
Sorting by cuts, joins and whole chromosome
duplications

Ron Zeira and Ron Shamir

Tel-Aviv University, Tel-Aviv 69978, Israel
ronzeira@post.tau.ac.il,rshamir@tau.ac.il

Abstract. Genome rearrangement problems have been extensively stud-
ied due to their importance in biology. Most studied models assumed a
single copy per gene. However, in reality duplicated genes are common,
most notably in cancer. Here we make a step towards handling dupli-
cated genes by considering a model that allows the atomic operations of
cut, join and whole chromosome duplication. Given two linear genomes,
Γ with one copy per gene, and ∆ with two copies per gene, we give a
linear time algorithm for computing a shortest sequence of operations
transforming Γ into ∆ such that all intermediate genomes are linear. We
also show that computing an optimal sequence with fewest duplications
is NP-hard.

Keywords: SCJ, genome rearrangements, computational genomics

1 Introduction

Genome organization evolves over time by undergoing rearrangement operations.
Finding a shortest sequence of operations (also called a sorting scenario) between
two genomes is the focus of the field of genome rearrangements. Such problems
were studied extensively over the last two decades, due to their importance in
evolution [13].

The combinatorial problems in genome rearrangements depend on the al-
lowed operations. Hannenhalli and Pevzner showed in their seminal work that
finding the minimal number of inversions that transform one signed genome into
another is polynomial [15]. Many other models were studied later, allowing one
or several types of operations [14, 9, 7, 8, 15, 18, 11, 17].

The double cut and join (DCJ) operation [27] models reversals, transposi-
tions, translocations, fusions, fissions and block-interchanges as variations of one
basic operation. A DCJ operation cuts the genome in two places, producing
four open ends, and rejoins them in two new pairs. Finding the DCJ distance
between two gene permutations can be done in linear time [4]. The single cut
or join (SCJ) model [12] further simplifies the model and allows polynomial
solutions to some rearrangement problems that are NP-hard under most formu-
lations. An SCJ operation either cuts a chromosome or joins two chromosome
ends. This simple model gives good results in real biological applications [5].

2 Sorting by cuts, joins and whole chromosome duplications

Models of genomes that assume a single copy of each gene are too restrictive
for many real biological problems. Duplications are frequent in cancer genomes,
especially in oncogenic regions [3]. Most plant genomes contain large duplicated
segments [6]. A major evolutionary event is whole genome duplication, wherein
all chromosomes are duplicated [21].

In spite of their importance, models that allow duplications as rearrangement
operations have not been the subject of extensive research to date. Ozery-Flato
and Shamir [19] considered a model that includes certain duplications, deletions
and SCJ operations. Under some simplifying assumptions, they provided a 3-
approximation algorithm that performed well on cancer genomes. Bader [1, 2]
provided a heuristic for sorting by DCJs, duplications and deletions. Shao et
al. [23] studied sorting genomes using DCJs and segmental duplications and
provided an algorithm to improve an initial sorting scenario. The majority of
extant models for genomes with multiple gene copies result in NP-hard problems
[21, 22, 24, 25].

In this paper, we present a model that allows the operations cut, join and
whole chromosome duplication. We call it the SCJD model. Given two linear
genomes, Γ with one copy per gene, and ∆ with two copies per gene, we give a
linear time algorithm for computing a shortest sequence of operations transform-
ing Γ into ∆, where all intermediate genomes must be linear too. We provide a
closed form formula for that sequence length. In addition, we show that there is
an optimal sequence in which all duplications are consecutive.

While cuts or joins are local events, a duplication of an entire chromosome
is a more “drastic” event. We show that our algorithm actually gives an optimal
scenario with a maximum number of duplications. On the other hand, we prove
that finding a “conservative” optimal SCJD scenario with fewest duplications is
NP-hard.

The structure of this paper is as follows. We give computational background
in Section 2. In Section 3 we present the SCJD model. Section 4 gives the algo-
rithm for the SCJD sorting problem and Section 5 shows the NP-hardness result.
Finally, in Section 6, we present a brief discussion and suggest future directions.
Due to lack of space, some proofs were omitted.

2 Preliminaries

Genome Representation. We use the following standard terminology in
genome rearrangements [4]. The basic entities are genes, denoted a, b, c etc. Gene
a has extremities: a head ah and a tail at. Gene a is assumed oriented from its
tail to its head and is positively oriented if at is to the left of ah. A negatively
oriented gene a is denoted by −a. A chromosome is a sequence of oriented
genes, e.g., C = ab−c−d. An adjacency in a chromosome is a consecutive pair
of extremities from distinct neighboring genes. E.g., the adjacencies in C above
are: {ah, bt},{bh, ch},{ct, dh}. A telomere is an extremity that is not adjacent to
any other gene, corresponding to the end of a chromosome, e.g., {at},{dt} in
C. Hence, a chromosome can be equivalently represented by its set of adjacen-

Sorting by cuts, joins and whole chromosome duplications 3

cies, where the telomeres are implicit. Note that the set of adjacencies defining
a chromosome is identical to that of the reverse chromosome, where order and
orientation of genes are inverted (the reverse of C is −C = dc−b−a). Hence, a
chromosome and its reverse are equivalent.

A genome over gene set G is a collection of chromosomes. We assume for now
that each gene appears once, e.g. Γ = {ab, c−d}. Equivalently, it can be defined
by a set of adjacencies such that for each gene in G, each extremity appears at
most once. Hence Γ =

{
{ah, bt}, {ch, dh}

}
. The size of a genome Π, denoted

|Π|, is the number of adjacencies in it. A chromosome is called linear if it starts
and ends with a telomere, and circular if it does not contain any telomere, e.g.
D =

{
{ah, bt}, {bh, at}

}
. For a sequence of genes S, denote by S and (S) the

corresponding linear and circular chromosome respectively. For example, the
linear chromosome a−b is defined by the set of adjacencies

{
{ah, bh}

}
and the

circular chromosome (a−b) is defined by the set
{
{ah, bh}, {bt, at}

}
. A genome

is called linear if all its chromosomes are linear.
A gene that has several copies in the genome is called duplicated. We la-

bel different copies of the same gene by superscripts, e.g., copies a1 and a2 of
gene a. A duplicated genome has exactly two copies of each gene. A genome
with a single copy of each gene is called ordinary. The duplication of an or-
dinary genome Π creates a special kind of genome [26]: Each gene and each
adjacency in Π is doubled, producing the genome Π

⊕
Π. Note that in Π

⊕
Π

the two copies of each gene are unlabeled. The set of all possible labeled genomes
corresponding to Π

⊕
Π is denoted by 2Π. A genome Σ ∈ 2Π is called a per-

fectly duplicated genome. Hence for Γ above, Γ
⊕
Γ = {ab, ab, c−d, c−d} and

Σ =
{
{a2h, b2t}, {c2h, d1h}, {a1h, b1t}, {c1h, d2h}

}
∈ 2Γ .

SCJ distance. A cut operation takes an adjacency {x, y} and breaks it
into two telomeres {x} and {y}. The reverse operation, called a join, combines
two telomeres {x} and {y} into an adjacency {x, y}. A single-cut-or-join (SCJ)
operation is either a cut or a join [12]. Given two ordinary genomes Π and Σ
on the same gene set, a sequence of SCJ operations that transforms Π into Σ
is called a sorting scenario. The SCJ distance, denoted by dSCJ(Π,Σ), is the
length of a shortest sorting scenario between Π and Σ. Feijão and Meidanis give
the following solution for the SCJ distance:

Theorem 1. [12] dSCJ(Π,Σ) = |Π \Σ|+ |Σ \Π| = |Π|+ |Σ|−2|Π∩Σ|. Π \Σ
defines the set of cuts and Σ \Π defines the set of joins in an optimal sorting
scenario.

Double Distance. The SCJ double distance between an ordinary genome
Γ and a duplicated genome ∆ is defined as

ddSCJ(Γ,∆) ≡ min
Σ∈2Γ

dSCJ(Σ,∆) (1)

Hence, in the double distance problem one seeks a labeling of each gene copy in
a perfectly duplicated genome Σ ∈ 2Γ that minimizes the SCJ distance to ∆.

For a genome Σ and an adjacency α = {x, y}, let Σα be the set of all adja-
cencies of the form {xi, yj} in Σ. Hence |Σα| can be 0, 1 or 2 if Σ is duplicated,

4 Sorting by cuts, joins and whole chromosome duplications

and 0 or 1 if Σ is ordinary. Let A = {α = {x, y}|x 6= y} be the set of all pos-
sible adjacencies with extremities belonging to distinct genes. A solution to the
double distance problem is given by the following theorem:

Theorem 2. [12] The SCJ double distance between an ordinary genome Γ and
a duplicated genome ∆ is

ddSCJ(Γ,∆) = |∆|+ 2
∑
α∈A
|Γα|(1− |∆α|).

A perfectly duplicated genome Σ ∈ 2Γ realizing the distance is obtained by taking,
for each adjacency α = {x, y} ∈ Γ : (1) the labeled adjacencies of ∆α, and (2)
adjacencies {xi, yj} with arbitrary labeling that do not conflict with (1) or among
themselves.

3 The SCJD Model

In this section we generalize the SCJ model to allow duplications.
A duplication operation on a genome Π takes a linear chromosome C in Π

and produces a new genome Π ′ with an additional copy of the chromosome. For
example, if Π = {abcd, efg} then a duplication of the first chromosome will give
Π ′ = {abcd, abcd, efg}. An SCJD operation is either an SCJ or a duplication.

Given two linear genomes on the same gene set of size n, an ordinary one
Γ and a duplicated one ∆, a sequence of SCJD operations that transforms Γ
into ∆ is called an SCJD sorting scenario. The SCJD distance, denoted by
dSCJD(Γ,∆), is the number of operations in a shortest SCJD sorting scenario
between Γ and ∆.

Since we focus on linear genomes we will assume from now on that all chro-
mosomes, including intermediate ones, are linear unless specified otherwise. The
following simple lemma shows that this can be satisfied when using only SCJ
operations:

Lemma 1. A sequence of SCJ operations transforming one linear genome into
another linear genome can be reordered, producing another sequence with the
same length, such that all intermediate genomes are linear.

The examples below demonstrate SCJ double distances and SCJD sorting
scenarios. For simplicity, we drop the braces around genomes from now on.

Example 1. Γ = a, ∆ = a−a; ddSCJ(Γ,∆) = 1; dSCJD(Γ,∆) = 2:

Γ−→
dup

a, a−→
join

∆

Example 2. Γ = ab, ∆ = ab, ab; ddSCJ(Γ,∆) = 0; dSCJD(Γ,∆) = 1:

Γ−→
dup

∆

Sorting by cuts, joins and whole chromosome duplications 5

Example 3. Γ = a, bc, ∆ = ab, abcc; ddSCJ(Γ,∆) = 4; dSCJD(Γ,∆) ≤ 4:

Γ−→
join

abc−→
dup

abc, abc−→
cut

abc, ab, c−→
join

∆

Example 4. Γ = acb, ∆ = abab, cc; ddSCJ(Γ,∆) = 8; dSCJD(Γ,∆) ≤ 7:

Γ−→
cut

a, cb−→
cut

a, b, c−→
join

ab, c−→
dup

ab, ab, c−→
dup

ab, ab, c, c−→
join

abab, c, c−→
join

∆

Let #cΠ be the number of linear chromosomes in genome Π. Let Γ be an
ordinary linear genome and let ∆ be a duplicated linear genome on the same
gene set. A trivial upper bound for the SCJD distance between Γ and ∆ is
given by solving the double distance between ∆ and Γ . This corresponds to
first duplicating each chromosome in Γ and then computing the SCJ distance
between ∆ and Γ

⊕
Γ . We get dSCJD(Γ,∆) ≤ ddSCJ(Γ,∆) + #cΓ . However,

Example 3 shows that this bound is not tight. It is tempting to guess that
ddSCJ(Γ,∆) ≤ dSCJD(Γ,∆). Alas, Example 4 shows this conjecture is incorrect.

4 Computing the SCJD distance

In this section we will solve the SCJD distance problem. The key idea is to
show that there is an optimal scenario in which all the duplication operations
are performed in sequence, one after the other. Having shown that, the sorting
scenario between Γ and ∆ can be presented as follows:

1. Transform Γ into another ordinary linear genome Γ ′ using only SCJ opera-
tions.

2. Duplicate all the chromosomes of Γ ′ resulting in a duplicated genome Γ ′
⊕
Γ ′.

3. Solve the SCJ double distance problem between Γ ′ and ∆.

LetO∗ = o1, . . . , od be an optimal SCJD sorting scenario. Let Γ0 ≡ Γ and and
for every 1 ≤ i ≤ d let Γi = oi(Γi−1) be the genome resulting from performing
oi on Γi−1. By definition, Γd ≡ ∆. Let Di be the set of duplicated genes in Γi.
We have D0 = ∅ and Dd = G. Given a gene set H, denote its extremity set by
EH = {at|a ∈ H} ∪ {ah|a ∈ H}.

Proposition 1. In an optimal sorting scenario O∗, if oi is a join operation
acting on the telomeres x and y, then either x, y ∈ EDi

or x, y /∈ EDi
.

Proof. Since oi is not a duplication, we have Di−1 = Di. Suppose by contra-
diction that x ∈ EDi but y /∈ EDi . Let oj (i < j) be the first duplication such
that y ∈ EDj . The duplication operation must act on a chromosome in which all
genes are not yet duplicated. Therefore, there is a cut operation ok (i < k < j)
that breaks the adjacency {x, y} created by oi.

Let O′ = o′1, . . . , o
′
d−2 = o1, . . . , oi−1, oi+1, . . . , ok−1, ok+1, . . . , od be an al-

ternative sorting sequence that results from removing oi and ok from O∗. Let
Γ ′0 ≡ Γ , and denote Γ ′l = o′l(Γ

′
l−1). For every l with 1 ≤ l ≤ i− 1, by definition,

o′l = ol and therefore Γ ′l = Γl.

6 Sorting by cuts, joins and whole chromosome duplications

We first show that for every l with i ≤ l ≤ k− 2, Γ ′l = Γl+1 \
{
{x, y}

}
. Since

oi creates the adjacency {x, y} we have that Γi = Γi−1 ∪
{
{x, y}

}
. For every

such l, o′l = ol+1 and since none of these operations creates a new copy of y we
have that Γ ′l = Γl+1 \

{
{x, y}

}
.

Next, we show that for every l with k − 1 ≤ l ≤ d− 2, Γ ′l = Γl+2. From the
previous result, and the fact that Γk = Γk−1 \

{
{x, y}

}
, we have Γ ′k−2 = Γk.

Now, for every such l, o′l = ol+2 and therefore Γ ′l = Γl+2.
We have established that O′ is an SCJD sorting sequence of length d − 2,

contradicting the optimality of O∗. ut

Proposition 2. In an optimal sorting scenario O∗, if oi is a cut operation act-
ing on the adjacency {x, y}, then either x, y ∈ EDi

or x, y /∈ EDi
.

Corollary 1. In an optimal sequence of SCJD operations, at the time of a cut
or a join operation on the two extremities x and y, either the genes corresponding
to both x and y have both already been duplicated or none of them have. ut

Observe that a join operation in a sorting scenario is valid only if the two
extremities it joins are not already part of any other adjacency. Similarly, a cut
operation is valid only if the adjacency it breaks exists. A duplication operation
is valid only if it duplicates a linear chromosome such that all its genes were not
previously duplicated. A sorting scenario is valid if all its operations are valid.

Let S = s1, . . . , sm be a valid SCJD sorting scenario between Γ and ∆.
We say the operation si+1 can preempt the operation si if the sequence S′ =
s1, . . . , si+1, si, . . . , sm is also a valid SCJD sorting scenario between Γ and ∆.

Proposition 3. In a valid SCJD scenario S transforming Γ into ∆, if si+1 is
an SCJ operation acting on two extremities x, y that were not duplicated and si
is a duplication, then si+1 can preempt si.

Proof. Suppose si duplicates the linear chromosome C and produces another
copy of it C ′. Since si+1 operates on genes that are not duplicated yet, none of
those genes belong to C or C ′. Therefore, the sequence s1, . . . , si−1, si+1 is valid.
Any operation that creates an adjacency or a telomere of C must precede si.
Hence, s1, . . . , si−1, si+1, si is valid. Finally, any sj for j > i+1 that requires the
results of si or si+1 is still valid. Thus, S′ = s1, . . . , si−1, si+1, si, si+2, . . . , sm is
a valid sequence.

To conclude the proof, we need to show that Γi+1 ≡ Γ ′i+1. Indeed, si+1

does not alter any of the adjacencies or telomeres of C or C ′, and therefore,
Γi+1 = si+1(Γi−1 ∪ C ′) ≡ si+1(Γi−1) ∪ C ′ = Γ ′i+1. ut

Proposition 4. In a valid SCJD scenario S transforming Γ into ∆, if si+1 is
a duplication and si is a cut or join acting on two duplicated extremities, then
si+1 can preempt si.

Proposition 5. In a valid SCJD scenario S transforming Γ into ∆, if si+1 is
an SCJ acting on two extremities that were not duplicated yet and si is an SCJ
acting on two duplicated extremities, then si+1 can preempt si.

Sorting by cuts, joins and whole chromosome duplications 7

For a sequence of SCJ operations S, let SD (S
D

, respectively) be the subse-
quence of operations that act on two extremities of genes that have (have not,
respectively) already been duplicated at the time of the operation. By Corollary

1, for optimal S, S
D

is indeed the complement of SD.

Proposition 6. There exists an optimal sorting scenario in which all duplica-
tion events are consecutive.

Proof. Let oi1 , . . . , oip be the duplication events in an optimal sorting scenario.
Denote by Sij the sequence of SCJ operations occurring between the duplications
oij and oij+1 . Also, denote by Si0 and Sip the sequence of SCJ operations before
the first duplication and after the last duplication, respectively.

Given an optimal scenario O∗ = Si0 , oi1 , Si1 , oi2 , Si2 , . . . , Sip−1
, oip , Sip we

modify it into a new sorting scenario O′ as follows: Using Propositions 3 and
5, preempt SCJ operations acting on un-duplicated genes. Using Proposition
4, preempt duplication events. These steps are iterated until no preemption is

possible. We get that O′ = Si0 , S
D

i1 , . . . , S
D

ip , oi1 , . . . , oip , S
D
i1
, . . . , SDip−1

, Sip is a
valid SCJD optimal sequence in which all duplications are consecutive. ut

Corollary 2. There exists an optimal SCJD sorting scenario, consisting, in
this order, of (1) SCJ operations on single-copy genes, (2) duplications, (3) SCJ
operations acting on duplicated genes. ut

Denote by Γ ′ the intermediate (ordinary) genome after step (1). Then we
can conclude:

Theorem 3. dSCJD(Γ,∆) = minΓ ′
(
dSCJ(Γ, Γ ′) + #cΓ

′ + ddSCJ(Γ ′, ∆)
)
ut

Recall that n is the number of genes in Γ . Using Theorems 1 and 2 and the
fact that #cΠ = n− |Π|, the distance formula can be simplified:

dSCJD = min
Γ ′

(
|Γ |+ |Γ ′| − 2|Γ ∩ Γ ′|+ n− |Γ ′|+ |∆|+ 2

∑
α∈A
|Γ ′α|(1− |∆α|)

)
= n+ |∆|+ |Γ | − 2 max

Γ ′

(
|Γ ∩ Γ ′|+

∑
α∈A
|Γ ′α|(|∆α| − 1)

)
= n+ |∆|+ |Γ | − 2 max

Γ ′

∑
α∈Γ ′

(|Γα|+ |∆α| − 1)

= n+ |∆|+ |Γ | − 2 max
Γ ′

∑
α∈Γ ′

η(α) = n+ |∆|+ |Γ | − 2 max
Γ ′

H(Γ ′) (2)

where η(α) = η(α, Γ,∆) = |Γα|+|∆α|−1 and H(Γ ′) =
∑
α∈Γ ′ η(α). Since we

want to maximize H(Γ ′), we will focus on adjacencies with positive contribution
in equation 2.

Lemma 2. Let α = {x, y} be an adjacency such that η(α) > 0. Then, for every
extremity z 6= y, the conflicting adjacency α′ = {x, z} has η(α′) ≤ 0.

8 Sorting by cuts, joins and whole chromosome duplications

Combining Lemma 2 and Theorem 3 we get a closed formula for the SCJD
distance:

Theorem 4. The genome Γ ′ = {α = {x, y}|η(α) > 0} minimizes Equation 2.
If Γ ′ is a linear genome, then the SCJD distance is given by dSCJD(Γ,∆) =
n+ |∆|+ |Γ | − 2H(Γ ′). ut

Let us return to the examples in Section 3:

– Example 1: n = 1, |∆| = 1, |Γ | = 0, Γ ′ = ∅, H(Γ ′) = 0 → d = 1 + 1 + 0 −
2 ∗ 0 = 2

– Example 2: n = 2, |∆| = 2, |Γ | = 1, Γ ′ =
{
{ah, bt}

}
, H(Γ ′) = 2 → d =

2 + 2 + 1− 2 ∗ 2 = 1
– Example 3: n = 3, |∆| = 4, |Γ | = 1, Γ ′ =

{
{ah, bt}, {bh, ct}

}
, H(Γ ′) =

1 + 1→ d = 3 + 4 + 1− 2 ∗ 2 = 4
– Example 4: n = 3, |∆| = 4, |Γ | = 2, Γ ′ =

{
{ah, bt}

}
, H(Γ ′) = 1 → d =

3 + 4 + 2− 2 ∗ 1 = 7

Example 5. Γ = abc and ∆ = cab, bca. According to Theorem 4, we get Γ ′ =
(abc) because η({ah, bt}) = η({bh, ct}) = η({ch, at}) = 1. The corresponding
distance is d = 3, providing the following invalid sorting scenario:

Γ−→
join

(abc)−→
dup∗

(abc), (abc)−→
cut

cab, (abc)−→
cut

∆

dup∗ indicates a duplication of a circular chromosome, an operation that is not
allowed in the SCJD model (and has no cost). It is not difficult to verify that
there is no valid sorting scenario with d ≤ 3.

The reason for the discrepancy in Example 5 is that #c(Γ
′) = n − |Γ ′| = 0

is not equal to the number of duplications if there are circular chromosomes.
Therefore, in order to minimize the SCJD distance given by Equation 2, we
need to maximize H(Γ ′) under the constraint that Γ ′ is a linear genome, i.e.,
H(Γ ′) ≥ H(Γ̃) for every linear genome Γ̃ . Lemma 3 shows that we can do so
simply by removing one adjacency with η = 1 from each circular chromosome in
Γ ′ and that such adjacency must exist.

Lemma 3. Let Γ ′ = {α = {x, y}|η(α) > 0} and let Γ ′′ be a genome obtained
by removing one adjacency α with η(α) = 1 from each circular chromosome in
Γ ′. Then, Γ ′′ is a linear genome that maximizes H(·) and the SCJD distance is
given by dSCJD(∆,Γ) = n+ |∆|+ |Γ | − 2H(Γ ′′).

Applying Lemma 3 to Example 5 we get Γ ′′ = abc and d = 5:

Γ−→
dup

abc, abc−→
cut

a, bc, abc−→
join

bca, abc−→
cut

bca, ab, c−→
join

∆

We can choose instead Γ ′′ = cab, which gives a different optimal sorting scenario:

Γ−→
cut

ab, c−→
join

cab−→
dup

cab, cab−→
cut

cab, a, bc−→
join

∆

Algorithm 1 gives the full procedure for solving the SCJD distance and sort-
ing problems. Each step of the algorithm takes O(|Γ |+ |∆|) time. In conclusion:

Theorem 5. Algorithm 1 computes the SCJD distance in linear time. ut

Sorting by cuts, joins and whole chromosome duplications 9

Algorithm 1 SCJD distance.
Input: An ordinary genome Γ and a duplicated genome ∆ (both linear) on the
same gene set.
Output: The SCJD distance dSCJD(Γ,∆) and an optimal sorting scenario
o1, . . . , od in which all intermediate genomes are linear.

1: Γ ′ ← {α = {x, y}|η(α) > 0} (Theorem 4)
2: Create a linear genome Γ ′′ by removing one adjacency α with η(α) = 1 from each

circular chromosome in Γ ′ (Lemma 3)
3: dSCJD(Γ,∆)← n+ |∆|+ |Γ | − 2H(Γ ′′) (Theorem 4, Lemma 3)
4: o1, . . . , oi ← Sort Γ into Γ ′′ (Theorem 1, Lemma 1)
5: oi+1, . . . , oj ← Duplicate all chromosomes in Γ ′′.
6: oj+1, . . . , od ← Sort 2Γ ′′ into ∆ (Theorem 2, Lemma 1).
7: return d,−→o

5 Controlling the number of duplications

In this section we discuss how to control the number of duplications in an optimal
SCJD sequence. Since the number of duplications is n− |Γ ′′|, selecting different
intermediate genomes Γ ′′ that preserve the SCJD distance can produce scenarios
with different number of duplications.

An optimal SCJD scenario with fewer duplications can be viewed as more
conservative. The assumption behind this is that duplications are more “radical”
events than breakage (cut) or fusion (join), which are local events.

Lemma 4. Algorithm 1 gives an optimal sorting scenario with a maximum
number of duplications.

Proof. Observe first that for any sorting scenario (optimal or suboptimal) trans-
forming Γ into ∆, we can assume w.l.o.g. that all duplications are consecutive
without affecting the number of operations (Corollary 2). Call the genome right
before the duplications the last ordinary genome. Denote by d(Γ,Π,∆) the short-
est scenario transforming Γ into ∆ given that the last ordinary genome is Π.
The proof of Theorem 3 implies that d(Γ,Π,∆) = n+ |∆|+ |Γ | − 2H(Π).

Let Γ ′ be the last ordinary genome produced by the algorithm. Consider an
optimal scenario O with a maximum number of duplications and let Γ̃ be the
last ordinary linear genome in O. Since O is optimal, H(Γ̃) must be maximal.
Hence, Γ̃ cannot contain adjacencies with η < 0. Moreover, it cannot contain
adjacencies with η = 0, as such adjacencies increase |Γ̃ | and thus decrease the
number of duplications in O. Therefore, Γ̃ ⊆ Γ ′.

We now show that ∀α ∈ Γ ′ \ Γ̃ , η(α) = 1. Suppose by contradiction that
there is an adjacency α ∈ Γ ′ \ Γ̃ with η(α) > 1 and let Π = Γ̃ ∪ {α}. If Π
is a linear genome, d(Γ,Π,∆) < d(Γ, Γ̃ ,∆) contradicting the optimality of O.
Otherwise, Π contains a circular chromosome and by Lemma 3, there is an
adjacency β ∈ Γ̃ with η(β) = 1 such that Π \ {β} is a linear genome with
H(Π \ {β}) > H(Γ̃), again contradicting the optimality of O. Thus, |Γ ′ \ Γ̃ | =
|Γ ′| − |Γ̃ | = H(Γ ′)−H(Γ̃).

10 Sorting by cuts, joins and whole chromosome duplications

Γ ′ may contain circular chromosomes. By Lemma 3, Γ ′′ is produced by re-
moving one adjacency with η = 1 from each circular chromosome in Γ ′. Hence
|Γ ′ \ Γ ′′| = |Γ ′| − |Γ ′′| = H(Γ ′)−H(Γ ′′).

Since both Γ̃ and Γ ′′ are last ordinary genomes in optimal SCJD scenarios,
H(Γ̃) = H(Γ ′′). Thus, |Γ ′|−|Γ̃ | = H(Γ ′)−H(Γ̃) = H(Γ ′)−H(Γ ′′) = |Γ ′|−|Γ ′′|,
which implies that |Γ̃ | = |Γ ′′|. ut

One can decrease the number of duplications in an optimal SCJD scenario
by adding adjacencies with η(α) = 0 to Γ ′′. However, we need to make sure that
the resulting genome is still linear. Consider the following example:

Example 6. Γ = a, b, c, ∆ = abccba. From Theorem 4 we have that Γ ′ = Γ
and so the SCJD distance is 8. The scenario produced by Algorithm 1 will first
duplicate the three chromosomes of Γ and then perform five joins to create ∆.
An alternative optimal sorting scenario is:

Γ−→
JJ

abc−→
D
abc, abc−→

CC
abc, a, b, c−→

JJJ
∆

Here, since each adjacency α ∈ ∆ has η(α) = 0, we chose Γ ′′ = abc and obtained
an optimal scenario with a single duplication. In contrast, if we add to Γ ′′ the
adjacencies {bh, ct} and {ch, bt} (which also have η = 0) we create a circular
chromosome and an invalid SCJD sorting scenario.

In order to minimize the number of duplications we must add to Γ ′′ a maxi-
mum set of adjacencies with η = 0 such that the resulting genome is still linear.
Here we show that this problem is NP-hard using a reduction similar to [16].

Theorem 6. Given an ordinary linear genome Γ , a duplicated linear genome
∆ on the same gene set, and an integer k, the problem of finding an optimal
SCJD scenario with at most k duplications is NP-hard.

Proof. Call a directed graph in which all in- and out-degrees are 2 a 2-digraph.
Deciding if a 2-digraph contains a Hamiltonian cycle is NP-hard [20, 16]. This
implies that the following variant is also NP-hard: Given a 2-digraph G with an
edge (x, y), decide if there is a Hamiltonian path from y to x in G.

Let G = (V,E) be a 2-digraph with an edge (x, y) as above. We may assume
w.l.o.g. that G is strongly connected, since otherwise it would not contain a
Hamiltonian path from y to x. Notice that G \ (x, y) contains an Eulerian path
from y to x [10]. Denote it by P = e1, e2, . . . , em.

We construct a duplicated genome Σ as follows: for each eq = (u, v) ∈ P

add the adjacency {uih, v
j
t } where i = 2 if there is an edge el = (u, v′) with

l < q, and i = 1 otherwise. Similarly, j = 2 if there is an edge em = (u′, v)
with m < q and j = 1 otherwise. The result is a linear chromosome created by
traversing P and numbering the first occurrence of each vertex v in P as the gene

copy v1 and the second occurrence as v2. Denote by
P
 the sequence of genes

along the path P . In addition, we add two new genes w, z and the adjacencies

{w1
h, y

1
t }, {x2h, z1t }. Thus, Σ has three linear chromosomes: w1y1

P
 x2z1, w2 and

Sorting by cuts, joins and whole chromosome duplications 11

z2. Let Π =
{
{wh, yt}, {xh, zt}

}
be an ordinary genome with n chromosomes

over the same set of genes. (Note that every vertex in V \ {x, y} corresponds to
a separate chromosome in Π.)

Let Σ(i) and Π(i) be genomes in which every gene v ∈ V is renamed v(i). We

define ∆ =
⋃k
i=1Σ(i) and Γ =

⋃k
i=1Π(i) to be the disjoint union of k different

copies of Σ and Π respectively. This completes the reduction, which is clearly
polynomial. We will show that there is an optimal SCJD scenario between Γ
and ∆ with at most k duplications iff G admits a Hamiltonian path from y to
x.

For each edge e = (u, v) ∈ E and every i, the corresponding adjacency
α = {(u(i))jh, (v(i))lt} has η(α) = 1 if there are two parallel edges from u
to v, and η(α) = 0 otherwise. In addition, for every i, η({(w(i))h, (y(i))t}) =
η({(x(i))h, (z(i))t}) = 1, and every other adjacencies of w(i), z(i) have η < 0.

Suppose G contains a Hamiltonian path S from y to x. Let Γ ′ be the genome
formed by the set of adjacencies

{
{(w(i))h, (y(i))t}, {(x(i))h, (z(i))t}|i = 1 . . . k

}
∪
{
{(u(i))h, (v(i))t}|(u, v) ∈ S, i = 1 . . . k

}
. Since S is a Hamiltonian path, Γ ′ is a

valid ordinary linear genome with k chromosomes of the form w(i)y(i)
S
 x(i)z(i).

To prove that Γ ′ maximizes H(·) we need to show it contains every adjacency
with η = 1 and no adjacency with η < 0. Indeed, (suppressing the copy index i
for clarity) the only adjacencies α with η(α) = 1 are {wh, yt}, {xh, zt} (|∆α| =
|Γα| = 1) and parallel edges in G (|∆α| = 2, |Γα| = 0), one copy of which must be
included in S. All other adjacencies in Γ ′ have |∆α| = 1, |Γα| = 0 and η(α) = 0.
We conclude that Γ ′ is part of an optimal scenario with k duplications.

Conversely, suppose there is an optimal scenario O∗ with at most k dupli-
cations and let Γ̃ be the last ordinary genome in O∗. Let Γ ′ = {α|η(α) > 0}
be a genome that minimizes the SCJD distance according to Theorem 4. First,
notice that Γ ′ is indeed a linear genome. Otherwise, a circular chromosome of
adjacencies with η(α) = 1 would imply a strongly connected component with-
out the vertices x, y, contradicting the strong connectivity of G. It follows that
Γ ′ ⊆ Γ̃ , H(Γ ′) = H(Γ̃) and #cΓ̃ ≤ k.

Since Σ(i) and Σ(j) for i 6= j contain different genes, an adjacency between

a gene in Σ(i) and a gene Σ(j) has negative η. Therefore, Γ̃ contains no such

adjacencies. Since Γ̃ has at most k linear chromosomes, it must contain exactly
k linear chromosomes, each containing all the genes of Σ(i) for one i.

Let C = w(1)y(1) . . . x(1)z(1) be the linear chromosome in Γ̃ that contains
all the genes of Σ(1). Define an edge set S in G by taking for each adjacency

{(u(1))h, (v(1))t} ∈ C\
{
{(w(1))h, (y(1))t}, {(x(1))h, (z(1))t}

}
the edge (u, v). Since

C is an ordinary linear chromosome containing all the genes of Σ(1), S is a
Hamiltonian path in G from y to x. ut

6 Discussion

In this paper, we presented the SCJD rearrangement model, which allows the op-
erations cut, join and whole chromosome duplication. We analyzed the problem

12 Sorting by cuts, joins and whole chromosome duplications

of finding the minimum number of SCJD operations that transform an ordi-
nary linear genome into a duplicated linear genome and provided a linear time
algorithm for it. Furthermore, we showed that this algorithm gives an optimal
scenario with a maximum number of duplications and that finding one with
fewest duplications is NP-hard.

In the analysis, we focused on the SCJD sorting problem, which restricts
the target genome to have exactly two copies of each gene. However, it is not
difficult to generalize our algorithm to address the more general situation where
each gene in the target genome has at most two copies. One can show that in
this case too, an optimal solution in which all duplications are consecutive exists.
In addition, each adjacency in the original genome between a gene that has two
copies and a gene that has one copy in the target genome, must first be cut.
This is true because duplications are defined over linear chromosomes in which
every gene is unduplicated.

Our algorithm relies on the property that all duplications in the optimal
solution can be clustered (Corollary 2). In this sense, the problem we study is
similar to the SCJ Guided Genome Halving problem [12]. In that model the
whole genome is duplicated at once, while in ours there is one duplication per
chromosome, and accounting for these duplications is part of the optimization
challenge.

Many aspects in the analysis of the SCJD mode require further research: How
can we address the problem if there are more than two copies of each gene? Can
we find the SCJD distance between two arbitrary genomes - each containing
single copy and multiple copy genes? How does removing the requirement of
linearity affect various SCJD problems? Moreover, duplications may be defined
differently, e.g. tandem duplications [1] and segmental duplications [23]. Finally,
developing a rigorous model that will allow both duplications and deletions is
needed in order to analyze the full complexity of real biological data such as
cancer samples.

Acknowledgments. We thank our referees for many helpful and insightful
comments. This study was supported by the Israeli Science Foundation (grant
317/13) and the Dotan Hemato-Oncology Research Center at Tel Aviv Univer-
sity. RZ was supported in part by fellowships from the Edmond J. Safra Center
for Bioinformatics at Tel Aviv University and from the Israeli Center of Research
Excellence (I-CORE) Gene Regulation in Complex Human Disease (Center No
41/11).

References

1. M. Bader. Sorting by reversals, block interchanges, tandem duplications, and dele-
tions. BMC Bioinformatics, 10 Suppl 1:S9, 2009.

2. M. Bader. Genome rearrangements with duplications. BMC Bioinformatics, 11
Suppl 1:S27, 2010.

Sorting by cuts, joins and whole chromosome duplications 13

3. J. Bayani, S. Selvarajah, G. Maire, B. Vukovic, K. Al-Romaih, M. Zielenska, and
J. A. Squire. Genomic mechanisms and measurement of structural and numerical
instability in cancer cells. Seminars in Cancer Biology, 17(1):5–18, 2007.

4. A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In P. Bücher and B. M. Moret, editors, Algorithms in Bioinformatics, volume 4175
of Lecture Notes in Computer Science, pages 163–173. Springer, 2006.

5. P. Biller, P. Feijão, and J. Meidanis. Rearrangement-based phylogeny using the
Single-Cut-or-Join operation. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 10(1):122–34, 2013.

6. G. Blanc, A. Barakat, R. Guyot, R. Cooke, and M. Delseny. Extensive duplication
and reshuffling in the Arabidopsis genome. The Plant cell, 12(7):1093–101, 2000.

7. L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is difficult. SIAM
Journal on Discrete Mathematics, 26(3):1148–1180, 2012.

8. A. Caprara. Sorting by reversals is difficult. In Proceedings of the first annual
international conference on Computational molecular biology (RECOMB), pages
75–83, New York, New York, USA, 1997.

9. D. A. Christie. Sorting permutations by block-interchanges. Information Process-
ing Letters, 60(4):165–169, 1996.

10. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, and Others. Introduction
to algorithms, volume 2. MIT press Cambridge, 2001.

11. Z. Dias and J. Meidanis. Genome rearrangements distance by fusion, fission, and
transposition is easy. In International Symposium on String Processing and Infor-
mation Retrieval, page 250. IEEE Computer Society, 2001.

12. P. Feijão and J. Meidanis. SCJ: a breakpoint-like distance that simplifies several
rearrangement problems. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 8(5):1318–29, 2011.

13. G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of
Genome Rearrangements. MIT Press, 2009.

14. S. Hannenhalli. Polynomial-time algorithm for computing translocation distance
between genomes. Discrete Applied Mathematics, 71(1-3):137–151, 1996.

15. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip. In Pro-
ceedings of the twenty-seventh annual ACM symposium on Theory of computing
(STOC), volume 46, pages 178–189, New York, New York, USA, 1995.

16. J. Kováč. On the complexity of rearrangement problems under the breakpoint
distance. Journal of Computational Biology, 21(1):1–15, 2014.

17. C. L. Lu, Y. L. Huang, T. C. Wang, and H.-T. Chiu. Analysis of circular genome
rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics,
7(1):295, 2006.

18. C. V. G. Mira and J. Meidanis. Sorting by block-interchanges and signed reversals.
ITNG, 7:670–676, 2007.

19. M. Ozery-Flato and R. Shamir. Sorting cancer karyotypes by elementary opera-
tions. Journal of Computational Biology, 16(10):1445–60, 2009.

20. J. Plesnik. The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Information Processing Letters, 8(4):199–201,
1979.

21. O. T. Savard, Y. Gagnon, D. Bertrand, and N. El-Mabrouk. Genome halving
and double distance with losses. Journal of Computational Biology, 18(9):1185–99,
2011.

22. M. Shao and Y. Lin. Approximating the edit distance for genomes with duplicate
genes under DCJ, insertion and deletion. BMC Bioinformatics, 13(Suppl 19):S13,
2012.

14 Sorting by cuts, joins and whole chromosome duplications

23. M. Shao, Y. Lin, and B. Moret. Sorting genomes with rearrangements and segmen-
tal duplications through trajectory graphs. BMC Bioinformatics, 14(Suppl 15):S9,
2013.

24. M. Shao, Y. Lin, and B. Moret. An exact algorithm to compute the DCJ distance
for genomes with duplicate genes. In R. Sharan, editor, Research in Computational
Molecular Biology, volume 8394 of Lecture Notes in Computer Science, pages 280–
292. Springer, 2014.

25. E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics, 10(1):120, 2009.

26. R. Warren and D. Sankoff. Genome aliquoting revisited. Journal of Computational
Biology, 18(9):1065–1075, 2011.

27. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

