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Abstract 

 

Models of gene regulatory networks (GRNs) attempt to explain the complex processes 

that determine cells’ behavior, such as differentiation, metabolism, and the cell cycle. The 

advent of high-throughput data generation technologies has allowed researchers to fit 

theoretical models to experimental data on gene-expression profiles. GRNs are often 

represented using logical models. These models require that real-valued measurements be 

converted to discrete levels, such as on/off, but the discretization often introduces 

inconsistencies into the data.  

  

Dimitrova et al. posed the problem of efficiently finding a parsimonious resolution of the 

introduced inconsistencies. We show that reconstruction of a logical GRN that minimizes 

the errors is NP-complete; so that an efficient exact algorithm for the problem is not 

likely to exist. We present a probabilistic formulation of the problem that circumvents 

discretization of expression data. We phrase the problem of error reduction as a minimum 

entropy problem, develop a heuristic algorithm for it, and evaluate its performance on 

mouse embryonic stem cell data. The constructed model displays high consistency with 

prior biological knowledge. Despite the oversimplification of a discrete model, we show 

that it is superior to raw experimental measurements and demonstrates a highly 

significant level of identical regulatory logic among co-regulated genes. 

 

 

1. Introduction 

  

Gene regulatory networks (GRNs) play an important role in orchestrating the complex 

processes of life. An understanding of these networks and their behavior can elucidate 

complex processes of disease progression. The logical modeling approach describes a 

GRN and its dynamics as a set of entities that take discrete levels (e.g., active/inactive).  

Each entity's level is a function of the levels of certain other entities. . Models can assume 
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synchronous or asynchronous updates. The first logical models in biology were presented 

in the seventies by Kauffman, Thomas and colleagues (Glass and Kauffman, 

1973,Thomas, 1973). For a review on logical models see Ref. (Karlebach and Shamir, 

2008). In recent years, mapping between logical values and continuous measurements has 

been revisited and empowered by high-throughput experimental data.  

Akutsu et al. proposed a polynomial algorithm that infers regulatory interactions from 

experimental data by finding for each gene a Boolean function that predicts its level with 

maximal accuracy (Akutsu, et al, 1999). The inputs of that function are the levels of the 

gene's regulators. This algorithm requires that continuous expression data first be 

discretized into Boolean values, i.e. that each real value will be converted into a Boolean 

one, and then it selects the function and regulators that are in best agreement with the 

discretized data. A later extension allows each discretized sample to be associated with a 

continuous confidence value (Lähdesmäki, H., Shmulevich, I. et al. 2003), namely the 

reliability of each microarray profile (a vector of gene expression values) in the dataset. 

Akutsu et al. also studied the case in which only partial experimental data are available, 

and showed that learning the regulation functions in this setting is NP-complete (Akutsu, 

et al, 2009). 

Segal et al. (Segal, et al, 2003) developed a methodology that uses expression data for 

inferring regulatory functions formulated as decision trees: each node of the tree 

corresponds to a regulator, and the level of the regulatee is determined by traversing the 

tree from root to leaf, selecting a child at each node by comparing the regulator's 

continuous expression level to some threshold value. Segal et al.'s algorithm clusters 

genes into groups that have a similar expression pattern and assigns to every cluster its 

set of regulators.  

Shamir and Tanay presented an efficient algorithm that assumes a monotone relationship 

between a transcription factor's (TF) continuous level, its affinity to a target gene and the 

strength of regulation, and uses this assumption to determine whether or not a target gene 

is activated. Since their algorithm requires TF-target affinities, they also suggested a 

method for inferring the affinity of a TF to its target genes (Shamir and Tanay, 2003). 
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The logical rules that govern gene expression were also studied for specific systems. Cox 

et al. (Cox, et al, 2007) created ~300 artificial E. coli promoters and analyzed their 

regulatory logic and other properties, using population-level expression data. The 

promoters were composed from target sites of two activators and two repressors. The 

authors observed that basal activity level and strength of induction for genes regulated by 

a single activator are not correlated. This shows that naïve discretization of expression 

data is likely to produce mistakes. 

It should be noted here that inferring discrete logic from continuous measurements 

depends on the activity threshold of the regulated gene; for example, in a Boolean model 

the output should be 1 when the regulated gene's product is present in a sufficient amount 

to perform its role in the model, such as activating another gene. Thus, the threshold may 

be specific to the regulated gene. In addition, the closer a real expression value is to the 

threshold, the greater the chance that the mapping to a discrete value is incorrect. 

Tsong et al. (Tsong, et al, 2006) identified mating genes that were negatively regulated in 

S.cerevisiae and positively regulated in an ancestral specie. They showed that the change 

in logic occurred in two steps – first, expression became independent of an activator, and 

then it came under the influence of a repressor. The changes occurred due to mutations in 

regulatory sequences, suggesting that changes in regulatory logic may have played a 

major role in modifying organism fitness during evolution. 

Mayo et al. (Mayo, et al, 2006) mutated regulatory sequences in the lac operon of E. coli 

and showed that certain mutations can change the logic. They also found that the logic is 

plastic, i.e., many mutations do not cancel a regulation but rather change its logic. This 

finding further supports the notion that changes in regulatory logic may have played an 

important role in evolution.  

In this study we show that given a model and discretized expression data that contain 

errors, the problem of correcting these errors using a minimal number of changes is 

computationally hard. This resolves an open problem stated in Ref. (Dimitrova, et al, 

2010). In the next section we reformulate the problem probabilistically, and present an 

algorithm for constructing a Boolean model from partial prior knowledge and real-valued 

expression data aimed at providing a practical solution to the problem.   In section 3 we 
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demonstrate the effectiveness of the method by using the algorithm to construct a logical 

model of the mouse embryonic stem cell network, and make some observations about the 

properties of the inferred network. 

 

2. Methods 

 

In a Boolean network model of a GRN, every gene is associated with an entity that can 

take the levels 0 and 1, which correspond to the inactive and active states of the gene, 

respectively. Gene regulation is described by assigning a Boolean function to each gene: 

the levels of a gene's regulators are the inputs of that gene's regulation function, and the 

effect of the regulator levels on the target gene's level is the output of the function. The 

model is synchronous: If time-series data are available, the levels of the regulators of 

each gene at time t-1 determine its level at time t according to its specific regulation 

logic. More formally, if 
t

K

t ee )()1( ,...,  are the (discretized) levels of the entities at time t, 

and if 
i

n

i

i
rr ,...,1  are the regulators of entity i and the regulatory logic is f, then 
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− − − =  for every i, t. If such data are not available, or if the 

time intervals between measurements are relatively long, a steady state can be assumed, 

in which case the regulation function produces an output at time t that agrees with its 

inputs at the same time t. For the sake of discussion, let us assume from now on that the 

data are steady state, though the same method applies to time-series data. 

Comparison of a given model to discretized expression data may reveal discrepancies. A 

discrepancy occurs when the same inputs of a regulation function produce more than one 

output. For example, if a gene has two regulators that take level 0 in two profiles, but the 

gene itself has level 0 in one experiment and level 1 in the other, a discrepancy occurs. 

The source of the discrepancy can be noise or wrong assignment of discrete value to the 

target gene or to one of the regulators. Dimitrova et al. state the need for systematic 

handling of discrepancies as an open problem (Dimitrova, et al, 2010). When there are 

multiple discrepancies, we seek here the simplest explanation – the one that requires a 
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minimal number of changes to the profiles of both the regulators and regulatees. We next 

show that this problem is NP-hard. 

Theorem: Given the topology of a Boolean network model and binary expression 

profiles of the network's genes, resolving the discrepancies with a minimum number of 

changes is NP-hard. 

Proof: We will show a reduction from the NP-complete problem Vertex Cover (Karp, 

1972) to the decision problem: Given a GRN, a set of discretized microarray profiles and 

a number k, can all the discrepancies be resolved by at most k changes to the profiles? 

Let (G(V,E), k) be the input for the Vertex Cover problem, where G(V,E) is an 

undirected graph and k is an integer between 1 and |V|. Construct a GRN as follows: For 

every vertex v in V, add a gene entity v to the GRN. For every edge e=(u,v) in E, define a 

new gene euv and identify the genes that correspond to u and v as the common regulators 

of euv (the regulatee). Figure 1a illustrates this construction. Hence, the original vertices 

are regulators (and are not regulated), and the new vertices correspond to regulatees. The 

set of microarray experiments will contain two profiles. In the first the levels of all the 

genes will be 0. In the second, the levels of all the regulators will be 0 and the levels of 

all the regulatee genes will be 1 (Figure 1b). Since the levels of the regulators are the 

same in both profiles, and the levels of the regulatees are not, there are discrepancies. 

Clearly, this reduction can be performed in polynomial time. 

Suppose there is a vertex cover S of size at most k. For every vertex u that belongs to S, 

change the level of the corresponding gene in the second experiment to 1. Since every 

regulatee corresponds to an edge in G, and its regulators are vertices that are adjacent to 

that edge, for every regulatee at least one of its regulators changes in experiment 2.  

Therefore, all the discrepancies are resolved by at most k changes. 

Now, assume conversely that there are k changes that resolve all discrepancies. If after 

the changes there is a regulatee that has the same level in the two profiles (i.e., its level 

was changed by the solution), and each of its regulators has the same level in the two 

profiles, we will restore that regulatee's level to 0 in profile 1 and 1 in profile 2, and 

change the level of one of its regulators in profile 1. This does not increase the total 

number of changes: The regulatee has regained the levels it had before any changes took 
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place, which cancels at least one change, and a single change was made to a regulator's 

level. We repeat this for every regulatee that changes its levels from the original levels 

assigned by the reduction, and thus obtain a set of at most k changes – all of which are in 

regulator levels – with no discrepancies. Now define a set S that contains the nodes 

corresponding to every regulator that has different values in the two profiles. This set is 

of size at most k. For every edge in G there is a vertex in S that is adjacent to it, because 

every regulatee has at least one regulator that has different levels in the two experiments. 

Therefore, S is a vertex cover. 

It remains to show that the problem is in NP. Given k changes, we perform them and 

check in polynomial time whether there are any discrepancies left. □ 

 

We now approach the problem from a different direction: we return to the real-valued 

expression profiles, and instead of discretizing them, a process that may cause 

discrepancies that are difficult to resolve, we take a probabilistic approach. We interpret 

the real-valued profiles probabilistically, select a set of TF-target interactions that 

minimizes the total entropy, and use the selected topology and the probabilistically-

interpreted profiles to resolve discrepancies. Our algorithm is outlined in Figure 2. 

 

Following is a detailed description of the algorithm. We interpret a vector of continuous 

values as a probability distribution over all possible Boolean vectors of the same 

dimension. In other words, instead of creating a single Boolean vector with probability 1 

for a given continuous vector, we create all possible Boolean vectors of the same 

dimension, and assign each such vector a probability. The probabilities are chosen as 

follows: First normalize the continuous expression values of every gene to have mean 0 

and standard deviation 1.5 (a value determined empirically). After normalization, set the 

probability that a single (one-dimensional) real value c corresponds to the Boolean value 

1 to 
c

e
c −+
=

1

1
)(λ  (the logistic function with parameter value c). The probability that a 

real-valued vector c  corresponds to a specific Boolean vector b  then becomes 
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 entry of c  ( b ). Note that by setting the standard 

deviation value for all the genes one avoids using any parameters in the logistic function. 

Given a continuous dataset of n i.i.d. profiles, the probability of seeing the Boolean 

vector b in this dataset is: 
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In other words, for each Boolean vector the probabilities that each continuous vector 

corresponds to it are averaged. In practice the samples may not be i.i.d, but that 

assumption is made for the sake of this analysis. 

With the probability distribution over all Boolean vectors at hand, information theory can 

be used to evaluate different topologies of the network. Suppose we know which of the 

genes are transcription factors (TFs) and assume that all regulators are TFs. Denote by 

H
C
(x|Yx) the conditional entropy for a gene x and a set Yx of regulators as computed 

using continuous data. We use this notation in order to stress that the conditional entropy 

is a function of continuous values – a fact that will be used by our algorithm. Select for 

every gene x the set Yx of regulators that gives the best HC(x|Yx) score among all sets of 

TFs.  

Since in practice a larger set of regulators will tend to score better than a smaller one, a 

threshold that will separate significant improvement from insignificant improvement is 

needed: when increasing the set of regulators, any improvement less than the threshold 

will be considered insignificant. This threshold can be estimated empirically by 

computing the average and standard deviation of the improvement in entropy that occurs 

when non-regulator genes are assigned as regulators. Improvement that surpasses the 

average by 3 standard deviations will be interpreted as non-random. We refer to this 

threshold value as τ. 
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After the network structure is constructed, steepest descent can be used for decreasing the 

entropy: given the set Yx minimizing the score H
C
(x|Yx) for every gene x, perform 

steepest descent on the score )|( x

genesx

C
YxH∑

∈

  , i.e. on the total entropy of the network.  

We compute the derivative of the total entropy function with respect to each gene and 

regulator and change their profiles in the direction of the gradient, and repeat this 

iteratively until the change in entropy is very small.  

If we had discrete profiles and change a level from 0 to 1, the value of the conditional 

entropy will also change. Since we do not discretize, we have continuous profiles, and 

every function H
C
(x|Yx) is a function of continuous values. Therefore, H

C
(x|Yx) will 

change with every change of one of its continuous parameters. Given the real level cij of 

gene i at profile j, the partial derivative of the total entropy with respect to cij can be 

computed exactly. By the chain rule for conditional entropy, we have: 

( | ) ( , ) ( )C C C

x x x

ij ij ij

H x Y H x Y H Y
c c c

∂ ∂ ∂
= −
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We show how to compute H
C
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(x,Yx) only differs in indices 

and is omitted: 
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where the sum is over all Boolean values of the vector Yx. The probability of a specific 

Boolean value of the vector Yx is given by (*), and for 
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x

c
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∂
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sum: 
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the j
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 profile, which contains cij. Now in order to find the latter derivative, we recall that 

it is a product of the logistic function λ or (1- λ), and only one of the factors is λ(cij) or (1- 
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Now we can compute the gradient of the function )|( x

genesx

C YxH∑
∈

. Every iteration we 

make a step of size 1 in the opposite direction of the gradient, until the change in entropy 

is very small. Changing the real value has the effect of reducing the entropy, which 

reflects the discrepancies. 

After steepest descent converges, a truth table (i.e., regulation logic) needs to be assigned 

for each gene. First, note that the probability to observe a certain line in the truth table, 

with output x=α  and input Y= β  , is the value P(x=α ,Y= β ), which is computed as 

discussed above. Second, for every regulator there should be at least one input in which 

changing that regulator's value will change the output of the regulation function. If the 

latter property holds, the regulation function is said to be non-redundant. We use a simple 

branch and bound algorithm to find a consistent regulation function with maximum 

probability. Given a partial choice of outputs, a bound on the maximal probability of 

every non-redundant function that contains this choice can be obtained by completing it 

with the most probable output choices.  An initial bound is obtained by picking the 

maximal probability of a non-redundant function from the following set: the function F* 

that is formed from the highest probability choice for every output, and the functions that 

are formed from changing one of the outputs of F
*
 (we set the initial bound to zero if the 

set does not contain non-redundant functions). 
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3. A Case Study 

 

 

The GRNs that regulate differentiation in mammalian embryonic stem cells (ESCs) 

control a fascinating process whose understanding can lead to far-reaching breakthroughs 

in Medicine, making them the subject of extensive research (Chickarmane, et al, 

2006,Novershtern, et al, 2011,Xu, et al, 2010,Zhou, et al, 2007). We used our method to 

construct a logical model of mouse ESC GRN by integrating putative TF-DNA 

interactions with expression data. More specifically, we combined the core20 network 

that is available in the Integrated Stem Cell Molecular Interaction Database (MacArthur, 

et al, 2009), the mouse ESC network of Zhou et al. (Zhou, et al, 2007), and the 

expression data of Ivanova et al. (Ivanova, et al, 2006) to obtain 728 reported putative 

interactions between 25 potential regulators and 236 target genes. The number of 

regulators per gene varied between 1 and 14 (mean 3.15). The number of regulated genes 

per TF varied between 1 and 170 (mean 9.24). In addition, we used 70 microarray 

profiles from (Ivanova, et al, 2006).  

For each gene x, a subset of its putative regulators Y was selected such that the 

conditional entropy H
C
(x|Y) was minimized (a steady state was assumed for every 

profile). Since not all the genes had the same number of reported interactions, addition of 

more regulators was allowed in case all of the reported regulators were selected. When 

computing H
C
(x|Y), we excluded those profiles in which the regulatee was knocked-out. 

The maximal number of regulators for a gene in the set of reported interactions was 14. 

Thus, for each gene we tested every set of regulators of size ≤ 14 out of the total 25 

regulators. A set S1 of size n was preferred over a set S2 of size m<n if the difference in 

conditional entropy was greater than (n-m)·τ, where τ=0.00775244 is the value of the 

threshold defined in the previous section. 

Our reconstructed model contained 449 edges (interactions), of which 298 belong to the 

published interaction set. The appendix contains the network topology, list of regulation 
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functions, and list of cohorts. Since we picked regulators to minimize the discrepancies 

with expression data, whereas the reported interactions were based on binding assays, we 

expected to see a different distribution of regulator-regulatee edges, and this was indeed 

the case (Figure 3). Some of these differences are attributed to the false positives and 

false negatives in the reported interactions, although a true positive will not be inferred 

without proper expression data. For example, if we know that R regulates G, but in all the 

available expression profiles R is knocked down, we will not be able to use our 

knowledge in a model. Similarly, if the reported interactions are insufficient to produce a 

regulation function that satisfactorily predicts the target gene's level, unreported 

interactions need to be selected. The lower frame of Figure 3 shows that, for the ESC 

network, often one of the latter cases applied. Figure 4 illustrates the number of common 

target genes for each pair of regulators. Figure 5 illustrates the cohorts and their 

regulators; as can be seen, the TFs Pou5f1 and Sox2 regulate the two largest cohorts, 

while each of Nanog, Esrrb, Tcf7 and Etv5 regulate cohorts of intermediate size. Four 

cohorts are each regulated by four regulators, including Pou5f1, Rnf2, Zfp281, Dax1, 

Etv5, Sox2, Nr5a2, Phc1 and Otx2. It is reasonable to assume that genes that have more 

regulators are subjected to a more complex regulatory program, and therefore may have 

roles in more specific contexts compared to other genes; a better understanding of this 

network's behavior requires analysis of the dynamics involved.  

We turned to the dataset of Young et al. (Marson, et al, 2008) to assess the quality of the 

selected interactions. In this study, ChIP-seq technique was used to measure binding of 

five TFs: Pou5f1, Sox2, Nanog, Tcf3 and Suz12, to regulatory regions of 200 genes in 

our network. The dataset corresponds to a 200 by 5 Boolean matrix M in which the entry 

in the ith row and the jth column is 1 if TF j (1≤j≤5) binds gene i according to the ChIP-

seq data. Now if S is the set of regulators of gene i in the reconstructed model, we define 

the similarity between S and row i in the matrix M as 
[ , ]

| |

j S

M i j

S

∈
∑ . The average similarity 

between the regulators of a gene in the reconstructed model and the matrix M was 0.63. 

To assess the significance of this result, we randomly permuted each row in the matrix M 

independently and computed the average similarity. By repeating the randomization 

10,000 times we conclude that this overlap value is significant at p-value < 10-4 (see 
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Figure 6). Figure 7 compares the number of common regulators and the number of 

different regulators for each gene in the inferred model and in (Marson, et al, 2008). 

We call a set of genes that have the exact same regulators a cohort. We wanted to test 

whether genes that share the same set of regulators tend to have the same regulatory 

logic. We define similarity between two regulation functions as the fraction of inputs that 

produce identical outputs. The average similarity in a cohort is the average similarity 

between pairs of genes in that cohort. In order to eliminate genes whose levels may have 

been incorrectly modeled, genes with truth tables that were on average less than 50% 

similar to all other genes in the cohort were excluded. This filtering left 144 out of 184 

genes that belong to cohorts, excluding no more than a third of the genes in any cohort. 

The average percentage of logic similarity that was obtained among the remaining genes 

in each cohort is 84%. To assess the significance, we permuted edges in the network of 

Young et al. (Marson, et al, 2008) by conducting a long series of edge swaps, a process 

that preserves the degree of each node, and then reconstructing the model given the 

permuted network (Ulitsky, et al, 2010). For every permutation, the average percentage 

of cohort similarity and the number of excluded genes were computed as described 

above, and compared to the values that were obtained for the model. We considered a 

solution as scoring better only if (i) the similarity was equal or higher and (ii) the number 

of genes that were included in cohorts was equal or higher. Both conditions must be taken 

into account, since otherwise similarity is maximized by reducing the number and size of 

cohorts through gene exclusion or edge swap. Repeating the process 10
5
 times showed 

that the logic similarity was significant at p-value < 10
-5

. Figure 8 compares the scores of 

1000 random permutations and the score obtained by the real topology. In order to make 

sure that our exclusion scheme does not generate any biases, we repeated the test by 

applying criteria (i) and (ii) without excluding genes from cohorts and obtained a p-value 

of 1.1·10-4. In order for the simulation to run sufficiently fast, a speed-up of the selection 

procedure was used in which regulators are added incrementally to the regulators set as 

long as the entropy improves significantly. A similar speedup was used in (Hashimoto, et 

al, 2003), using discrete data and a different score.  

Figure 9 shows the similarity of regulation function of all the genes in the network. The 

network is seen to contain cohorts with highly similar regulation functions. There are 
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some similarities in the regulation functions of genes that belong to different cohorts 

(depicted as edges that cross the interior of the circle), due perhaps to reuse of certain 

“regulatory logic motifs” in gene regulation (Milo, et al, 2002). 

These results are in line with the common assumption that regulatory logics within 

cohorts are similar, and also with the more general observation that networks contain 

"reusable components" (Milo, et al, 2002). The term "reusable components" means that 

regulatory elements can be used similarly for different parts of the network. Segal et al. 

(Segal, et al, 2003) based their method on this assumption. Since our method does not 

impose any constraints on logic within cohorts, and we still observe a high level of 

identical regulation within cohorts, we conclude that the reconstructed model is 

reasonably reliable. 

 

4. Discussion 

 

We have presented an algorithm for constructing a logical model and resolving 

discrepancies between the model and experimental data. After demonstrating that the 

general problem of resolving discrepancies is computationally hard and there is probably 

no efficient algorithm that solves it, we adopted a probabilistic approach to the network 

reconstruction problem. We developed an algorithm that uses reported interactions and 

expression data to select a set of regulators for each gene, and resolves discrepancies in 

the resulting logical model. We used our algorithm to construct a logical model of the 

mouse ESC GRN. The model supports the notion that genes that share the same 

regulators have similar regulatory logics.  

 

Unlike (Dimitrova, et al, 2010) and other discretization methods, our algorithm refrains 

from directly discretizing the data, thereby avoiding the errors that are inherent to this 

process and the intractability of minimizing them. Instead, it assigns a probability to each 

discrete value and adjusts the input real values to improve model consistency, as reflected 

by the conditional entropy.  Other methods that use information theory for selecting 

regulators discretize the data, but do not provide a means of discrepancy resolution 
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(Liang, et al, 1998,Lopes, et al, 2008).  Our algorithm can be applied when using only 

expression profiles as input, but can also utilize information on putative regulations (e.g., 

from ChIP-chip or ChIP-seq data) to improve the prediction. Given a set of such putative 

interactions, it can reject those that lack support in expression data.   A disadvantage of 

our method is that we normalize the expression profiles of all the genes using the same 

parameters, which may be inferior to preprocessing using gene-specific parameters. 

Another disadvantage is that the inferred discrete logic is a necessary oversimplification 

of the biological reality. Finally, as the general problem is computationally hard, we 

resort to heuristics, and at least for some instances of the problem we may not find the 

optimal solution.       

At this point it is natural to ask whether one can obtain logical models that are 

sufficiently accurate. A model that contains even a small number of errors can produce 

erroneous predictions. Theoretical examples in which a small error in the model has a 

large impact on its predictions are easily found (Lorenz, 1993). Further research is 

required to determine whether domain-specific algorithms can produce accurate logical 

models. Another approach to the problem is developing algorithms that analyze a model 

without trying to resolve all the ambiguities in it (Karlebach and Shamir, 2010). 

The probabilistic approach to discretization that we describe could be applied to other 

purposes in bioinformatics. Because discretization of expression data is used in methods 

such as clustering (Ben-Dor, et al, 1999,Koyuturk, et al, 2004) and feature selection 

(Saeys, et al, 2007,Akutsu and Miyano, 2001), resolving discrepancies in discretized 

expression data can be performed as a preliminary step. 

We intend to proceed with the analysis of the mouse ESC model, including its dynamic 

behavior and the effect of perturbations. Our reconstruction algorithm should be tested on 

other datasets in order to further characterize its advantages and disadvantages. 

Reconstruction of accurate logical models and their use for generating useful predictions 

are objectives that require further exploration. 
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 Figure 1: Reduction from Vertex Cover to resolution of discrepancies in microarray 

expression data with respect to a GRN. a) The graph that is the input for Vertex Cover is 

shown in green, and the resulting GRN is shown in yellow. b) The Boolean values of 

every entity in the two microarray experiments. 
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Figure 2: An outline of our algorithm. The input consists of real valued expression 

profiles (a) and a set of putative regulations of genes by transcription-factors (b). The 

expression profiles are interpreted probabilistically (c) and used for determining the 

topology of the network by selecting a set of regulators that minimize the entropy (d). In 

this process some putative interactions are rejected (dashed arrows) and some new 

interactions are added (red arrows). The network's regulation functions (e) are determined 

using the probabilistically-interpreted expression profiles and the inferred topology. 
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Figure 3: Comparison of reported interactions and interactions selected from expression 

profiles. Top frame: The number of reported targets compared to the number of selected 

targets for every TF. Bottom frame: For every gene, the number of reported TFs that 

were selected, the number of reported TFs that were not selected, and the number of 

unreported TFs that were selected. For clarity the gene names were omitted. 
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Figure 4: The number of common target genes for each pair of transcription factors. The 

colored arcs along the circumference indicate the inferred targets of TFs where, for 

clarity, each TF is represented by a different color. The internal arcs connect two groups 

of targets of two TFs and are colored by one of the two colors of the TFs. The size of an 

internal arc between two TFs is proportional to the number of common targets they share. 

An internal arc from a TF to itself indicates the total number of target genes of that TF.  

The figure was generated using Circos (20).  
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Figure 5: Cohorts and their sets of regulators. Each cohort is represented by a trapezoid 

and the corresponding set of regulators is represented by an ellipse that is connected to its 

cohort's trapezoid. The names of the genes or regulators that belong to each set are given 

inside the shapes.  
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Figure 6: Comparison of inferred and measured TF-gene interactions. The average 

similarity of TF-gene interactions between the inferred network and the ChIP-seq 

interactions reported by Young et al. for five TFs (21) was computed for randomized and 

real datasets (see text for details). The figure shows the values for 10,000 random 

permutations of the Chip-seq dataset of Ref. (21) and for the real dataset. Each blue dot is 

of the values obtained for one permutation. The red plus sign corresponds to the score of 

the real dataset. 
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Figure 7: The number of common TFs and different TFs for each gene in the inferred 

network and the dataset of Ref. (21). 
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Figure 8: Logic similarity and cohort sizes for randomized and real networks. The figure 

shows the values for 1000 random permutations of the ESC network and for the real 

topology. Each blue dot is a value obtained for one permutation, where the y-coordinate 

is the within-cohort similarity and the x-coordinate is the number of genes in cohorts of 

size at least 2. The red plus sign corresponds to the score of the real topology.  
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Figure 9: The similarity of regulation functions for every pair of genes that have at least 

one common regulator. Similarity is measured as the fraction of identical outputs. 

Similarity of regulation functions of genes that have a different number of regulators are 

also compared: each output of the function with less regulators is compared to several 

outputs of the function with more regulators. For clarity only genes that share >75% 

similarity are connected. The figure was generated using Circos (20).  

 

  

 


