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Abstract

Computational classi�cation of gene expression pro�les into distinct

disease phenotypes has been highly successful to date. Still, robustness,

accuracy and biological interpretation of the results have been limited,

and it was suggested that use of protein interaction information jointly

with the expression pro�les can improve the results. Here, we study three

aspects of this problem. First, we show that interactions are indeed rele-

vant by showing that co-expressed genes tend to be closer in the network

of interactions. Second, we show that the improved performance of one

extant method utilizing expression and interactions is not really due to

the biological information in the network, while in another method this

is not the case. Finally, we develop a new kernel method - called NICK

- that integrates network and expression data for SVM classi�cation, and

demonstrate that overall it achieves better results than extant methods

while running two orders of magnitude faster.

1 Introduction

In the past decade, gene expression pro�les based on DNAmicroarrays have been
widely used to detect disease biomarkers. These pro�les, measuring thousands
of gene expression levels simultaneously, served as the basis for feature selection
and classi�cation methods and have been shown to provide better prognosis
than prior models [32]. However, the biomarker sets created by such methods
have several drawbacks: Analysis often results in hundreds of genes, biological
interpretation of the selected genes is di�cult, and the overlap between the
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sets of genes selected as features in similar studies is very poor (see e.g. [13]).
In addition, genes selected in one dataset often do not perform well on other
datasets [10]. This lack of robustness of biomarker selection was decisively
demonstrated by Ein-Dor et al. [13]. To overcome this problem Ein-Dor et
al. suggested enlarging the sample size, or dividing the sample in advance into
known homogeneous subsets based on some prior knowledge, and analyzing each
subset separately (as done by [39]).

We would like then to develop methods for detecting sets of biomarkers that:
(1) are more meaningful biologically and (2) are more stable across di�erent
studies. Such sets would be more useful for downstream biological research.
The two goals do not always go hand in hand; for example, Hwang et al. [19]
provide a list of four genes that are highly predictive for breast cancer prognosis
and also biologically meaningful, but, they were not di�erentially expressed in
other breast cancer data sets.

One possible way to improve marker selection is by using additional biolog-
ical knowledge in addition to the expression data. Several types of prior knowl-
edge are available, including gene annotations (GO [3], KEGG [23]), collections
of small-scale regulatory pathways (e.g. [40]) and large scale protein-protein
interaction (PPI) and metabolic networks (e.g. [22, 38, 37, 1, 24]).

Several studies integrate network knowledge into gene expression analysis:
A spectral approach is taken by Rapaport et al.[35] for the purpose of noise
reduction based on network topology. Ideker and colleagues [10, 27] substitute
the use of expression levels of individual genes with an aggregate of the expres-
sion levels of a set of genes within a subnetwork, greedily searching for such
subnetwork markers within the network. Kuang and colleagues [19, 41] add
network data into a loss function using an optimization framework approach for
gene expression pro�le classi�cation, and Zhu et al. [49] add it by introducing
an alternative regularization term to an SVM classi�er objective function.

In order to �nd candidate genes that may serve as strong leads for down-
stream research, Nitsch et al. [31] o�er to score a gene using its neighbors'
scores. The authors aim at �nding what they call "disease causing genes", and
do not look at subsequent learning tasks such as classi�cation or clustering.
Last, Wei and colleagues [46, 47] take a statistical approach built on a mixture
model, assuming two populations of genes - di�erentially expressed (DE) and
equally expressed (EE), integrating the network by assuming that genes that are
neighbors in some pathway are more likely to belong to the same population.

In this work we introduce a novel kernel we call NICK - a Network-Induced
Classi�cation Kernel for SVM, encapsulating the protein network topology and
the relations between the di�erent features. NICK is derived analytically by
integrating a co-expression assumption into the SVM framework and can be used
within any kernel method or as a plain linear transformation of the data that
integrates network information into the data. We compared the performance
of NICK within SVM classi�cation to that of linear kernel SVM, and to two
additional existing methods on data from a number of gene expression case-
control studies. NICK outperforms a linear kernel in most settings and is found
to be up to 250 times faster than the best extent method, achieving better or
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similar classi�cation performance.

2 Results and Discussion

We �rst test and validate the assumption that genes that are close on the net-
work are likely to have similar expression. Second, to assess if network informa-
tion is truly helpful, we test two current methods that combine expression and
network data. Surprisingly, we show that the network is not really helpful in
one of them. Last, we introduce NICK and compare its performance to other
methods.

2.1 Large Scale Networks are Informative to Gene Ex-

pression Analysis

The basis of using biological networks to enhance biomarker selection is the
assumption that genes that are closer on the network are likely to have more
similar expression. This co-expression assumption is made, for example, by Ra-
paport et al. [35] and was validated to some extent, for example by Jensen et al.
[21]. We �rst sought to systematically test this assumption using the STRING
network [38, 22]. To this end, we partitioned the gene pairs into several dis-
tinct populations according to their distance in the network and compared the
distribution of absolute Pearson correlations of expression among the popula-
tions. The Pearson correlation was calculated using the expression data of [45],
containing 286 expression pro�les of 22,000 RNA transcripts each.

Overall, the mean correlation of adjacent genes (r = 0.123) is only slightly
higher than that of distant (non-adjacent) genes (r = 0.111), but this di�er-
ence is highly signi�cant (p-value< 7.24× 10−31, one-tail t-test). Moreover, by
partitioning the pairs according to their distance, we found that the larger the
distance between two nodes, the lower the correlation between their expression
pro�les (Table 1). On the other hand, adjacent pairs that are connected by
multiple two edge-paths obtained higher mean correlation than other adjacent
pairs. See Materials and Methods for more details.

We also compared the correlation distribution of each gene pair subpopu-
lation to that of the adjacent pairs population (Figure 1). The percentage of
adjacent genes that exhibit high correlation values is higher than that of distant
genes, and this percentage decreases with gene distance. The opposite is true
for the low correlation range. Adjacent genes that are also highly connected, as
measured by their membership in multiple 3-cliques, show even higher percent-
age in the high correlation range.

A second co-expression assumption is used in the literature in the case of
labeled data: a gene is termed di�erentially expressed if its expression level
varies markedly between two labeled sets of samples (e.g. cases and controls).
The assumption states (e.g. [47]) that genes that are closer in the network will
tend to have more similar di�erential expression pattern: they tend to change or
not to change together among the two sets of samples. This assumption follows
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Figure 1: Relation of gene pair expression correlation to the pair's
physical closeness. The graph shows the distribution of correlation levels (in
their absolute values) of gene pairs as a function of the pair population they
belong to. The color indicates di�erent levels of correlations. For each level and
population, the Correlation Stacked Probability on the y-axis is the (stacked)
probability that a pair exhibits the correlation level given its population. The
probability for low correlation (|r| < 0.2, colored green) is higher in distant
genes than in adjacent genes. The probability for high correlation (|r| > 0.3,
colored red) is higher for adjacent genes than for distant genes. In parentheses -
the number of pairs sampled in each population. For populations of gene-pairs
that are also members of k 3-cliques, the greater the number of 3-cliques the
pair shares, the higher the percentage of highly correlated pairs.
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Pair population (sample size) Mean corr. Signi�cance
Adjacent-baseline (15340) 0.12302 N\ A

Distant (19978) 0.11078 7.24× 10−31

2-nodes away (654) 0.11746 6.99× 10−2

3-nodes away (3171) 0.11527 1.33× 10−5

4-nodes away (7733) 0.11167 7.24× 10−18

5-nodes away (4453) 0.11115 1.68× 10−14

6-nodes away (1207) 0.11263 9.56× 10−5

7+ nodes away (2755) 0.10857 9.65× 10−15

Adjacent members in 1 3-clique (5625) 0.1303 1.53× 10−5

Adjacent members in 2 3-cliques (2683) 0.13555 1.84× 10−7

Adjacent members in 3 3-cliques (1485) 0.14518 3.13× 10−11

Adjacent members in 5 3-cliques (622) 0.15377 8.83× 10−9

Table 1: Mean correlation in expression among di�erent gene pair
populations. The right column measures the probability that the samples of
the population and of the baseline came from the same distribution (t-test).

the co-expression assumption: if close genes tend to co-express then if one gene is
di�erentially expressed, then its neighbors will tend to be di�erentially expressed
as well.

Often, labeled datasets are used to build a model which can later be used
to classify expression pro�les of unknown class. In such a model, an additional
assumption (e.g. [19]) is that genes that are close in the network will tend to
have similar contribution to the classi�cation model . Again, this assumption
follows the co-expression assumption: if close genes tend to co-express they are
also likely to have similar contribution to the classi�cation model.

2.2 Does the Network Make a Di�erence?

Chuang et al. [10] reported on classi�cation using subnetworks as features,
combining expression and protein interaction data. The developed algorithm,
PinnacleZ, showed improvement in comparison to selecting genes independently
using t-test. We wanted to test whether this improvement was due to the added
biological information in the protein network. For this test, we randomly per-
muted gene names in the network, and used the expression data together with
the permuted network for feature selection and classi�cation. The randomized
networks preserve the topology of the original network, but dissociate any cor-
relation they may have with the expression pro�les. The feature selection and
classi�cation process was repeated 50 times for the true and randomly permuted
networks, and results were quanti�ed using AUC score (see Methods).

The test was conducted on two breast cancer datasets ([45], [42]) using two
classi�cation algorithms. As seen in Figure 2, using the real network does not
give results that are better on average than using a permuted one.

We also conducted a single run comparison on eight more datasets, using two
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Figure 2: PinnacleZ performance is indi�erent to the underlying net-
work. The �gure presents the classi�cation performance based on features se-
lected by the PinnacleZ algorithm - AUC average and standard deviation of 50
runs of PinnacleZ using the STRING network and of 50 di�erent permutations
of the network. Results are shown for two di�erent classi�cation algorithms and
two di�erent datasets.

di�erent PPI networks - STRING [22] (April 2008, containing 6243 genes and
19102 edges) and IntAct [24, 1] (June 2008, containing 9178 genes and 17609
edges), and Naive Bayes as classi�er. The results (Figure 3) show that both the
true and permuted networks improved over the t-test classi�cation, but the true
network is not better than the permuted ones.

PinnacleZ starts from each gene as seed and uses the network neighbors (up
to distance d) to greedily improve the subnetwork's predictive power. In view
of the results above, the improvement in using the network over t-test, does not
seem to be due to the biological content of the network. We believe that the
improvement is due to the greedy search the algorithm performs and not due
to the true network topology. The network topology merely limits the subset
of genes that are reachable from every node in the greedy improvement step.
If this subset is large enough, the greedy algorithm will �nd a combination of
genes within this subset that will improve the classi�cation results, regardless
of the validity of the biological interactions in this subset. Hence, permuted
networks, which allow a search space of roughly the same size but are not true
biological interactions, perform equally well.

In a similar test on the HyperGene algorithm [19], none of the randomized
networks outperformed the real network, resulting a signi�cant performance
decrease (p-value < 10−13, t-test) when substituting the real network with a
permuted one. On the van't Veer dataset [43], average AUC scores for Hyper-
Gene with 50 randomized networks ranged between 0.7024 and 0.8095, while
5-fold CV average score using the real network used in [19] was 0.845 for SVM
and 0.893 for the HyperGene algorithm. In this case it seems that the topology
of the network does play a role in the improvement achieved.
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Figure 3: Performance of PinnacleZ algorithm on the original and per-
muted networks. The �gures present the classi�cation performance of a Naive
Bayes classi�er, based on top 200 features selected by t-Test and the PinnacleZ
algorithm with the original network and with a randomized network. The test
was repeated using two di�erent networks (STRING [22] and human PPI net-
work [24, 1]) on eight di�erent datasets ([33, 36, 26, 17, 2, 34, 28])

2.3 NICK - a Network-Induced Classi�cation Kernel

We developed a novel method for integrating network information into the clas-
si�cation process. Our method, called NICK (Network Induced Classi�cation
Kernel) builds a kernel that is based on the whole network, taking into account
both distance and connectivity level between every two nodes. We summarize
the method here brie�y. See the Methods section for the complete details.

We modi�ed the original SVM [44] objective function to re�ect the assump-
tion that close genes in the network should contribute similarly to the classi�-
cation. We assume the network is a simple undirected graph G = (V,E) with a
set of nodes V and a set of edges E (each edge is represented by a pair of nodes
(i, j) where i, j ∈ V ). Our modi�ed SVM problem is de�ned as:

min
w,w0

1

2
‖w‖2 + 1

2
β
∑

(j,k)∈E

(wj − wk)
2


subject to

(wTxi + w0) · yi ≥ 1 for i = 1, . . . , n

where xi is a vector of gene expression values representing the i'th sample and
yi is the i'th sample's label, yi ∈ {−1, 1}, and each gene (feature) i corresponds
to a node in the network. We seek a vector of weights w, one weight per feature,
that are regularized by the term 1

2β
∑

(j,k)∈E(wj − wk)
2 so that the di�erence
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between weights of adjacent nodes will be minimized. This term is similar to
the one used in [19] in a non-SVM formulation. β ≥ 0 is a trade-o� parameter
where larger values of β give a stronger e�ect of the network on the model. The
formulation with β = 0 is equivalent to the standard SVM.

This problem is a quadratic programming problem whose solution is equiv-
alent to that of SVM with a new kernel. A derivation of a slightly more general
problem is described in detail in Methods. The equivalence of our modi�ed
SVM problem to the standard SVM allows us to use any theory, algorithms and
tools for solving the SVM problem in order to solve our problem as well.

The kernel matrix, denoted Q, can be expressed in terms of the Laplacian
matrix B of the graph as Q = (I+ βB)

−1
, where I is the identity matrix. We

show that the kernel can further decompose by means of Cholesky decomposition
to a transformation matrix. Brie�y, this transformation constructs a set of
meta-features where each meta-feature is associated with a single feature (the
pivot), and is a linear combination of other features within the pivot's connected
component.

The kernel may be used in problems other than SVM that utilize kernel
methods, and since it does not depend on the sample labels, it can be applied
to unsupervised kernel methods. The transformation matrix can also be applied
to other data analysis problems that do not rely on kernels.

Interestingly, the matrix Q, which we analytically derived from our regu-
larized SVM formulation, was investigated for its algebraic properties and was
applied in the �elds of chemistry and electronic engineering [14, 29, 30, 6, 7].

2.4 Improving Classi�cation Performance using NICK

We tested the method on nine case-control gene expression datasets, of breast
and lung tumors. The datasets are listed in Table 2. All datasets relate to cancer
prognosis, aiming at di�erentiating tumors of patients with good prognosis from
those with poor prognosis, as re�ected by survival time, or metastasis free period
after the expression pro�le was taken. As a reference network, we used STRING
[22] (April 2008), containing 6243 genes (nodes) and 19102 interactions (edges).

Results can be seen in Figure 4. For two datasets (Larsen [26] and Chin[8]),
the baseline AUC was under 0.5 and thus they were excluded. For each dataset,
we compared the CV AUC score of the baseline SVM (β = 0) with the AUC
score with di�erent values of β. Out of the seven datasets, �ve (Raponi, van
t' Veer, Nevins, Van de Vijver and Ivshina) showed an improvement with all
values of β, one (Wang) showed a mixed result, and one (Pawitan) showed
performance decrease for all values of β. In order to test for signi�cance, we
conducted a pairwise t-Test for each dataset, keeping the same cross validation
folds, comparing the AUC for di�ernet positive values β against the baseline
SVM (β = 0). A total of 49 tests (7 datasets, 7 di�erent values of β) were done.
38 tests showed improvement in the AUC score, 13 of them (in the datasets
of Ivshina, Van 't veer and Nevins) found to be signi�cant (FDR<0.05). On
the other hand, none of the 11 tests that showed performance decrease were
statistically signi�cant. One dataset showed signi�cant improvement through
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Dataset First Author Reference Cancer Type n

GSE5123 Larsen [26] Lung 51
GSE4573 Raponi [36] Lung 130
vant' Veer vant' Veer [43] Breast 117
E-TABM158 Chin [8] Breast 118
GSE2034 Wang [45] Breast 286
GSE3141 Nevins [5] Lung 111

VanDeVijver van de Vijver [42] Breast 295
GSE4922; GSE1456 Ivshina [20] Breast 99

Pawitan Pawitan [33] Breast 159

Table 2: The datasets used in the experimental results. n is the number of
samples in the study.

all values of β (Ivshina). All signi�cance tests were corrected for multiple testing,
accounting for the multiple datasets, and multiple values of β. Figure 4 also
shows that for most datasets showing improvement when using NICK, increasing
β beyond 1 had minor e�ect. We thus used β = 1 as the default value in
subsequent tests.

In order to test whether the improvement is indeed due to the network data,
we further tested the NICK performance with randomized networks, as we did
with HyperGene and PinnacleZ. We generated 50 di�erent randomized networks
and ran the NICK algorithm (with β = 1) using each randomized network on
the �ve datasets the algorithm showed improvement on, and on the one that
showed mixed results. For each dataset, we measured the average AUC score,
comparing it to the average AUC result obtained with the original STRING
network. Table 3 summarizes the results. On three datasets the score with the
real network ranked above all scores achieved with random networks, and for
the remaining two it ranked 5 and 11. For comparison, on the Wang dataset,
where NICK gave mixed results, the real network is ranked 35 among the total
51 networks (Figure 5d). Figure 5 shows the distribution of AUC scores for
three of the datasets.

2.5 Comparison to Other Methods

We compared the performance of NICK to the HyperGene algorithm [19] and
to two algorithms that do not use network information: a linear kernel SVM
as used by NICK, and NetProp, a network propagation algorithm [48] as used
by HyperGene (for HyperGene we used a MATLAB® implementation kindly
provided to us by the authors). For the comparison, we used four breast cancer
datasets - van 't Veer [43], van de Vijver [42], Ivshina [20] and Wang [45].

We compared the algorithms with feature sets of di�erent sizes ranging from
25 to 500 genes. Table 4 and Figure 6 summarize the results. In order to
limit the running time of HyperGene, its authors set a threshold of 10,000
iterations for each internal optimization routine. In some cases, the quadratic
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Figure 4: Classi�cation performance comparison. The �gure displays aver-
age Area Under ROC curve measurements for SVM classi�cation of the di�erent
datasets, using the NICK kernel with di�erent values of β. The yellow shaded
area where β = 0 serves as a baseline and is equivalent to standard SVM. B -
breast cancer, L - lung cancer.

Dataset Real network Randomized networks Real network rank

van 't Veer 0.687 0.652± 0.0128 1
van de Vijver 0.636 0.618± 0.012 1

Ivshina 0.619 0.564± 0.012 1
Raponi 0.574 0.563 + 0.027 11
Nevins 0.566 0.547± 0.025 5
Wang 0.576 0.58± 0.029 35

Table 3: Comparison of classi�cation performance using true and ran-
domized networks. For each dataset, the table presents the AUC score
achieved with the real network vs. the average and range of AUC score achieved
with 50 randomized networks. The last column shows the rank of the real net-
work AUC score among the total 51 networks (50 randomized and 1 real).
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(a) (b)

(c) (d)

Figure 5: Distribution of AUC scores in random networks vs. real
network. Results for the van 't Veer (a), Ivshina (b), van de Vijver (c) and
Wang (d) datasets. Each plot shows a histogram of AUC scores obtained by
running the algorithm with 50 di�erent randomized STRING networks. The red
arrow denotes the average score across folds obtained by running the algorithm
with the real network. (a), (b) and (c) show datasets that the method exhibited
improvement on. In these cases, the real network is ranked above all randomized
network runs. In (d), on a dataset where the method did not show improvement,
the real network is ranked 35 among the 50 randomized networks.
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(a) (b)

Figure 6: Performance Comparison. The �gure presents the data in Table
4 comparing four di�erent algorithms on two breast cancer datasets - (a) van
de Vijver. (b) Wang. See Table 4 for full details.

programming solver exceeded the above threshold during an internal iteration
of the HyperGene algorithm and thus failed to �nd an optimal solution before
optimization process was �nished. The HyperGene score in these cases could
be low due to the incomplete optimization.

NICK ranks �rst in 7 of the 20 cases tested, the net propagation algorithm
ranks �rst in 7 others, SVM ranks �rst in 4 cases, and HyperGene ranks �rst
in two cases. HyperGene ranks last in 15 of the 20 cases. Notably, NICK's
average rank is 1.5, compared to 2.25 ,3.5 and 2.75 for NetProp, HyperGene
and SVM, respectively. While the gaps between the best and second best scores
are sometimes very small, the gap between the best and worst scores is often
quite large. Note also that the number of features giving the highest score is
not the same in di�erent datasets.

We ran the four algorithms on a single core of 2-quad core Intel Xeon 5160
at 2.33 Ghz with 16GB memory running 64 bit Linux using MathWorks MAT-
LAB version 7.2. Figure 7 shows a comparison of running times. Times include
preprocessing and training on a single fold. Clearly, NICK shows a dramatic
advantage over HyperGene and NetProp when the number of features grows.
Both HyperGene and NICK require some preprocessing of the data using matrix
operations. Following this preprocessing NICK simply runs plain linear SVM,
while HyperGene runs an iterative process solving a number of quadratic pro-
gramming problems. For example, using 500 features on the Ivshina dataset,
with a network of 2, 000 nodes and 9, 914 edges, NICK takes less than 5 seconds
to run a single fold, which is about 250 times faster than HyperGene. NICK and
SVM take roughly constant time, while HyperGene and NetProp show running
times growing exponentially with the feature set size.
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Dataset # Classi�er
Genes NetProp HyperGene SVM NICK

Ivshina 25 0.6289 0 .4893 0.6336 0.6665
50 0.6756 0 .5352 0.6725 0.6327
100 0.6238 0 .6015 * 0.6366 0.6103
250 0.6034 0.6114 * 0.6098 0 .5904
500 0.6184 0 .5606 * 0.6084 0.6266

Wang 25 0.6466 0 .6456 0.6592 0.6562
50 0.6398 0 .6123 0.6713 0.6732
100 0.6609 0 .5958 0.6886 0.6918
250 0.6782 0 .6007 0.6937 0.6861
500 0.6792 0 .5805 * 0.6584 0.6623

van de Vivjer 25 0.7225 0.7224 0 .7186 0.7257
50 0.7268 0.7196 0.7114 0 .6788
100 0.7316 0 .6977 0.7262 0.7208
250 0.743 0 .6757 0.755 0.7564
500 0.7456 0 .7023 0.7508 0.7578

van 't Veer 25 0.8452 0.7738 0 .7381 0.7857
50 0.8333 0 .7976 0.8095 0.8214
100 0.8452 0 .7143 0.8214 0.8333
250 0.8214 0 .8095 0.8333 0.8214
500 0 .8214 0.869 0.8333 0.8333

Table 4: Performance Comparison. Area under ROC curve results of four
algorithms with four breast cancer datasets. The table shows the AUC average
of 5-fold cross validation for Ivshina, Wang and van de Vijver datasets, and
an AUC for a single run on the original training and test set from van 't Veer
based on data compiled by Hwang et al. Numbers in bold (italics) indicate
the highest (lowest) score among the four algorithms in each row. The * mark
denotes incomplete runs of the HyperGene algorithm aborted by the quadratic
programming solver.
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(a) (b)

Figure 7: Running Time Comparison. The �gure shows running times of
the two algorithms on di�erent datasets with di�erent number of features. Time
is displayed in log scale (seconds). (a) van de Vijver. (b) Wang.

2.6 Discussion

Due to the di�culty of classifying disease expression pro�les, it was suggested
to integrate prior knowledge encapsulated in gene networks into the analysis
process. The basic assumption behind this suggestion is that gene networks
contain added information about gene expression, which can assist in the clas-
si�cation. Our analysis validates this assumption experimentally, showing that
network proximity correlates with higher level of co-expression. On the other
hand, we showed that not all extant algorithms truly make use of this network
information in their analysis, and sometimes the improvement over choosing
independent genes as features is obtainable using randomized networks.

In this study we introduced NICK, a kernel based on the network topology.
In addition to its use in kernel methods, it can also be used as a linear trans-
formation of the input in settings that do not involve kernels. Given a graph
(or any non-negative similarity matrix), obtaining the NICK kernel matrix is
straightforward. The presented decomposition of the kernel matrix allows for
reducing the original problem to the standard SVM problem by simply perform-
ing a linear transformation on the data. After the transformation, any SVM
implementation can be used. The method does not involve any search procedure
over the network. It is very fast, and scales well with the network size and the
number of features. Compared to the HyperGene algorithm and to basic SVM,
NICK usually shows better classi�cation quality.

Although SVM is a supervised classi�cation algorithm, which is trained on
labeled data, eventually the kernel and transformation do not depend on the
class labels of the samples. In fact, they depend only on the network itself,
while the data and labels information is restricted to the constraints of the opti-
mization problem. Interpretation of the transformation matrix is quite straight-
forward. It is very clear how a meta-feature is constructed from its neighbor
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features, and the network topology is directly re�ected in the weights of original
features in the meta-feature. Since the matrices are independent of the data,
the transformation and kernel can be used towards unsupervised methods such
as clustering or unsupervised feature selection and extraction as well. In partic-
ular, methods that use ‖w‖22 regularization, such as Ridge regression [18] can
justi�ably use our regularization term or kernel.

NICK has several limitations. One obvious limitation (which holds for any
PPI-based approach) is the network quality. PPI networks are known to be in-
complete and error-prone [9]. In addition, most network edges originated from
in-vitro experiments, which may di�er from in-vivo conditions. Also, semanti-
cally, networks are compiled from pairwise relations, and it is hard to interpret
paths and topology of the whole network, as di�erent conditions may yield dif-
ferent sets of edges.

NICK is based on the assumption that close genes should contribute similarly
to the classi�cation model. In some cases the opposite may be true, e.g., when
one protein suppresses the function of another protein. Also, the leap from
mRNA co-expression to protein interactions in the network level is not trivial,
and as we have shown, the two signals are linked in a highly signi�cant way, but
linkage is not very strong.

The NICK transformation matrix has some limitations. The �rst is due
to the global nature of the transformation. A single meta-feature can be a
weighted average of all features in its connected component, so even distant
features contribute to the meta-feature's value, which may not re�ect the true
biology. Also, the transformation matrix is triangular, which poses two prob-
lems in interpreting it. The �rst is that the meta-feature corresponding to the
k-th feature (column) includes original features {k, k + 1, ..., n} in its connected
component, and as we advance in the columns of the matrix, meta-features cor-
responding to the columns include less and less features. Hence, meta-features
are highly overlapping (in terms of original features they contain) with a large
variability in size. This makes every meta-feature by itself hard to interpret
biologically. Second, the transformation depends on the order of the nodes in
the initial adjacency matrix.

Finally, the transformation does not reduce the dimension of the data, nei-
ther by selecting a subset of the original features, nor by extracting a small
number of new meta-features. The number of meta-features is identical to the
number of original features. Hence, it does not directly allow feature selection

2.6.1 When is the Network Informative?

We compared NICK to two algorithms that use network data for classi�cation
purposes. In one of them (PinnacleZ) the biological information in the network
apparently did not contribute to the performance improvement, while in the
other (HyperGene) it did. Di�erences among the methods (e.g. in network size,
edge de�nition, and the algorithm that utilizes the network) may explain this
phenomenon and require further study.

The lower performance improvement on some datasets than on others is not
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fully explainable yet. It could be due to di�erent measurement technology (no-
tably, the two datasets that obtained the best results were pro�led using custom
Rosetta cDNAs), due to di�erence in sample purity in di�erent cancer types, or
due to uneven representation within the network of the pathways involved in dif-
ferent cancers. In fact, we observed positive - yet mild - correlation between the
AUC score obtained for a dataset and the level of coexpression of neighboring
genes in the networks on that dataset (r2 = 0.36), which indeed hints to possi-
ble impact of the network on the classi�cation accuracy. This question requires
further study on additional datasets. Nevertheless, in datasets that did not ex-
hibit improvement the network did not worsen the results. Remarkedly, when
performance improved, the improvement was achieved even with low relative
weight (β) to the network information.

3 Methods

3.1 Testing Network Informativeness

Let x and y be vectors of expression measurements of two genes over a given
set of samples. To measure the level of co-expression of the two genes we used
Pearson correlation between x and y. To account for both negative and positive
correlation we used the absolute value of the Pearson correlation.

In order to test for network informativeness with respect to expression data,
we �rst grouped pairs of genes into di�erent populations according to the pairs'
connectivity within the network. As a baseline we sampled random pairs from
the population of all gene pairs that are neighbors in the network, comparing
the distribution of correlations to non-neighbors (distant) pairs. We also looked
at more speci�c populations of pairs according to their distance - pairs that are
3, 4, 5, 6 nodes away, and pairs that are 7 or more nodes away, including nodes
that have no path between them.

Distance is a highly local measure, and does not take into account the exis-
tence of multiple paths between nodes. We were also interested in a connectivity
measure that will take into account multiple connections, under the assumptions
that due to the noisy nature of large scale networks, multiple paths strengthen
the con�dence in the relation between two nodes in the network. To this end,
we looked at few additional gene-pairs populations - adjacent genes to those
that are also members in one or more 3-cliques. We gathered those that are
members in 2, 3, 4 and 5 3-cliques. A toy example illustrating the di�erent
gene-pair populations samples can be seen in Figure 8.

We compared the mean absolute Pearson correlation within each population
to the baseline population using t-test.

3.2 Testing for Network Impact

We wanted to test whether the performance of di�erent algorithms is in�uenced
by the real network's topology. To this end we ran the algorithms using both real
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Figure 8: Toy example of gene pair populations. Among the adjacent
genes in the network are: (a,b), (c,d) and (e,f). Pair (g,h) is 2 nodes away,
and pair (i,j) is not connected at all and thus considered as 7+ nodes away.
Pair (c,d) is considered more connected than pair (a,b), as it is also a member
of a 3-clique formed by node n. This pair is described as adjacent member in
one 3-clique. Pair (e,f) has an even higher connectivity, and is described as
adjacent which is also a member in three 3-cliques, using the three 3-cliques
formed with the three nodes marked k, l and m.
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and random networks. We randomized the networks by permuting the network
node's names such that it will maintain its topology, but lose any correlation
that it might have had with the expression data. For each algorithm we repeated
the test with 50 di�erent network permutations, and with 50 runs of the original
network. We reported the average AUC score using 5 fold cross validation [25]
using the real network, and an average AUC score using 5 fold cross validation
for each network permutation.

There are two elements of randomness in In PinnacleZ [10] that required us
to run the original algorithm multiple times for comparison. The �rst is the
signi�cance tests: Although the algorithm is deterministic, and will always �nd
the same subnetwork starting from a speci�c seed, the calculation of signi�cance
level of the resulting subnetwork is based on sampling and hence may be di�erent
every time. The second source of randomness is due to the di�erent folds used
to measure the classi�cation performance.

3.3 Derivation of NICK

For simplicity we start from the standard linearly separable SVM formula-
tion [44]:

min
w,w0

{
1

2
‖w‖2

}
(1)

subject to

(wTxi + w0) · yi ≥ 1 for any i = 1, . . . , n

Here xi is the gene expression vector (or feature vector) representing the
i'th sample and yi is the i'th sample's label, yi ∈ {−1, 1}. The number of
coordinates of xi will be denoted by p.

Let A be a symmetric p × p matrix with non-negative entries, where Ai,j

stands for the similarity level between genes i and j and Ai,i = 0 . In order for
the weights to be closer for genes that are more similar, we wish to minimize
the following mean square pairwise di�erence expression:

1

2

p∑
j=1

p∑
k=j+1

(
Aj,k(wj − wk)

2
)

We add this expression to the objective function, introducing a non-negative
tradeo� parameter β ≥ 0:

min
w,w0

1

2
‖w‖2 + 1

2
β

p∑
j=1

 p∑
k=j+1

(
Aj,k(wj − wk)

2
) (2)

Let Ã be a p × p diagonal matrix with the sum of row j of A at Aj,j ,

Ãj,k = δj,k
∑

l Aj,l. Here δj,k is the Kronecker delta with δj,k = 1 if j = k and
δj,k = 0 otherwise.

18



Following [4], the matrix notation of Equation 2 is:

min
w,w0

{
1

2
wTw +

1

2
βwT (Ã−A)w

}
(3)

Note that for a simple adjacency matrix based on a graph, whereAi,j = 1 if i

and j are adjacent and Ai,j = 0 if they are not, Ã is a diagonal matrix with Ãi,i

being the degree of node i, and B = Ã−A is known as the Laplacian Matrix
of the graph [12]. The newly added term captures the assumption that close
genes are more likely to have similar expression and thus to similarly contribute
to the learned classi�cation model.

A solution to the original SVM quadratic programming problem is obtained
by transforming the optimization problem to the dual form. We introduce
Lagrange multipliers α1, . . . , αn, αi ≥ 0, one for each constraint (corresponding
to a single sample point). The primal Lagrangian is:

LP =
1

2
wTw +

1

2
βwTBw −

n∑
i=1

αi

((
xT
i w + w0

)
yi − 1

)
=

1

2
wT (I+ βB)w −

n∑
i=1

αi

((
xT
i w + w0

)
yi − 1

)
(4)

In order to reach the same solution of (3), we need to �nd a saddle point of
LP where it is minimized with respect to w, w0 and maximized with respect to
the Lagrange multipliers α1, . . . , αn. We di�erentiate LP with respect to w0 to
get:

∂LP

∂w0
=

n∑
i=1

αiyi

and set it equal to 0 to get:

n∑
i=1

αiyi = 0 (5)

We di�erentiate LP with respect to w to get:

∂LP

∂w
= (I+ βB)w −

n∑
i=1

αiyixi

and again set it equal to 0 to get:

w = (I+ βB)−1
n∑

i=1

αiyixi (6)

Notice that I+βB is a positive de�nite matrix by construction, hence its in-
verse is well de�ned and unique. By substituting w into (4) we get the following
dual optimization problem:
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max
α


n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i (I+ βB)

−1
xj

 (7)

subject to

n∑
i=1

αiyi = 0 for any i = 1, . . . , n

αi ≥ 0 for any i = 1, . . . , n

As the matrix I + βB is both positive de�nite and symmetric, (I+ βB)
−1

can be decomposed using Cholesky decomposition [15]: there exists an lower-

triangular matrix L such that (I+ βB)
−1

= LLT . Plugging LLT into (7) yields:

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj
(
xT
i L
) (

LTxj

)
(8)

Remarkably, this expression has exactly the same form as the dual problem
for the standard SVM, with x′i = LTxi. It is possible, then, to perform a linear
transformation of the sample vectors xi using L to obtain a set of transformed
samples where xnew

i = xT
i L. Now we can run the regular SVM optimization

procedure in order to learn a model of the transformed samples. In order to
classify a new unseen sample, we should �rst transform it in the same manner,
using L and then use the trained model to classify it. We note that although
we derived the result (8) for the linearly separable case, one gets an identical
expression (albeit with slightly di�erent constraints on the Lagrange multipliers
αi), in the soft margin setting [11].

3.3.1 Integration of Di�erent Information Sources

We comment that the same formalism described above can naturally integrate
di�erent sources of information about relations between genes. Indeed, given
several gene networks, e.g. PPI network, metabolic networks, signaling networks
and similarities based on GO annotation, one needs to represent each network
as a matrix with non negative elements, As , such that As

ij represents the
�strength� of the relations between genes i and j in network s. Now similarly
to Eq. 2 one needs to solve the following optimization problem,

min
w,w0

1

2
‖w‖2 + 1

2

∑
s

βs

p∑
j=1

 p∑
k=j+1

(
As

j,k(wj − wk)
2
) (9)

βs are hyper parameters that control the relative contribution of the di�erent
networks. It is easy to see that the dual of Eq. 9 has the form of Eq. 8 so it
can easily be solved using standard SVM tools.
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Notice that to ensure that Eq. 9 is positive semi-de�nite, only undirected
networks, associated with symmetric matrices As, can be incorporated into the
current formalism.

3.4 Dimension Reduction

Applying our algorithm to gene expression data required dimension reduction as
the data is characterized by a large feature dimension p with respect to the num-
ber of samples n (See for example [16]). We thus preprocessed our data through-
out our experiments by �rst selecting p genes with highest variance among the
samples, regardless of their labeling. We then constructed a subgraph G of the
protein interaction network, containing only proteins corresponding to the se-
lected p genes. We used p = 2, 000 throughout oure experiments and calculated
our kernel and transformation matrix L based on G, preserving much of the
original network's topology, based on genes that are relevant to the expression
data.

We then selected the top k di�erentially expressed genes ranked by t-test.
Similar to the choice of [10], we used k = 200 when comparing the algorithm
performance with di�erent values of β. When comparing to other methods we
used di�erent values for k ranging from 25 to 500.

Each row (and column) of L is associated with one gene we term as the
pivot gene. For a given sample, L transforms p original feature values into
p meta-feature values, each of which is a weighted average of other features'
values. Note that if we generate the meta-features according to the order of the
rows of L, the i'th meta-feature would turn out to be a linear combination of
exactly p − i + 1 features (due to the triangular form of L). Instead of using
all p meta-features, we only used k meta-features, each of which is a based on
all p original features. We did this by zeroing all the rows in L that are not
associated with the k chosen genes as illustrated in Figure 9. We named the
restricted matrix L′. During cross validation, feature selection and restriction
of L was conducted separately for each training fold.

3.5 Model training and testing

For each dataset, we took the original expression data and transformed each
expression vector xi into xnew

i by xnew
i = xT

i L
′. We used the transformed data

for training and testing a standard linear kernel SVM estimating the perfor-
mance of the output classi�er by measuring the average AUC using 5-fold cross
validation. We repeated the process for di�erent values of β ranging from 0.05
to 10.
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