 500 bp
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upstream of the transcription start site in each gene using Ama-
deus motif finder (Halperin et al. 2006). Amadeus performs de novo
search for enriched motifs and also compares the motifs found to
the known ones in the TRANSFAC version 8.3 database (Matys et
al. 2003). The discovered motifs are listed in Supplement D.
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