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ABSTRACT 

The new technology of protein binding microarrays (PBMs) allows simultaneous measurement of the 

binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA 

probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif 

from these data. We present a systematic comparison of four methods developed specifically for 

reconstructing a binding site motif represented as a positional weight matrix from PBM data. The 

reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from 

the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 

transcription factors and some 300 assays. The results show a tradeoff between how the methods 

perform according to the different criteria, and a dichotomy of method types. Algorithms that construct 

motifs with low information content predict PBM probe ranking more faithfully, while methods that 

produce highly informative motifs match reference motifs better. Interestingly, in predicting high-

affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.  

INTRODUCTION 

Understanding gene regulation is a fundamental problem in biological research. A principal way to 

regulate gene expression in the cell is via transcription, which is governed primarily by transcription 

factors (TFs). A TF is a protein that binds to the promoter region of a gene at specific sequences, 

called TF binding sites (TFBSs). The binding of one or several TFs enables or impedes the 

transcription of the gene. A TF binds to similar short nucleotide sequences at different affinities. 

Finding these cis-regulatory elements and modeling the affinity of TF binding to them is a central 

challenge in understanding gene regulation. 

The most common computational model for describing a TFBS motif is a position weight matrix (PWM) 

[1]. The TFBS is represented by a 4×k matrix, where k is the motif length. Each column contains four 

probabilities, representing the nucleotide frequencies at that position. This relatively simple model is 

highly popular since it is compact, effective and easy to interpret. 

New technologies have enabled comprehensive mapping of protein-DNA binding affinities. The main 

technology to measure in vivo protein occupancy is chromatin immunoprecipitation (ChIP). In the 

ChIP-chip method, the protein-bound DNA segments are hybridized to a pre-designed microarray [2], 

whereas the ChIP-seq method uses deep sequencing to read the bound DNA segments [3]. A recent 

promising technology in this field is the protein binding microarray (PBM) [4]. This microarray contains 

~41,000 synthesized, 60bp-long double-stranded DNA probes, each containing 36bp of unique 

sequence, designed so that every possible 10-mer is contained in exactly one probe sequence. A 

single in vitro experiment measures the binding intensity profile of a specific TF to each probe, 

thereby providing complete coverage of the binding affinity of the TF to all possible 10-mers. Often, 

two experiments with different array designs are performed with the same TF, providing paired 

profiles. 
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Numerous computational methods for finding a motif in a target set of promoters have been 

developed over the last two decades [5-7]. Predicting binding sites based on PBM data is different: 

the experimental data are much more comprehensive, covering all possible 10-mers, but are 

generated in vitro and in a high-throughput (and hence noisy) fashion. Therefore, several methods 

were recently developed specifically for identifying TFBS motifs from PBM profiles. Here we compare 

methods that represent the motifs as PWMs. We do not include methods that use more complex 

models [8], since we choose to focus on simpler, more compact models. 

In this paper we present a systematic comparison of four algorithms for identifying TFBS motifs from 

PBM profiles: Seed-and-Wobble (SW) [4], RankMotif++ (RM) [9], BEEML-PBM (BE) [10] and the 

algorithm Amadeus-PBM (AM) introduced here (see Table 1). In 2005, a systematic comparison of 

computational methods for motif discovery in promoters clarified some of the issues and the 

difficulties in that domain, and led to progress in that research area [11]. We hope that our study will 

have a similar effect regarding methods for analyzing PBM data. 

RESULTS 

Concordance with SELEX-based reference motifs from the literature:  

We used each method to find motifs using PBM data, and compared the results to previously reported 

motifs for the same TFs, obtained using independent experiments. Each motif was learned using the 

data from two paired experiments performed with the same TF. For each TF, we measured the 

distance between the PBM-based PWM to the PWM of the same TF as published in JASPAR [12]. 

For this test we used all mouse PBM datasets from the SCI09 study [13,14] that had a corresponding 

PWM in JASPAR, excluding those for which the JASPAR PWMs were constructed using PBM data. 

This set contained 58 PWMs. Most were constructed based on in vitro SELEX experiments, which are 

still the main source of TF motifs. 

The AM PWMs were the most similar to JASPAR, with average Euclidean distance (± estimated 

standard deviation) 0.178±0.11. The average for SW was 0.193±0.1, for RM was 0.21±0.09, and for 

BE was 0.227±0.1 (Table 3). The difference between AM and SW was not significant (p=0.17, 

Wilcoxon rank-sum test) and both were significantly better than RM and BE (p=0.001 and p=0.0005 

compared to AM, respectively). 

We then focused on high-quality predictions of the four methods. We say that a motif is successfully 

recovered by a method if the Euclidean distance of the predicted PWM from the reference PWM is 

below a predetermined cutoff. As in [15], we used three cutoffs for the distance. AM attained a higher 

success rate using all cutoffs (Figure 1). A similar comparison of mouse motifs in TRANSFAC [16] 

and yeast motifs in ScerTF [17], and a parallel comparison, using p-value for the significance of the 

similarity [18], showed a similar advantage to AM (Figure S1). 

Visual inspection suggested that the PWMs produced by AM and SW are easier to interpret and look 

distinct in logo format (Figure 2). To quantify this observation, we calculated the average information 
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content for each PWM (see Supplementary Methods). Averaged over the PWMs computed from all 

115 available paired mouse PBM sets, the information scores for the raw PWMs were 1.03, 0.61, 0.42 

and 0.53 bits for AM, SW, RM and BE, respectively, with AM scoring significantly higher (p<10
-15

, 

Wilcoxon rank-sum test). After trimming the PWMs to discard flanking positions with low information, 

the information averages were 1.03, 1.09, 0.54 and 0.61 bits, respectively (p=1.2·10
-7

 when 

comparing SW to AM and <10
-15

 when comparing AM and SW to RM and BE). The full comparison 

results are available in Table S1. 

Predicting in vitro binding intensities:  

Next, we tested the prediction of binding intensities by the four methods on 115 pairs of mouse PBM 

profiles [13,14] following the procedure in [9]. Each method learned a PWM according to one PBM 

experiment; this PWM was used to rank the probes of its paired array. The goal was to correctly rank 

the positive probes, i.e. those with highest affinity measurements. The set of positive probes (denoted 

4, see Supplementary Methods) contained an average of 912 probes per array. We also evaluated 

larger sets of positive probes using more permissive cutoffs (denoted 3, 2 and 1; an average of 

1580, 3215 and 8224 probes per array, respectively). 

When testing on 4 top probes set (Table 3 and Figure 3), BE had significantly best Spearman and 

AUC scores (p<0.0025, Wilcoxon rank-sum test), while AM and RM were essentially equal (p=0.41 

and p=0.44, respectively), and significantly better than SW (p<10
-4

). Using the sensitivity measure, BE 

was again best (p<10
-15

), AM second best (p=3.8·10
-6

 compared to SW), and RM and SW were 

roughly the same (p=0.18). Hence, BE showed consistently best performance in all three measures, 

followed by AM. Interestingly, BE gave the poorest AUC and Spearman scores on a few samples. On 

larger probe sets (Figure 4), BE performed best, followed by RM. The AUC and sensitivity criteria 

deteriorated for all methods, as expected due to the increasing difficulty in ranking lower-affinity 

probes. The Spearman score improvement results from its bias to larger sets, so it is more meaningful 

for comparison of sets of similar sizes. Full results are available in Table S2. 

Predicting in vivo binding intensities:  

Since PBM and SELEX are in vitro assays, which may introduce biases, we also tested the methods’ 

abilities to predict binding intensities for in vivo experiments. Our evaluation included ChIP-chip 

datasets of 32 yeast TFs (69 experiments) that had also PBM profiles [8,19]. A PWM learned 

according to the profiles of both PBMs (when available) is tested against the data from a ChIP-chip 

experiment. To evaluate the prediction on the high intensity promoters, where binding is expected to 

be strongest, we used the positive promoter set as those with reported p-values below 0.001.  

All methods performed quite similarly on the AUC and Spearman rank coefficient criteria (Table 2). 

Using the sensitivity measure, SW was better than the other three (p<0.02), AM and BE were roughly 

the same (p=0.39) and significantly better than RM (p<0.04). Hence, SW showed consistently best 

performance in all three measures, while AM and BE were second best (Table 3 and Figure 4). Full 

results are available in Table S3. 
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Running times: 

We ran each method on the same 10 examples using a single core of an Intel® Xeon® CPU E5410 

@ 2.33GHz, with 6MB of cache and 16GB of memory. On average, AM runs for 30 seconds 

(including pre-processing), while BE, RM and SW run for about 15 minutes, one hour and more than 

two hours, respectively (Table 3). BE currently uses SW results as seeds, thus SW's running time 

should be added to the total running time of BE. Hence, AM provides a speedup by a factor of 30–200. 

Similarity between the algorithms: 

We evaluated the similarity between the PWMs produced by the four algorithms (Table 4A). In terms 

of PWM distance, the pairs AM/SW and RM/BE were more similar than others. Note that the 

comparison is not symmetrical, since it uses the eight most informative contiguous positions in the 

first PWM (corresponding to a column in the table). Large asymmetries (e.g., SW-RM and RM-SW) 

reflect the fact that these positions are not clearly detectable in RM and BE PWMs (see also Figure 

2). On average, the distance between PWMs from different methods is similar to the distance 

between these and the reference PWMs (Table 3).  

We also compared the probe ranking that the PWMs of the different algorithms induce (Table 4B-D). 

We used a PWM inferred by one algorithm on a PBM to rank the probe set of the paired PBM, and 

measured sensitivity and AUC for these probes ranking produced by another algorithm. Results 

tended to show more symmetry, with pairs involving BE obtaining best scores, in agreement with the 

good performance of BE in ranking (Figure 3 and Table 3). Additionally, we focused on rankings of 

the 4 probe set and compared them using Spearman rank coefficient. PWMs inferred by two 

algorithms on a PBM to rank the 4 probe set of the paired PBM, and compared the two rankings 

using Spearman score. Again pairs with BE got the highest scores, and remarkably, all pair scores 

were much higher than their similarity scores to original binding intensities (Spearman rank coefficient, 

0.5-0.6 compared to 0.24-0.31, respectively).  

DISCUSSION 

We have described an assessment of four tools for extracting binding site motifs from PBM data. All 

four methods report their results in the form of a positional weight matrix (PWM). Table 3 summarizes 

the comparison. All tools were run with their recommended default parameters; tuning the parameters 

could improve the results of some methods and affect the relative ranking in our test criteria. 

The reference motifs stored in databases are strongly dependent on experimental sources. Most 

TRANSFAC and JASPAR motifs that we used were created based on SELEX, an in vitro assay of 

limited accuracy and throughput. Still, the relative performance of the methods was essentially the 

same when tested on three different databases of two species, which indicates robustness of our 

conclusions. 
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The best results in similarity of reference mouse motifs to predicted motifs from PBMs (Figure 1) were 

comparable to the similarity of reference metazoan motifs to predicted motifs obtained using a state-

of-the-art motif finder that uses promoter sequences [15]. On one hand, PBM profiles cover the 

spectrum of possible sequences more comprehensively. On the other hand, they include only 

relatively short motifs. To conclude, no clear winner has yet emerged between PBM technology and 

traditional motif finding methods in finding PWMs that are closest to reference motifs. 

When using binding intensities of one PBM as input and predicting the ranking of probe intensities of 

another array for the same TF, BE showed best performance. When using PBM binding intensities to 

predict ranking of promoter intensities in a ChIP-chip experiment for the same TF, SW performed best. 

We note that there is still only a modest number of TFs with data from both ChIP-chip and PBM; a 

larger benchmark for in vivo prediction, containing also TF binding in metazoans, is needed. 

The performance results can be explained by the different goals of the algorithms. RM was designed 

to optimally rank all probes, so it tries to capture both high-affinity and low-affinity binding information. 

This explains why it performs less accurately when analyzing the top-binding probes but performs 

better on very large positive sets (Figure 4). The same applies to BE. The inclusion of information 

from low-intensity binding yields better ranking of low-affinity binding probes, but creates PWMs with 

lower information content (Figure 2). In contrast, AM was designed to identify specific binding motifs; 

it trains only on the 1000 top-binding 9-mers, and so it only uses information on the specific binding of 

the protein. Interestingly, SW is best for in vivo binding, hinting that longer motifs with a stringent core 

might be better for this data. 

The comparison of the prediction results for in vitro and in vivo data (Figure 4) is striking: The quality 

of the results is much poorer on in vivo data, according to all evaluation criteria (similar results were 

reported in [20]). This is in spite of the fact that the in vivo data consisted of yeast motifs, which are 

easier to find than mice motifs [5,15]. There can be several explanations of this finding: 

1. The length of the probes on the PBM (36bp) is much shorter than the whole yeast promoters 

targeted by ChIP-chip (an average of 474 bp). As a result, scoring and ranking yeast 

promoters is harder. 

2. Biases caused by the PBM technology lead to systematic distortion in the reconstructed motifs, 

compared to in vivo motifs. If this is the case, revealing and correcting these biases is 

essential for using the motifs for in vivo analysis. 

3. The methods tailored specifically for PBMs may overfit this type of data. 

4. The complexity of in vivo assays distorts the raw binding signals, which look more like the 

PBM-based motifs in a cleaner in vitro environment. 

One interesting phenomenon we encountered was secondary motifs: For some PBMs, SW and AM 

identified a second, completely different motif in addition to the primary one (Figure S2). This 

phenomenon was first reported in [14]. Agius et al. suggested that the secondary binding motifs arise 
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as an artefact of the PBM experiment [21]. Zhao and Stormo suggested that secondary motifs are a 

result of a biased analysis of the PBM data [10], but Morris et al. challenge this conclusion [22]. We 

tested the benefit of using primary and secondary motifs discovered by SW for in vitro binding 

prediction. While there was a significant improvement in performance, it was still worse than BE (data 

not shown). Jauch et al. recently obtained a crystal structure of the TF Sox4 domain bound to DNA 

and concluded that two positions in the binding motif are dependent [23]. Such dependency can be 

manifested by two PWM motifs. Indeed, SW and to some extent AM recover two motifs that reflect 

this dependence (Figure S3).  We agree with the conclusion in [20] that more matching PBM and in 

vivo datasets are needed in order to shed more light on this phenomenon. 

An interesting insight arises from the comparison of the methods (Table 4D). In terms of the 

Spearman score of probe ranking, all methods are much more similar to each other than to the true 

binding intensities. This suggests that all methods capture similar information, while missing other 

pertinent effects (e.g., background or technological biases). On the other hand, predicting the top 

probes of another method was harder than finding true positive probes (Table 4D). Overall, BE had 

highest pairwise ranking-based scores, concordant with our conclusion that it predicts true binding 

best (Table 3). In terms of distance between PWMs, higher similarities between AM and SW, and 

between BE and RM, reflect the observation that the former pair produce clear, stringent motifs, while 

the latter generate more variable, ranking-oriented motifs. 

Protein-DNA interactions can occur in a broad range of intensities, and involve both specific and low-

affinity (less specific) binding. PBM data enable analysis of the full spectrum of DNA binding affinities 

of a TF. The binding specificity of a protein can be represented using various models, which differ in 

expressiveness, compactness, redundancy and interpretability. Our analysis suggests that a PWM 

models the specific in vitro binding quite accurately, obtaining an average AUC of 0.9 on the top 

probes. The fact that results of all methods tend to deteriorate as the positive sets grow (Figure 4), 

and the success of more complex models in ranking [21] suggest that less specific binding may be 

better captured by other models. The lower success of all methods in predicting in vivo binding 

questions the transformability of PBM-based results to the in vivo domain. Deeper analyses using 

more data are required on this point. 

Our study gauged performance using three criteria: similarity to reference literature motifs, and ability 

to rank in vitro and in vivo bindings. The tested methods show a tradeoff between ranking quality and 

motif similarity. Degenerate motifs are better at in vitro binding prediction at the cost of lower 

information content and similarity to literature motifs. Potential improvement may be achieved by 

novel methods that strive to optimize both criteria simultaneously. 

MATERIALS AND METHODS 

Algorithms: We compared four algorithms: Seed-and-Wobble (SW) [4], RankMotif++ (RM) [9], 

BEEML-PBM (BE) [10] and Amadeus-PBM (AM), a new algorithm presented here (see 

Supplementary Methods). The computational approaches of the algorithms are summarized in 
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Table 1. Software for BE, RM and SW was downloaded from the authors' websites and run using the 

default parameters. The full details are in Supplementary Methods.  

PBM data: We downloaded PBM data from UniPROBE [13]. This database contains, for each TF, 

paired probe intensity profiles measured on two different arrays. We used the SCI09 dataset, which 

contains paired profiles of 115 mouse proteins [13,14], and the GR09 dataset, which contains profiles 

of 89 yeast TFs [19] (Table 2).  

Reference PWM data: To compare predicted PWMs to experimentally obtained PWMs, we used 

three databases of reference PWMs: JASPAR [12] and TRANSFAC [16] for mouse motifs and the 

new yeast motif database ScerTF [17] (Table 2). We included in the comparison only reference 

PWMs that were produced without using PBM data. 

ChIP-chip data: We downloaded the ChIP-chip data for yeast TFs from Harbison et al. [8]. These 

data provide large-scale in vivo binding for many TFs. Our test used 69 experiments (32 TFs) that had 

PBM profiles in UniPROBE as well as ChIP-chip measurements.  

Comparison and evaluation: We tested the quality of PWMs produced by each method in three 

ways: by comparison to reference PWMs from the literature (mostly SELEX-based), by their accuracy 

in predicting in vitro binding in PBMs, and by their accuracy in predicting in vivo binding as measured 

by ChIP-chip. In addition, we evaluated how similar the methods are in a pairwise comparison using 

the same criteria. 

To compare a predicted PWM to a reference one, the Euclidean distance between the two PWMs 

was calculated, as in [15] (for a description of all evaluation criteria see Supplementary Methods). 

The information content of each matrix was also measured in order to evaluate its degeneracy. Each 

algorithm was trained using the data from both arrays for the same TF. PWMs were also compared 

using the Tomtom algorithm [24]. 

For testing the quality of in vitro binding prediction, we followed the method of [9]. Since two (paired) 

binding profiles were available for each TF, a PWM was trained on one profile (the "training array") 

and used to rank the probes in the other profile (the "test array"). Given a PWM, the probes of the test 

array were ranked using the sum occupancy score (see Supplementary Methods). This ranking was 

compared to the measured ranking of the probes in the test array according to three criteria: 

Spearman rank coefficient, sensitivity at 1% false positive rate and area under the ROC curve (AUC) 

(see Supplementary Methods for all definitions). The comparison was done on the probes that 

showed high binding intensity in the test array (the positive probe set [9]). 

To test the quality of in vivo binding predictions, we used similar criteria. For each TF, we trained each 

method using both paired binding profiles (when available) and tested how well the method predicts 

the ranking of the strongest bound yeast promoters (see Supplementary Methods). Predicted and 

experimental rankings were compared using the same three criteria. 
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In computing similarity between different methods, we used four criteria. First, we measured the 

distance between the PWMs inferred by each method. Second, for each method, using the PWM 

learned on one array, we ranked the set of positive probes in the paired array, and then measured the 

Spearman rank coefficient between the rankings of each two methods. Third and fourth, we used one 

method to rank the probes of the paired array, and tested the prediction of the other method using 

sensitivity at 1% false positive and AUC (see Supplementary Methods for computational details). 

Statistical significance of the comparison: For each comparison we evaluated its significance 

using the Wilcoxon rank-sum test [25]. Since the gauged measurements do not distribute normally, 

we used a non-parametric statistical test. 

Supplementary Files 

Supplemental Data. Supplementary methods and figures.  

Supplemental Table S1. Results of distance to known motifs. 

Supplemental Table S2. Results of in vitro binding prediction. 

Supplemental Table S3. Results of in vivo binding prediction. 
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TABLES AND FIGURES 

 

Table 1: Properties of the tested methods. 

Program Operating principle Reference 

Seed-and-

Wobble 

Ranks all 8-mers according to Wilcoxon-Mann-Whitney rank-sum score. 

The top scoring 8-mer is used as a seed, its positions are "wobbled" and 

its length is extended in order to improve match to the data. 

http://the_brain.bwh.harvard.edu/PBMAnalysisSuite/index.html 

[4] 

RankMotif++ Aims to predict the ranking of the probes according to their binding 

intensity. Maximizes the likelihood of the ranking function, using the three 

top 7-mers as seeds. 

http://morrislab.med.utoronto.ca/software.html 

[9] 

BEEML-

PBM 

Estimates the position and background biases from the data, then 

optimizes the parameters of a binding energy model using BEEML 

algorithm, explicitly taking the biases into account. 

http://stormo.wustl.edu/beeml/ 

[10] 

Amadeus-

PBM 

Seeks enriched PWMs in 1000 top ranking 9-mers compared to the 

background set of all 9-mers, using Amadeus motif finding algorithm. 

http://acgt.cs.tau.ac.il/amadeus// 

Described 

here 

 

http://the_brain.bwh.harvard.edu/PBMAnalysisSuite/index.html
http://morrislab.med.utoronto.ca/software.html
http://stormo.wustl.edu/beeml/
http://acgt.cs.tau.ac.il/amadeus/
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Table 2 Test data and evaluation criteria.  

 Data 

learned 

on  

Data tested 

on 

Test focused 

on 

Samples Criteria 

Similarity 

to known 

motifs 

SCI09 

(two 

arrays) 

JASPAR 

TRANSFAC 

Informative 

positions in the 

learned PWM 

58 

80 

1. Euclidean 

distance 

2. Tomtom p-value 

GR09 

(two 

arrays) 

ScerTF 51 

In vitro 

binding 

prediction 

SCI09 

(one array) 

SCI09 

(other array) 

Top binding 

probes (4σ-1σ 

sets, see 

Supplementary 

Methods) 

230 

(115 pairs) 

1. Spearman rank 

coefficient 

2. True positive at 

1% false positive 

3. AUC 

In vivo 

binding 

prediction 

GR09 

(two 

arrays) 

Harbison et 

al. 

Promoters with 

p-value < 

0.0001 

69 

(out of 89 

experiments) 
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Table 3. Summary of the comparison. Boldface indicates significantly better performance than the 

other methods (including equal top performance).  

 

Similarity to 

reference 

motifs 

In vitro binding prediction In vivo binding prediction 
Running 

time 

 

Average 

Euclidean 

distance 

Spearman 

rank 

coefficient 

Sensitivity 

at 1% FP 
AUC  

Spearman 

rank 

coefficient 

Sensitivity 

at 1% FP 
AUC  Seconds 

AM 0.178 0.27 0.342 0.876 0.152 0.089 0.653 30 

SW 0.193 0.244 0.305 0.866 0.145 0.118 0.659 7200 

RM 0.21 0.264 0.295 0.881 0.158 0.092 0.655 3600 

BE 0.227 0.308 0.411 0.891 0.146 0.084 0.665 900 
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Table 4. Similarity between methods. (A) For each pair of methods, the Euclidean distance between 

the PWMs of the two methods is reported. Before the comparison, the column method's PWM is 

trimmed to eight most informative contiguous positions. (B-D) ranking based comparisons. For each 

pair of methods, the probe ranking defined according to the column's method is used as reference, 

and the ranking of the row’s method is evaluated using AUC (B) and sensitivity at 1% false positive 

(C). In (D), for each pair of methods, the 4σ positive sets of the paired PBM are first ranked by each 

method, and the Spearman rank coefficient of those rankings is computed. In all tables, the average 

over 230 PBM experiments is reported. Red colour corresponds to greater similarity. 

 

(A) AM SW RM BE 
 

(C) AM SW RM BE 

AM   0.19 0.256 0.249 
 

AM   0.877 0.85 0.89 

SW 0.219   0.299 0.245 
 

SW 0.876   0.86 0.91 

RM 0.262 0.199   0.183 
 

RM 0.843 0.852   0.89 

BE 0.258 0.188 0.179   
 

BE 0.877 0.888 0.88   

           

           

(B) AM SW RM BE  (D) AM SW RM BE 

AM   0.268 0.192 0.292 
 

AM   0.54 0.56 0.65 

SW 0.267   0.232 0.33 
 

SW 0.54   0.52 0.63 

RM 0.192 0.228   0.309 
 

RM 0.557 0.516   0.65 

BE 0.281 0.325 0.31   
 

BE 0.649 0.632 0.65   
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Figure 1. Similarity to experimentally established PWMs. For 58 TFs, we compared the motifs 

produced from their PBM profiles by each method, to the known motif from JASPAR database. 

Distance was measured using Euclidean distance. Three distance cutoffs were used, and the fraction 

of recovered motifs with distance below the cutoff is the success rate. BE: BEEML-PBM, RM: 

RankMotif++, SW: Seed-and-Wobble, AM: Amadeus-PBM, JR: JASPAR. 

 



16 

Figure 2. Examples of generated motifs. The figure shows examples of the motifs produced by 

each method and the corresponding JASPAR motif. For three proteins, the PWM logos produced by 

each method and the experimentally and independently established motif in the JASPAR database 

are shown. AM was trained on motif length 8, while for BE, RM and SW only the most informative 

contiguous positions were kept. We chose TFs whose motifs had information content most similar to 

the averages of the different methods. 
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Figure 3. Success rates in probe ranking of a paired PBM. For each TF and method, the PWM 

was learned using one array and used to infer probe intensity ranking in its paired array. Ranking was 

gauged on a set of top positive probes (4σ set) according to three measures: Spearman rank 

coefficient, sensitivity at 1% false positive and AUC (see Supplementary Methods for all 

mathematical terms). For each quality measure, three distance cutoffs were used, and the fraction of 

TFs with score equal or better to the cutoff is the success rate. The results show the success rate 

over 230 samples (115 paired arrays). 
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Figure 4. Quality of binding prediction for in vivo and in vitro data of different sizes. For each of 

the four algorithms, the quality of the motifs inferred from PBMs in ranking the top binding probes as 

measured in vivo (by ChIP-chip experiments) and in vitro (by PBMs) was evaluated. The in vivo test 

included 69 yeast ChIP-chip experiments data (with an average of 61 promoters per experiment). The 

in vitro test included 230 mouse PBMs covering 115 TFs, and used several definitions for the sets of 

top binding promoter sequences (4 to 1, with averages of 912, 1580, 3215 and 8224 top probes, 

respectively, see text). Ranking quality was measured by the Spearman rank coefficient, the 

sensitivity at 1% false positive (FP) and the area under the ROC curve (AUC) (see Supplementary 

Methods).The average ranking quality is reported in each case. 
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Figure S1. Similarity to experimentally established PWMs. (A) TRANSFAC motifs. For 80 proteins 

available in TRANSFAC we compared the motifs produced from their PBM data by each of the tested 

methods to the motif available in TRANSFAC. Distance was measured using Euclidean distance. 

Three distance cutoffs were used, 0.12, 0.18 and 0.24, and the fraction of recovered motifs with 

distance below the cutoff is the success rate. (B): ScerTF motifs. The same tests on 51 motifs from 

the ScerTF database. AM: Amadeus-PBM; SW: Seed&Wobble; RM: Rankmotif++; BE: BEEML-PBM. 
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Figure S2. Shadow motifs. Examples of the primary and secondary motifs found by Amadeus for 

Pou2f3 (A) and Sox1 (B). p-values for the motif enrichment (hypergeometric score) are indicated 

above each motif. Note that even the second ranked motifs obtain extremely high significance. 
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Figure S3. Sox4 primary and secondary motifs as found by Seed-and-Wobble (SW) and 

Amadeus-PBM (AM). Jauch et al. reported two motifs: CTTTGTT and AATTGTT (23). (A) The two 

top motifs recovered by AM. The first motif of Jauch et al. was recovered correctly; the second was 

partially recovered. (B) The two top motifs recovered by SW. Both motifs from Jauch et al. were 

inferred correctly. Logos taken from UniPROBE database (13).  
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Supporting Information for 

Assessment of algorithms for inferring positional weight matrix motifs of 

transcription factor binding sites using protein binding microarray data 

 

by Orenstein, Linhart and Shamir 

 

Supplementary Methods 

 

Algorithms and parameters 

BE, RM and SW were downloaded from the authors' websites and applied using the recommended parameters. The 

parameters for SW were k-mer length 8, seed pattern file patterns8of12, total pattern file patterns_4x44k_all_8mer. The 

parameters for RM were widths to try 7 to 13, no log transformation, optimize the scaling factor w, 400 negative sequences. 

The PWM with the best likelihood score was taken as the result. BE was run according to the R script provided on the authors'  

website. Its seed PWM was the SW result trained on the same array. Amadeus was run on the top 1000 9-mers as the target 

set, motif width 8 and all other parameters at default values. In particular, the background set included all 9-mers. For 

computing the Spearman rank coefficient, sensitivity at 1% false positive and AUC, the algorithms were run on one array and 

tested on the other. In the comparisons to known motifs and in vivo data, the algorithms were trained on both arrays together. 

Amadeus-PBM algorithm 

We devised a simple scheme for detecting TFBS motifs in PBM data.  The method is generic in that it can utilize any motif 

finding algorithm and any ranking score. Enrichment-based motif finding algorithms receive as input a target set of sequences 

that are expected to be enriched with the motif compared to other (background) sequences. Our approach to utilize such 

algorithm is quite simple: 

1. Rank all k-mers according to some score that reflects their binding intensity. 

2. Give the top N ranking k-mers as the target set to the motif finding algorithm, using all k-mers as the background set. 

The rationale for using k-mers is that TFBSs have typically short motifs that will be reflected in overrepresented k-mers 

among high binding intensities. A PBM contains each 10-mer once, so that each non-palindromic 10-mer will appear twice, 

once on each strand. By choosing k < 10, each k-mer appears several times in the probe set, and the mean (or median) of the 

intensities of the probes containing these multiple occurrences can be used to rank the k-mers, thereby reducing noisy 

measurements and possible biases (due to, e.g., position in the probe sequence, flanking sequences and strand). We found 

the average binding intensity the most suitable. Note that the method works on the original binding intensities  as reported in the 

PBM data. We found that using k=9 improved the accuracy of the results over k=8 when looking for a motif of length 8, since 

the set of top-ranking 9-mers may contain several shifts of the same 8-long motif (data not shown). Taking N=1000 proved to 

be a good compromise between adding more noise and leaving out too many 9-mers with true positive binding sites. Our motif 

finding algorithm of choice was Amadeus (15). We call the resulting method Amadeus-PBM. 
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Mathematical criteria for evaluation of motif quality 

 

Position weight matrix (PWM): The TFBS model used by all tested algorithms is a PWM: It is a 4×k matrix Θ, where Θi(x) is 

the probability of base x in a position i of the model. k varies with the motif. The score of k-mer w1...wk is  


k

i ii w
1

][ . 

Distance score: To measure the distance between an inferred PWM to a reference PWM, we used Euclidean distance [8]. The 

Euclidean distance of probability vectors (v1, v2, v3, v4) and (u1, u2, u3, u4) where i vi = 1 and i ui = 1 is: 
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If p1 and p2 are two aligned PWMs of length k, where p1i is the i-th column of p1, the Euclidean distance is  
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Hence, 0≤e≤1 with smaller values indicating higher similarity. 

Given two PWMs, all possible (gap-free) alignments between them in both orientations with an overlap≥5 are tested, and the 

smallest obtained score is defined as the distance between the PWMs. 

Occupancy score: Evaluating the chance that a PWM Θ binds to a probe or a promoter sequence s is done by summing the 

probabilities of all possible alignments of Θ to s. Formally, the sum occupancy score [26] for sequence s and PWM Θ is defined 

as 
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Taking the sum was reported to give the better results than taking the maximum [27]. 

Positive probes: To evaluate how well a motif predicts the binding of probes in a PBM, one has to focus on the strongest, 

specific binding, as the lower binding intensities may be noisy and non-specific. Given the binding intensities of a protein to all 

probes in a PBM, Chen et al. [9] defined the positive probe set as those probes whose normalized binding intensity is greater 

than the median by at least 4 * (MAD / 0.6745), where MAD is the median absolute deviation (MAD = 0.6745 for the normal 

distribution N(0,1)). We denote σ = (MAD / 0.6745). In some tests we also used larger positive probe sets by setting the 

threshold to 3σ, 2σ, and 1σ above the median. 

Positive promoters: To evaluate how well a motif predicts the binding of a TF in a ChIP experiment, one has to identify the 

specific bindings. Haribson et al. [8] defined the positive promoter set as those promoters whose reported p-value for binding to 

the TF is smaller than 0.001. 

Information content: We used the entropy to measure the information content of each PWM [28]. The bit information of vector 

(v1, v2, v3, v4) (where i vi = 1) is defined as 2+i vi log(vi). The information content of a PWM is the average bit information of its 

columns. 

Ranking criteria: To evaluate the probe (or sequence) ranking of an algorithm, we used the same three criteria as in [9]. In all 

cases, we have n probes ranked x1≤x2≤…≤xn according to some algorithm, while the true ranking according to binding 

intensities of probe i is yi. The Spearman rank coefficient [29] compares how similar the two rankings of the positive probe set 

are, using the formula: 



24 

)1(

)(6
1

2

1

2





 

nn

yx
n

i ii  

Suppose there are P positive and N negative probes. Denote zi=1 if probe i is in the positive set and zi=0 otherwise. If the 

algorithm assigns the top t probes as positive, there are 
1

( )
t

jj
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
  true positive and 

1
( ) ( ) (1 )

t

jj
FP t t TP t z


     false negative samples. Of the remaining probes, which are declared negative, 

( ) ( )FN t P TP t   are false negative and ( ) ( )TN t N FP t   are true negative. The sensitivity is defined as 

( ) ( ) /TPR t TP t P  and the false positive rate is ( ) /FP t N . Let k be the maximum number of top ranking probes that attain 

1% false positive rate. Then the sensitivity at 1% false positive is defined as ( )TPR k . The receiver operating characteristic 

(ROC) curve is defined as the function plotting the sensitivity against the false positive rate as t increases. The area under the 

ROC curve or AUC is used as the third criterion [30].  

 

Supplementary Results 

Comparing predicted motifs to TRANSFAC and ScerTF 

We compared the motifs predicted by each method to PWMs reported in the TRANSFAC and ScerTF databases, in the same 

fashion as the comparison to JASPAR motifs. There were 80 TRANSFAC PWMs and 51 ScerTF PWMs corresponding to TFs 

from the SCI09 and GR09 studies, respectively, which did not originate from PBM data. Dissimilarity was measured using 

Euclidean distance. The results were clearly in favor of AM, followed by SW, RM and BE in this order (Figure S1). Full results 

are available in Table S1. 

Comparing the significance of the similarity to literature motifs 

As an additional quality measure, we scored the motif similarity using the recently developed Tomtom algorithm (24), which 

calculates the significance of the similarity. Given a query motif and a motif database, Tomtom outputs a p-value for the 

similarity of the query to different motifs in the database. AM showed the highest significance levels. For example, the number 

of PWMs with p-value below 0.01 threshold detected in the JASPAR database for AM, SW, RM and BE were 46, 40, 43 and 38, 

respectively. Results are available in Table S1. 

 


