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Abstract

Motivation:We present Faucet, a 2-pass streaming algorithm for assembly graph construction. Faucet
builds an assembly graph incrementally as each read is processed. Thus, reads need not be stored locally,
as they can be processed while downloading data and then discarded. We demonstrate this functionality
by performing streaming graph assembly of publicly available data, and observe that the ratio of disk use
to raw data size decreases as coverage is increased.
Results:Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data derived from
them. We show these metadata - coverage counts collected at junction k-mers and connections bridging
between junction pairs - contain most salient information needed for assembly, and demonstrate they
enable cleaning of metagenome assembly graphs, greatly improving contiguity while maintaining accuracy.
We compared Faucet’s resource use and assembly quality to state of the art metagenome assemblers, as
well as leading resource-efficient genome assemblers. Faucet used orders of magnitude less time and disk
space than the specialized metagenome assemblers MetaSPAdes and Megahit, while also improving on
their memory use; this broadly matched performance of other assemblers optimizing resource efficiency
- namely, Minia and LightAssembler. However, on metagenomes tested, Faucet’s outputs had 14-110%
higher mean NGA50 lengths compared to Minia, and 2-11-fold higher mean NGA50 lengths compared to
LightAssembler, the only other streaming assembler available.
Availability: Faucet is available at https://github.com/Shamir-Lab/Faucet
Contact: rshamir@tau.ac.il,eranhalperin@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Assembly graphs encode relationships among sequences from a common
source: they capture sequences as well as the overlaps observed among
them. When assembly graphs are indexed, their sequence contents can
be queried without iterating over every sequence in the input. This
functionality makes graph and index construction a prerequisite for many
applications. Among these are different types of assembly - e.g., de
novo assembly of whole genomes, transcripts, plasmids, etc. [1, 2] -
and downstream applications - e.g., mapping reads to the graphs, variant
calling, pangenome analysis, etc. [3, 4]

In recent years, much effort has been expended to reduce the amount
of memory used for constructing assembly graphs and indexing them.
Major advances often relied on index structures that saved memory by
enabling subsets of possible queries: e.g., one could query what extensions
a given substring s has, but not how many times s was seen in the input
data. A great deal of success ensued in reducing the amount of memory
needed to efficiently construct the central data structures used by most
de novo assembly algorithms, namely, the de Bruijn and string graphs
[5, 6, 7, 8]. Furthermore, efficient conversion of de Bruijn graphs to their
compacted form (essentially string graphs with fixed overlap size) has been
demonstrated [9, 10, 11].

In parallel to these efforts, streaming approaches were demonstrated
as alternative resource-efficient means of performing analyses that had

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

. CC-BY-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. http://dx.doi.org/10.1101/125658doi: bioRxiv preprint first posted online Apr. 8, 2017; 

http://dx.doi.org/10.1101/125658
http://creativecommons.org/licenses/by-nd/4.0/


i
i

“Faucet” — 2017/4/8 — 0:09 — page 2 — #2 i
i

i
i

i
i
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typically relied on static indices. Although appealing in terms of speed and
low memory use, these approaches were initially demonstrated primarily
for counting-centered applications such as estimating k-mer frequencies,
error-correction of reads, and quantification of transcripts [12, 13, 14, 15,
16].

Recently, a first step towards bridging the gap between streaming
approaches and those based on static index construction was taken,
hinting at the potential benefits of combining the two. Matwali et al.[17]
demonstrated a streaming approach to assembly by making two passes on
a set of reads. The first pass subsamples k-mers in the de Bruijn graph
and inserts them into a Bloom filter, and the second uses this Bloom
filter to identify ’solid’ (likely correct) k-mers, which are then inserted
into a second Bloom filter. This streaming approach resulted in very
high resource efficiency in terms of memory and disk use. However,
LightAssembler finds solid k-mers while disregarding paired-end and
coverage information, and thus is limited in its ability to resolve repeats and
to differentiate between different possible extensions in order to improve
contiguity.

In this work, we extend this approach with the aim of providing a more
complete alternative to downloading and storing reads for the sake of de
novo assembly. We show this is achievable via online graph and index
construction. We describe the Faucet algorithm, composed of an online
phase and an offline phase. During the online phase, two passes are made
on the reads without storing them locally to first load their k-mers into
a Bloom filter, and then identify and record structural characteristics of
the graph and associated metadata essential for achieving high contiguity
in assembly. The offline phase uses all of this information together to
iteratively clean and refine the graph structure.

We show that Faucet requires less disk space than the input data,
in contrast with extant assemblers that require storing reads and often
produce intermediate files that are larger than the input. We also show
that the ratio of disk space Faucet uses to the input data improves
with higher coverage levels by streaming successively larger subsets of
a high coverage human genome sample. Furthermore, we introduce a
new cleaning step called disentanglement enabled by storage of paired
junction extensions in two Bloom filters - one meant for pairings inside
a read, and one meant for junctions on separate paired end mates. We
show the benefit of disentanglement via extensive experiments. Finally,
we compared Faucet’s resource use and assembly quality to state of the
art metagenome assemblers, as well as leading resource-efficient genome
assemblers. Faucet used orders of magnitude less time and disk space than
the specialized metagenome assemblers MetaSPAdes and Megahit, while
also improving on their memory use; this broadly matched performance
of other assemblers optimizing resource efficiency - namely, Minia and
LightAssembler. However, on metagenomes tested, Faucet’s outputs had
14-110% higher mean NGA50 lengths compared to Minia, and 2-11-fold
higher mean NGA50 lengths compared to LightAssembler, the only other
streaming assembler available.

2 Preliminaries
For a string s, we denote by s[i] the character at position i, s[i : j] the
substring of s from position i to j (inclusive of both ends), and |s| the
length of s. Let pref(s, j) be the prefix comprised of the first j characters
of s and suff (s, j) be the suffix comprised of the last j characters of s. We
denote concatenation of strings s and t by s◦t, and the reverse complement
of a string s by s′.

A k-mer is a string of length k drawn from the DNA alphabet
Σ = {A,C,G, T}. The de Bruijn graph G(S, k) = (V,E) of a set
of sequences S has nodes defined by consecutive k-mers in the sequences,

V =
⋃

s∈S

|s|−k+1⋃
i=0

s[i : i + k − 1]; E is the set of arcs defined by

(k−1)−mer overlaps between nodes in V . Namely, identifying vertices
with their k-mers, (u, v) ∈ E ⇐⇒ suff (u, k− 1) = pref(v, k− 1).
Each node v is identified with its reverse complement v′, making the
graph G bidirected, in that edges may represent overlaps between either
orientation of each node [18]. When necessary, our explicit representation
of nodes will use canonical node naming, i.e., the name of node (v, v′)

will be the lexicographically lesser of v and v′. Junction nodes are defined
as k-mers having in-degree or out-degree greater than 1. Terminal nodes
are k-mers having out-degree 1 and in-degree 0 or in-degree 1 and out-
degree 0. Terminals and junctions are collectively referred to as special
nodes. The compacted de Bruijn graph is obtained from a de Bruijn graph
by merging all adjacent non-branching nodes (i.e., those having in-degree
and out-degree of exactly 1). The string associated with merged adjacent
nodes is the first k-mer, concatenated with the single character extensions
of all following non-branching k-mers. Such merged non-branching paths
are called unitigs.

Since a junction v having in-degree greater than 1 and out-degree 1
is identified with v′ having out-degree greater than 1 and in-degree 1,
we speak of junction directions relative to the reading direction of the
junction’s k-mer. Therefore, a forward junction has out-degree greater than
1, and a back junction has in-degree greater than 1. We refer to outbound
k-mers beginning paths in the direction having out-degree greater than 1
as heads, and the sole outbound k-mer in the opposite direction as the
junction’s tail. It is possible that a junction may have no tail.

A Bloom filter B is a space-efficient probabilistic hash table
enabling insertion and approximate membership query operations [19].
The filter consists of a bit array of size m, and an element x is
inserted to B by applying h hash functions, f0, . . . , fh−1 such that
∀i∈[0,h−1]fi(x) ∈ [0,m − 1], and setting values of the filter to 1 at
the positions returned. For a Bloom filter B and string s, by s ∈ B or
the term ’s in B’ we refer to B[s] = 1, i.e., when the h hash functions
used to load B are applied to s, only 1 values are returned. Similarly,
s /∈ B or ’s not in B’ means that at least one of the h hash functions of
B returned 0 when applied to s. For any s that has been inserted to B,
B[s] = 1 by definition (i.e., there are no false negatives). However, false
positives are possible, with a probability that can tuned by adjusting m or
h appropriately.

3 Methods
We developed an algorithm called Faucet for streaming de novo assembly
graph construction. A bird’s eye view of its entire work-flow is provided
in Figure 1. Below we detail individual steps.

Online Bloom filter loading Faucet begins by loading two Bloom
filters, B1 and B2, as it iterates through the reads, using the following
procedure: all k-mers are inserted to B1, and only k-mers already in B1

(i.e., those for which all hash queries return 1 from B1) are inserted to
B2. Namely, for each k-mer s, if B1[s] = 1 then we insert s into
B2, otherwise we insert into B1. After iterating through all reads, B1

is discarded and only B2 is used for later stages. This procedure imposes a
coverage threshold on the vast majority of k-mers so that primarily ’solid
k-mers’ [20] observed at least twice are kept. This process is depicted in
Round 1 of Figure 1A. We note that a small proportion of singleton or
false positive k-mers may evade this filtration. No count information is
associated with k-mers at this round.

Online graph construction B2, loaded at the first round, enables
Faucet to query possible forward extensions of each k-mer. Faucet iterates
through all reads a second time to collect information necessary for
avoiding false positive extensions, building the compacted de Bruijn
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Fig. 1: Faucet work-flow. A. The online stage involves a first round of processing all reads in order to load Bloom filters B1 and B2, and a second round in order to build the
junction map M and load additional Bloom filters B3 and B4. M stores the set of all junctions and extension counts for each junction, while B3 and B4 capture connections
between junction pairs. The two online rounds capture information from and perform processing on each read, and the processing performed always depends on the current
state of data structures being loaded. B. The offline stage uses B2 and M , constructed during the online stage, in order to build the compacted de Bruijn graph by extending
between special nodes using Bloom filter queries. ContigNodes (not shown) take the place of junctions and are stored in M ′, allowing access (via stored pointers) to Contigs
out of each junction, and coverage information. An additional vector of coverage values at fake or past junctions is also maintained for each Contig. Then, B3, B4, and this
coverage information are used together to perform simplifications on and cleaning of the graph.

graph, and later, cleaning the graph. The second round consists of finding
junctions and terminal k-mers, recording their true extension counts, and
recording k-mer pairs (Round 2 of Figure 1A).

Faucet’s Online stage has one main routine - Algorithm 1 - that calls
upon two subroutines - Algorithm 2 and Algorithm 3. First, junction k-
mers and their start positions are derived from a call to Algorithm 2. To
find junctions, Algorithm 2 makes all possible alternate extension queries
(Line 3-Line 4) to B2 for each k-mer in the read sequence r. A junction
k-mer j may have multiple extensions in B2 - either because there are
multiple extensions of j in G that are all real (i.e., present on some read),
or because there is at least one real extension in G and some others in
B2 that are false positives. Accordingly, each k-mer possessing at least
one extension that differs from the next base on the read is identified as a
junction. Whenever one is found, its sequence along with its start position
are recorded (Line 4), and the list of such tuples is returned. We note
that each k-mer in the read is also queried for junctions in the reverse
complement direction, but this is not shown in Algorithm 2.

Algorithm 1 then uses this set of junctions to perform accounting
(Line 4-Line 7). All junctions are inserted into a hash map M that maps
junction k-mers to vectors maintaining counts for each extension. For
each junction of r, a count of 0 is initialized for each possible extension.
These counters are only incremented based on extensions observed on
reads - i.e., extensions due to Bloom filter outputs alone are not counted.
As every real extension out of each junction must be observed on some
read, and we scan the entire set of reads, an extension will have non-
zero count only if it is real. This mechanism allows Faucet to maintain

Algorithm 1 scanReads(R,B2)

Input: read set R, Bloom filter B2 loaded from round 1, an empty Bloom
filter B3

Output: 1. a junction MapM comprised of (key, value) pairs. Each key
is a junction k-mer, and each value ∈ N4 is a vector [cA, cC , cG, cT ] of
counts representing the number of times each possible extension of key
was observed in R; 2. B3 is loaded with linked k-mer pairs (i.e., specific
2k-mers - see text - are hashed in).

1: M ← ∅
2: for r ∈ R do
3: juncs← findJunctions(r,B2) . call to Algorithm 2
4: for (junc, pos) ∈ juncs do
5: if junc /∈M then
6: M [junc]← [0, 0, 0, 0]

7: increment counter in M for r[pos + k]
recordPairs(r, juncs,B3) . call to Algorithm 3

8: return M,B3

coverage counts for all real extensions out of junctions. In later stages,
only extensions having non-zero counts will be visited, but counts are
stored for real extensions of false junctions as well. These latter counts are
used to sample coverage distributions on unitig sequences at more points
than just their ends. Proportions of real junctions vs. the totals stored
after accounting are described in the section ’Solid junction counts’ in the
Appendix.
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Algorithm 2 findJunctions(r,B2)

Input: read r and Bloom filter B2

Output: juncTuples, a list of tuples (seq, p) , where p is the start position of junction k-mer seq in r, in order of appearance on r

1: juncTuples← ∅
2: for i ∈ [0, |r| − k] do kmer ← r[i : i + k − 1]

3: for c ∈ Σ \ {r[i + k]} do
4: if (suff (kmer, k − 1) ◦ c ∈ B2) then

juncTuples← juncTuples ∪ (kmer, i)

5: return juncTuples

Fig. 2: Disentanglement. A. A tangle characterized by two opposite facing junctions j1 and j2, each with out-degree 2. B. Junction pairs linking extensions on sa with sc and
sb with sd. Since no pairs link extensions on sa with sd or sb with sc, only one orientation is supported. C. the result of disentanglement: paths [sa, s, sc] and [sb, s, sd]

are each merged into individual sequences, and junctions j1 and j2 are removed from M .

Following the accounting performed on observed junctions, Faucet
records adjacencies between pairs of junctions using additional Bloom
filters - B3 and B4. These adjacencies are needed for disentanglement - a
cleaning step applied in Faucet’s offline stage. Disentanglement, depicted
in Figure 2, is a means of repeat resolution. Its purpose is to split paths
that have been merged due to the presence of a shared segment - the
repeat - in both paths. In order to ’disentangle,’ or resolve the tangled
region into its underlying latent paths, we seek to store sequences that flank
opposite ends of the the repeat. Pairs of heads observed on reads provide
a means of ’reading out’ such latent paths by indicating which heads co-
occur on sequenced DNA fragments. The application of disentanglement is
presented in the section ’Offline graph simplification and cleaning,’ while
we now focus on the mechanism of pair collection and its rationale. To
capture short and long range information separately, Bloom filterB3 holds
head pairs on the same read, while B4 holds heads chosen such that each
head is on a different mate of a paired-end read. Algorithm 3 is the process
by which pairs are inserted into B3, and insertion into B4 is described in
the Appendix.

In Algorithm 3, we aim to pair heads that are maximally informative.
Informative pairs are those that allow us to ’read out’ pairs of unitigs
that belong to the same latent path. We specifically choose to insert
heads because during the offline stage when disentanglement takes place,
adjacencies between each unitig starting at an edge to a head and the

unitig starting at the edge from the junction to its tail of are known
and accessible via pointers to their sequences. Therefore, extension pairs
capturing information of direct adjacencies provide no new information.
The closest indirect adjacency that may be informative when captured from
a read is that between two junctions that either face in the same direction,
or when the first faces back and the second faces forward, as shown in
Figure 3 A. Thus, when there are only two junctions on a read, their pair
of heads is inserted as long as the two junctions are not facing each other.
When there are at least three junctions on a read, every other junction out of
every consecutive triplet is paired, as shown for a single triplet in Figure 3
B. This figure demonstrates that selecting every other head is preferable
to selecting consecutive heads out of a triplet. This type of insertion is
executed in Line 1-Line 5 ofAlgorithm 3 and ensures all unitigs flanking
some triplet are potentially inferable. For reads having more than three
junctions, applying the triplet rule for every consecutive window of size 3
similarly allows for all unitigs on the read to be included in some hashed
pair.

Offline graph simplification and cleaning GivenB2, B3, B4 andM
resulting from the online stage, the compacted de Bruijn graph is generated
by traversing each forward extension out of every special k-mer, as well as
traversing backwards in the reverse complement direction when the node
has not been reached before by a traversal starting from another node.
This is done by querying B2 for extensions and continuing until the next
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Fig. 3: Rationale for B3 insertions. Pairs of junction heads (indicated by red rectangles adjacent to green junctions) observed on reads are inserted when they provide additional
information to infer a path on the graph. A. Two junctions observed on a read. In cases I and II, it is beneficial to insert the pairs of heads into B3, as in both cases each
individual head allows inference of a different Contig. In case III, inserting the pair between two junctions facing each other is not beneficial because both heads lie on opposite
ends of the same Contig. In all three cases, the full path can be inferred. B. Four possible arrangements of three consecutive junctions on a read. There are four more that are
symmetrical reflections of those presented that are not shown. In each case, we compare the Contigs covered (i.e., either included by some head or inferable as a junction’s
back) when heads out of consecutive (top) and non-consecutive (bottom) junctions are chosen, assuming only one pair is inserted. Note that in cases I-III, Contig s4 is not
covered by any paired head or tail when inserting consecutive heads, while in case IV, all Contigs are covered by either the paired heads or some tail. Thus, in the first three
cases it will not be possible to determine which head of j3 occurred with an extension of j1 or j2 on some read unless this information is provided by some other hashed pair.
In contrast, when non-consecutive heads are paired, every Contig is covered by either one of the inserted heads or a tail.

Algorithm 3 recordPairs(r, juncs,B3)

Input: read r, juncs - a list of pairs (j, p) , where p is the start position of junction j in r, and Bloom filter B3. We also make use of a subroutine
getOutExt(ji, pi, r) that for a junction ji returns pref(ji, k − 1) ◦ r[pi − k] if ji is a back junction, and suff (ji, k − 1) ◦ r[pi + k] otherwise.
Output: Bloom filter B3, loaded with select linked k-mer pairs

1: if len(juncs) > 2 then
2: for i ∈ [0, len(juncs)− 2] do
3: back ← getOutExt(ji, pi, r)

4: front← getOutExt(ji+2, pi+2, r)

5: insert(back ◦ front,B3) . insert the concatenation into B3

6: else if (len(juncs) = 2) ∧ (¬(j0 is a forward junction ∧ j1 is a back junction)) then
7: back ← getOutExt(j0, p0, r)

8: front← getOutExt(j1, p1, r)

9: insert(back ◦ front,B3)

10: return B3

special node is reached. During each such traversal from special node u to
special node v, a unitig sequence suv is constructed. suv is initialized to
the sequence of u, and a base is added at each extension until v is reached.

New data structures are constructed in the course of traversals in order
to aid later queries and updates. A ContigNode structure is used to represent
a junction that points to Contigs. ContigNodes are structures possessing a
pointer to a Contig at each forward extension, as well as one backwards
pointer. This backwards pointer connects the junction to the sequence
beginning with the reverse complement of the junction’s k-mer. Contigs

initially store unitig sequences, but these may later be concatenated or
duplicated. They also point to one ContigNode at each end. To efficiently
query Contigs and ContigNodes, a new hashmapM ′ is constructed having
junction k-mers as keys, and ContigNodes that represent those junctions
as values. Isolated contigs formed by unitigs that extend between terminal
nodes are stored in a separate set data structure.

Once the raw graph is obtained, cleaning steps commence,
incorporating tip removal, chimera removal, collapsing of bulges, and
disentanglement. Coverage information and paired-junction links are
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crucial to these steps. Briefly, tip removal involves deletion of Contigs
shorter than the input read length that lead to a terminal node. Chimera and
bulge removal steps involve heuristics designed to remove low coverage
Contigs when a more credible alternative (higher coverage, or involved in
more sub-paths) is identified. These first three steps proceed as described
in [21], thus we omit their full description here.

Disentanglement relies on paired junction links inserted into B3 and
B4. We iterate through the set of ContigNodes to look for ’tangles’ - pairs
of opposite-facing junctions joined by a repeat sequence - as shown in
Figure 2. Tangles are characterized by tuples (j1, j2, s) where j1 is a back
junction, j2 is a forward junction (or vice-versa), and there is a common
Contig s pointed to by the back pointers of both j1 and j2. Junctions j1
and j2 each have at least two outward extensions. We restrict cleaning to
tangles having exactly two extensions at each end. Let sa and sb be the
Contigs starting at heads of j1, and sc and sd be the Contigs starting at
heads of j2. By disentangling, we seek to pair extensions at each side of s
to form two paths. The possible outputs are paths [sa, s, sc] together with
[sb, s, sd] or [sa, s, sd] together with [sb, s, sc].

Thus, each such pair straddling the tangle -e.g., having one head on sa
and the other on sc - lends some support to the hypothesis that the correct
split is that which pairs the two. To decide between the two possible split
orientations, we count the number of pairs supporting each by queryingB3

orB4 for all possible junction pairings that are separated by a characteristic
length associated with the pairs inserted to each. For example, B3 stores
heads out of non-consecutive junction pairs on the same read. Therefore,
for each junction on sa we count each pairing accepted by B3 with a
junction on sc that is at most one read length away. Specifically for B3,
we also know that inserted pairs are always one or two junctions away
from the starting junction, based on the scheme presented in Figure 3. To
decide when a tangle should be split, we apply XOR logic to arrive at a
decision: if the count of pairs supporting both paths in one orientation is
greater than 0, and the count of both paths in the other orientation is 0,
we disentangle according to the first, as shown in Figure 2. Similar yet
more involved reasoning is used for junction links in B4, using the insert
size between read pairs (see Appendix). Once we arrive at a decision, we
add a new sequence to the set of Contigs that is the concatenation of the
sequences involved in the original paths. We note one of the consequences
of this simplification step is that the graph no longer represents a de Bruijn
graph, in that each k-mer is no longer guaranteed to appear at most once
in the graph. Furthermore, the XOR case presented is the most frequently
applied form of disentanglement out of a few alternatives. We discuss these
alternatives in the Appendix.

Optimizations and technical details Here we discuss some details
omitted from the above descriptions for the sake of completeness. Based
on the description of Algorithm 1 and Algorithm 2, it is possible that
false positive extensions out of terminal nodes will ensue. This is possible
because the mechanism described for removing false positive junctions
can differentiate between one or multiple extensions existing in G for a
given node, but can not differentiate between one or none. This may lead
to assembly errors at sink nodes.

To overcome such effects, we store distances between junctions seen on
the same read with the distance recorded being assigned to the extension
of each junction observed on the read. When an outermost junction on
a read has not been previously linked to another junction, we record its
distance from the nearest read end - this solves the problem mentioned
previously as long as paths to sinks are shorter than read length. To obtain
accurate measurements of distances on longer non-branching paths, we
also introduce artificial ’dummy’ junctions whenever a pre-defined length
threshold is surpassed. In effect, this means that reads with no real junctions
are assigned dummy junctions.

Once distances and dummy junctions are introduced, an additional
benefit is gained: the speed of the read-scan can be improved by skipping

No. of files Time (hrs) RAM (GB) Disk (GB) Data size (GB) Comp. ratio
10 26.3 48.3 19.0 29.6 0.64
20 47.7 84.3 34.3 59.2 0.58
37 98.2 144.7 50.0 108.4 0.46

Table 1.

between junctions that have been seen before. Once distances are known,
if we see a particular extension out of a junction, and then a sequence of
length `without any junctions, then, wherever else we see that junction and
extension, it must be followed by the exact same ` next bases. Otherwise,
there would be a junction earlier. So we store ` when we see it, and skip
subsequent occurrences.

Finally, we note that Faucet can benefit from precise Bloom filter
sizing. When a good estimate of dataset parameters is known, the algorithm
can do the 2-pass process above. Otherwise, to determine the numbers of
distinct k-mers and the number of singletons in the dataset in a streaming
manner, we have used the tool ntCard [15]. This requires an additional
pass over the reads (for a total of three passes). The added pass does not
increase RAM or disk use. In fact, in tests on locally stored data, we found
it only adds negligible time.

4 Results
Assembling while downloading As a demonstration of streaming
assembly, we ran Faucet on publicly available human data, SRR034939,
used for benchmarking in [6]. To assess resource use at different data
volumes, we ran Faucet on 10, 20, and 37 paired-end files out of 37
total. Streaming was enabled using standard Linux command line tools:
wget was used for commencing a download from a supplied URL, and
streamed reading from the compressed data was enabled by the bzip2
utility. Downloads were initiated separately for each run. The streaming
results are shown in Table 1.

We emphasize that Faucet required less space than the size of the input
data in order to assemble it, while most assemblers generate files during
the course of their processing that are larger than the input data. Also,
the ratio of input data to disk used by Faucet decreased as data volume
increased, reflecting the tendency of sequences to be seen repeatedly with
high coverage. We also note that Faucet’s outputs effectively create a lossy
compression of the read data, in that the choice of k value inherently creates
some ambiguity for read substrings larger than k. This compression format
is also queryable, in that given a k-mer in the graph, its extensions can be
found: indeed, this is the basis of Faucet’s graph construction and cleaning.

Disentanglement assessment To gauge the benefits of disentanglement
on assembly quality, we compared Faucet’s outputs with and without each
of short- and long-range pairing information, provided by Bloom filters
B3 and B4, on SYN 64 - a synthetic metagenome produced to provide a
dataset for which the ground truth is known comprised of 64 species (data
set sizes and additional characteristics are provided in the Appendix). The
results of this assessment are presented in Table 2. We measured assembly
contiguity by the NGA50 measure. NG50 is defined as "the contig length
such that using equal or longer length contigs produces x% of the length
of the reference genome, rather than x% of the assembly length" in [22].
NGA50 is an adjustment of the NG50 measure designed to penalize contigs
composed of misassembled parts by breaking contigs into aligned blocks
after alignment to the reference. We found that disentanglement more than
doubled contiguity measured by mean NGA50 values, with greater gains
as more kinds of disentanglement were enabled. This was also reflected by
corresponding gains in the genome fractions, and in the number of species
for which at least 50% of the genome was aligned to, allowing NGA50
scores to be reported. More applications of disentanglement also increased
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the number of misassemblies reported and the duplication ratio, however
two thirds of the maximum misassembly count is already seen without any
disentanglement applied.

No disent. B3 only B4 only both B3, B4

Genome fraction (%) 76.4 79.9 80.3 82.3
Dup. ratio 1.00 1.01 1.02 1.02

Mean NGA50 13048 21703 26356 29066
Misassemblies 388 480 521 572

Species reported 54 56 56 56

Table 2.

Tools comparison We sought to assess Faucet’s effectiveness in
assembling metagenomes, and its resource efficiency. For the former, we
compared Faucet to MetaSPAdes [23] and Megahit [24], state of the art
metagenome assemblers in terms of contiguity and accuracy that require
substantial resources. To address resource efficiency, we also compared
Faucet to two leading resource efficient assemblers, Minia 3 (Beta) [6]
and LightAssembler [17]. We note these last two were not designed as
metagenome assemblers, but they perform operations similar to what
Faucet does - both in the course of their graph construction steps, and
in their cleaning steps. They differ from Faucet in that neither is capable of
disentanglement, as they do not utilize paired-end information, but counter
this advantage with more sophisticated traversal schemes. All tools were
run on two metagenome data sets - SYN64 and HMP - a female tongue
dorsum sample sequenced as part of the Human Microbiome Project. Both
datasets were used for testing in [23]. To achieve a fair comparison, runs
were performed with a single thread on the same machine, as Faucet
does not currently support multi-threaded execution. Full details of the
comparison, including versions, parameters, and data accessions, are
presented in the supplement.

Metaspades Megahit LightAssembler Minia Faucet
Genome fraction (%) 89.1 90.1 75.6 76.5 82.3

Dup. ratio 1.02 1.02 1.01 1.00 1.02
Mean NGA50 (kb) 167 99.0 2.60 14.6 30.7

Median NGA50 (kb) 71.1 57.6 2.30 10.5 23.7
Misassemblies 785 949 314 395 572

Species reported 59 61 55 52 56
Time (hrs) 41.2 10.9 1.63 0.97 2.61

Memory (GB) 26 9.1 2.7 4.8 6.0
Disk (GB) 43.1 14.3 28.2 1.84 1.59

Genome fraction (%) 46.9 48.6 23.4 27.8 27.9
Dup. ratio 1.05 1.12 1.02 1.01 1.05

Mean NGA50 (kb) 28.3 36.8 3.18 6.25 7.12
Median NGA50 (kb) 28.3 36.8 3.18 6.25 7.12

Misassemblies 504 602 100 184 202
Species reported 12 12 5 3 6

Time (hrs) 30.5 13.0 3.35 0.99 2.30
Memory (GB) 14 8.3 3.4 3.7 7.3

Disk (GB) 53.2 11.5 23.5 1.30 1.61

Table 3. Tool comparison on two metagenomes. Top values in each cell are for SYN
64 data, and bottom values are for HMP. Duplication ratio is the ratio between the
total aligned length to the combined length of all references aligned to. The mean
and median NGA50 values are calculated on based on species sufficiently covered
by all assemblers to yield an NGA50 value (i.e., 50% of the genome is covered).
Species reported are those for which an NGA50 value is reported. In the HMP data,
only 2 species were reported for all, making the mean and median NGA50 values
equal. Disk and memory use are those reported by the Linux time utility, and Disk
use is the total amount written to disk during the course of a run.

Table 3 presents the full results for the tools comparison. There was a
strong advantage to Megahit and MetaSPAdes over the three lightweight
assemblers (Minia, LightAssembler, and Faucet) in terms of contiguity
achieved (shown by NGA50 statistics), but this came at a large cost in terms
of memory, disk space, and time, particularly in the case of MetaSPAdes.
Among the lightweight assemblers, Minia used by far the most disk space,
and differences in other resource measures were less pronounced. Among
these three, Faucet had a large advantage in NGA50 statistics relative to
the other two. This is highlighted by the trend of Table 3, and shown by
its 14-110% advantage in the mean of NGA50 relative to Minia, and 2-11
fold advantage relative to LightAssembler.

5 Discussion
Streaming de novo assembly presents an opportunity to significantly
ease some of the burdens introduced by the recent deluge of second
generation sequencing data. We posit the main applications of streaming
assembly will be de novo assembly of very large individual datasets
(e.g., metagenomes from highly diverse environments) and re-assembly of
pangenomes derived from many samples. In both cases, very large volumes
of data must be digested in order to address the relevant biological questions
behind these assays. Therefore, streaming graph assembly presents an
attractive alternative to data compression: instead of attempting to reduce
the size of data, the aim is to keep locally only relevant information in a
manner that is queryable and that allows for future re-analysis.

Here, we have demonstrated a mechanism for performing streaming
graph assembly and described some of its characteristics. First, we showed
that assembly can be achieved without ever storing raw reads locally. By
assembling the graph, an intermediate by-product of many assemblers,
we show this technique is generally applicable. By refining the graph and
showing better assembly contiguity than competing resource efficient tools
on metagenome assembly, we showed this method can also be applied in
the setting when sensitive recovery of rare sequences is crucial.

In future work, we aim to expand the capabilities of Faucet in a
number of ways. Multi-threaded processing will reduce run times and
make the tool more applicable to large data volumes. We believe further
refinements of cleaning and contig generation can be achieved by adopting
a statistical approach to making assembly decisions. In addition, beyond
graph cleaning, we aim to apply Faucet’s data structures to path generation,
as done with paired end reads in [25, 26, 27]. Both have the potential to
greatly improve contiguity and accuracy.

Beyond this, the present work raises several remaining challenges
pertaining to what one may expect of streaming assembly. For instance,
it is immediately appealing to ask if streaming assembly can be achieved
with a just a single pass on the reads, and if so, what inherent limitations
exist. In [12], a simple solution is proposed wherein the first 1M reads are
processed to provide a succinct summary for the rest, but such an approach
is more suited to high coverage or low entropy data, and thus unlikely to
perform well on diverse metagenomes or when rare events are of particular
interest. Another issue raised by the performance comparison herein is that
of capturing the added value that iterative (multi-k value) graph generation
provides. We have given a partial solution by capturing subsets of junction
pairs within each read, and between mates of paired-end reads. Although
it is possible to iteratively refine the graph with more passes on the reads,
each time for the collection of k-mers at different lengths, this becomes
unwieldy with large data volumes. Identifying the contexts for which such
information would be useful in the graph and indexing the reads to allow for
querying of such contexts may provide more efficient means of extracting
such information.
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Appendix

Sizing Bloom filters

We used the tool ntCard to estimate the cardinality F0 of the set of k-mers
and the number of singletons f1. These counts are used for optimizing both
runtime and memory use by allowing us to minimize the size of Bloom
filters m and the number of hash functions h used for both B1 and B2, the
largest filters used. B1 and B2 share these parameters (and the same set of
hash functions) to allow insertions of each s into B2 for which B1(s) = 1

without recalculating h hash values. We use the fact that elements inserted
into B2 are either non-singletons or false positives due to B1. Thus, the
expected number of elements n2 in B2, is bound by their sum, i.e.,

n2 ≤ (F0 − f1) + f1p1 (1)

where p1 is the false positive rate of B1. We note that since p is the
effective false positive rate after all elements are inserted into B1, this
bound holds strictly and may be overly pessimistic regarding the number
of false positives inserted into B2, however it provides a simple means
of setting parameters. To do so, we first recall that B1 is discarded after
loading, while B2 is maintained and thus its false positive rate p2 is the
rate that affects all downstream queries. A default false positive rate of of
p2 = 0.01 is used to work backwards to derive a higher ratep1, and Bloom
filter parameters for both filters were set based on this derived value, using
knowledge of F0 and f1. To derive p1, we paired the expressions for the
expected false positive rates with the expression for the optimal number
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of hash functions for a given false positive rate [28]:

p1 = (1− e
F0h
m )h (2)

p2 = (1− e
n2h
m )h (3)

h =
m ln(2)

F0
. (4)

By plugging the value of h from equation 4 into equation 2, we arrive at
m =

−F ln(p1)

ln(2)2
. Combining this and the above expressions, we arrive at

0 = − ln(2)ln(p2)− ln(p1) ln(1− 2
−F0+(1−p1)f1

F0 ) (5)

for which root-finding methods can be applied to finally extract p1, the
sole remaining unknown.

Currently, we have not yet found similar means of optimizing the sizes
of filtersB3 andB4, as it is unclear how to estimate the number of elements
that will be inserted into them in advance. We therefore define their sizes
based on empirical observations. For diverse metagenomes, where the
number of singletons f1 may be very close to the cardinality F0, we
expect there to be few junctions, as a junction k-mer must by definition
occur at least twice in the data. Based on this observation, we set the
expected number of elements in both B3 and B4 to be F0

10
and found that

this bound was not exceeded on tested datasets. For higher coverage data,
where a significantly larger proportion of junctions is expected relative to
F0, we set the size of both filters to be F0

2
.

Solid junction counts

Total junction counts listed in the table below include real junctions, those
due to false positives, and dummy junctions inside long linear stretches.
We posit that the SYN 64 data set included many more fake (false positive
and dummy) junctions as a result of having a much larger proportion of
linear stretches, as reflected in the much larger genome fraction and N50
size (relative to HMP) output by Faucet.

HMP SYN 64
Total junctions (M) 7.11 9.23
Real junctions (M) 4.55 1.34

genome fraction (%) 27.9 82.3
N50 2290 16707

Table 4.

Inserting into B4

When inserting intoB4, both the distance and relative orientation between
paired-end mates is unknown. Therefore, a tiling scheme such as that seen

in Figure 3 cannot be applied. Instead, we seek to ensure that in most cases
when querying approximately one insert size away from a given junction
u, there will be another junction v such that an extension of u will be
paired with an extension of v in B4. To achieve this end, and to avoid long
run times due to pair insertions, we apply the following logic: for each
junction u on the first mate, we only insert extensions of a new pair (u, v)

if u has no pair in B4. When a new pair must be inserted, v is chosen to be
the first junction found on the second mate. During the insertion process,
this logic allows us to break the querying process whenever one previously
inserted pair is encountered, and lets us avoid inserting too many pairs into
B4, and thus risking increasing B4’s effective false positive rate.

Additional disentanglement

Other forms of disentanglement include resolution of loops and
disentanglement by coverage. Loops are encountered when, e.g., sa

and sc in Figure 2 are the same unitig, and disentanglement requires
unwinding the loop and duplicating the s’s sequence to arrive at the walk
[sb, s, sc, s, sd]. Disentanglement by coverage is allowed only when s is
deemed too long for there to be support by junction pairs flanking opposite
ends of s, and is applied when the coverage distributions of Contig pairs
supporting a certain orientation (e.g., sa paired with sc and sb with sd for
the case presented in Figure 2) is significantly similar, as determined by
Two One Sided Tests [29] for each pair. To smooth coverage levels when
this test is applied, coverage values are updated each time a cleaning step
such as bulge removal is applied. For example, if a bubble includes one low
coverage Contig s1 and one high coverage Contig s2, as extensions flanked
by the same ContigNodes jL and jR, and s2’s coverage is sufficiently
higher than s1’s, Contig s1 will be removed, and its average coverage will
be assigned to all (expired or fake) junctions on Contig s2.

Tools comparison details

Tools and flags:
Faucet was run with k= 31
MetaSPAdes 3.9.0, default parameters
Megahit 1.1.1, default parameters
Minia 3 Beta, git commit 4b0a83a, k = 31
LightAssembler, no version information available, downloaded 1/17 from
GitHub k = 31
MetaQUAST, 4.4.0, –fragmented flag

Data Sets:
SYN 64 (SRA accession SRX200676), 109M 100 bp paired end mates,
I.S. 206
HMP (SRX024329), 149.6 M 100 bp paired end mates, I.S. 213
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