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Abstract

Background: The quantitative relations between RNA and protein are fundamental to biology and are still not fully
understood. Across taxa, it was demonstrated that the protein-to-mRNA ratio in steady state varies in a direction
that lessens the change in protein levels as a result of changes in the transcript abundance. Evidence for this
behavior in tissues is sparse. We tested this phenomenon in new data that we produced for the mouse auditory
system, and in previously published tissue datasets. A joint analysis of the transcriptome and proteome was
performed across four datasets: inner-ear mouse tissues, mouse organ tissues, lymphoblastoid primate samples and
human cancer cell lines.

Results: We show that the protein levels are more conserved than the mRNA levels in all datasets, and that
changes in transcription are associated with translational changes that exert opposite effects on the final protein
level, in all tissues except cancer. Finally, we observe that some functions are enriched in the inner ear on the
mRNA level but not in protein.

Conclusions: We suggest that partial buffering between transcription and translation ensures that proteins can be
made rapidly in response to a stimulus. Accounting for the buffering can improve the prediction of protein levels
from mRNA levels.
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Background
The correlation between expression levels of protein and
mRNA in mammals is relatively low, with a Pearson
correlation coefficient of ~0.40 [1, 2]. Suggested explana-
tions for this low correlation include post-transcriptional
regulation and measurement noise [1]. This low correl-
ation makes it difficult to integrate protein and mRNA
data. Tools for this integration are sparse and not yet
adopted by the bioinformatics community (reviewed in
[3]). Initial findings from such tools suggest that the
transcriptional and the translational regulation evolved

independently, except in the rare occasions where strong
selection in favor of correlation was present [4]. How-
ever, such claims are based on data from perturbed
systems, where the observed discordance between the
transcriptome and the proteome is strongly affected by
the lack of temporal synchronization between the tran-
scriptional and translational regulation levels [5]. In this
study we focus on the connection of mRNA and protein
levels in non-proliferating tissues, through the example
of the mammalian inner ear. By performing joint
analysis of RNA-seq and protein mass spectrometry
(MS) data from the mouse cochlea and vestibule, we
aimed to shed light on the regulation of these two
expression levels, identify genes that are mainly regu-
lated in one system, and infer their general features. The
two tissues are quite similar in structure, but have
distinct roles in hearing and balance. This allows us to
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ask questions about the contribution of each of these
two systems of regulation with respect to different cellu-
lar roles.
We will refer to a gene’s protein level divided by its

transcript level as the gene’s protein-transcript ratio or
PTR, also called the gene’s translation efficiency [6]. We
note that this measure is affected by both translation
and protein degradation rates, and under steady-state
conditions it should be equal to the ratio of the rates [7].
It was observed that across taxa, protein levels are more
conserved than mRNA levels [8], although some excep-
tions exist [9]. Also, it was noticed that differences in
protein levels between primates are less common than
differences in mRNA levels [10]. While PTR was claimed
to be highly conserved between tissues for each given
protein [11], it was demonstrated that it somewhat
varies between tissues in a direction that buffers or com-
pensates for the change in protein levels from changes
in the transcript abundance [7], similar to what was
shown across taxa. However, these observations origi-
nated from a small number of tissues, and were based
mainly on regression coefficients that are affected by
regression dilution bias [12]. In the first part of this
study we will ask whether this phenomenon is evident in
our mammalian inner ear data, and in previously ob-
tained transcriptomic and proteomic data from different
tissues. We will then use our discoveries to improve the
prediction of protein levels from mRNA levels.
Many experiments only measure transcript abundance

in a tissue and use it as a proxy for protein levels. Previous
articles that predicted protein levels from mRNA [6, 13]
did not use PTR measured in other tissues, and relied
mainly on sequence related features; they reached a cor-
relation of 0.75 between the predicted and the observed
levels. It has been suggested to use the average PTRs mea-
sured in other tissues in order to predict the protein levels
for the tissue in question [8]. This assumes the PTR of a
gene is constant across tissues. We suggest, instead, a
model that assigns a higher PTR in a tissue where the
mRNA level is lower.
In the second part of this study we use functional ana-

lysis to compare differential expression across tissues in
mRNA and protein. We give examples where inner-ear
tissues maintain different levels of mRNA and similar
levels of protein at rest, and hypothesize that this is done
in preparation for a stimulus.

Results
Previous examinations of mRNA-protein relationships
were mainly performed in yeast and in cancer cell lines.
Aiming to examine these associations in non-transformed
cells and differentiated tissue samples, we analyzed four
different paired datasets of mRNA and protein. For the
first dataset we generated transcriptomic and proteomics

data from the cochlea and vestibule of mouse inner ear
(dataset termed EAR). The three other datasets were pub-
licly available: (i) multiple mouse tissues (termed MMT;
RNA-seq [14] and proteomics [15]); (ii) primate lympho-
blastoid cells (PRIMATE; [10]); and (iii) a panel of human
cancer cell lines (NCI60; transcription microarrays [16]
and proteomics [17]). The results obtained for the NCI60
dataset were compared with those obtained for datasets of
non-transformed cells.
The EAR RNA-seq analysis identified 39,178 genes,

14,722 of which have at least one read per million in
three or more of the samples and were included in the
analysis. MS analysis identified 7244 proteins (Additional
file 1: Table S1). Six thousand eight hundred thirty-two
genes were common between the two tissues.
The MMT dataset contains mRNA and protein levels

taken from mouse tissues. In the proteomic data [15],
the stable isotope labeling with amino acids in cell cul-
ture (SILAC) technique was used as an internal standard
for relative quantification of proteins across 28 mouse
tissues. We used five tissues that had both mRNA and
protein data: brain, cerebellum, heart, kidney, and liver.
There were three proteomic samples for brain (cortex,
medulla, and midbrain) and two for kidney (cortex and
medulla), and we weighted the samples’ contribution by
the volumes of the subregions to obtain the tissue pro-
tein levels. mRNA measurements had three replicates
per tissue, and six for the brain.
The PRIMATE dataset includes transcriptomics (RNA-

seq) and proteomics (SILAC-based) data from lympho-
blastoid cell lines (LCLs) derived from five human, five
chimpanzee, and five rhesus macaque. The species is
analogous in the subsequent analysis to the tissue. We
downloaded the data from [10], and processed it as de-
scribed in the article, to obtain expression levels of (ortho-
logous) genes that have at least three measurements from
each of the three species, for both mRNA (12,079 genes)
and protein (3688 genes). Three thousand three hundred
ninety-four genes were common between mRNA and
protein.
NCI60 is a panel of 59 diverse human cancer cell lines.

The type of cancer is analogous in the subsequent analysis
to the tissue. We note that we do not necessarily expect to
see the same phenomena in cancer cell lines as in healthy
tissues, due to the pathological state of the tissues, and as
the cell lines of the same cancer are different samples and
not real replicates as the healthy tissues. One manifest-
ation of these differences is a lesser ability to separate
NCI60 samples based on their origin, compared to the
EAR and MMT datasets. Indeed, multi-dimensional scal-
ing (MDS) plots show better separation of the latter data-
sets on both mRNA and protein levels, even between very
similar tissues (Additional file 2: Figure S1). Moreover,
poor results were reported when hierarchical clustering
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was used to perform such a separation for breast, ovary,
renal, and prostate cancers using proteomic data [17].
We refer to the tissue type (in EAR and MMT), spe-

cies (in PRIMATE), or cancer type (in NCI60) as a
group. We refer to samples of the same group as repli-
cates. We refer to mRNA and protein as domains.

Protein levels are more conserved than mRNA levels
mRNA and protein levels were log2 -transformed, and
averaged across all samples from the same group, disre-
garding missing values. A comparison of the proteomic
and transcriptomic data showed, in agreement with pre-
vious studies [18], that the overall dynamic range of
mRNA is significantly lower than protein, as marked by
a higher variability in protein expression compared with
mRNA in all datasets (Additional file 2: Figure S2,
Additional file 3: Table S2).
We calculated protein-mRNA correlations for each

group (see Additional file 2: Supplementary Methods).
The average correlations between the two layers were
0.58, 0.44, 0.42, and 0.42 for the EAR, MMT, NCI60 and
PRIMATE datasets, respectively, similar to the mRNA-
protein correlations reported in the literature [1]. Then,
we calculated correlations between pairs of groups for
mRNA and protein separately. We observed that in all
datasets, all the protein-protein and the mRNA-mRNA

correlations between groups were higher than the protein-
mRNA correlations within each group (Additional file 2:
Figure S3). This last trend was somewhat weaker in the
MMT dataset, which includes less similar tissues.
Figure 1 demonstrates a comparison of the correlation

between group pairs in each dataset. For the EAR dataset
the correlation in the protein between the cochlea and the
vestibule is higher than the correlation in the mRNA (0.97
versus 0.94). This is also the case for the PRIMATE
dataset (3/3 pairs), the MMT dataset (9/10 pairs), and the
NCI60 dataset (24/36). For the MMT and NCI60
datasets the protein correlations were significantly
higher (p − values = 2.9 × 10−3 and 8.0 × 10−3 respectively,
Wilcoxon signed-rank test). To account for some of the
platform differences between RNA-seq and mass spec-
trometry, which manifest in higher correlation between
replicates of RNA-seq (Additional file 2: Supplementary
Results, Figure S4), we applied the Spearman’s correction
in our calculations, except for MMT where it was in-
applicable (see correction example in Additional file 2:
Figure S5; explanation for MMT in Supplementary
Results).

PTRs vary in a direction that reduces protein divergence
The higher correlation between pairs of groups in the
protein domain suggests that changes in transcription

Fig. 1 Protein and mRNA correlation between group pairs. Each subfigure describes the correlation between expression levels of different groups
in one dataset. The upper and lower triangles show the protein-protein and mRNA-mRNA correlations between groups, respectively. Darker color
corresponds to higher correlation. Pearson’s correlation coefficients (r) were corrected using Spearman’s method except in the MMT dataset (due
to the lack of replicates in protein). See Additional file 2: Figure S3 for intra group protein-mRNA correlations
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between tissues are coupled to protein-level changes that
exert opposite effects on the final protein level, hence
producing higher similarity between groups. We call the
phenomenon of reduced (“compressed”) change in
protein levels compared to the change in mRNA levels
buffering. Spangenberg et al. showed this phenomenon
in the initial phases of adipocyte differentiation of
adipose-derived human mesenchymal stem cells, by com-
paring differentiating cells at two time points [7]. Regres-
sing the fold change (FC) of the protein levels to the FC of
the mRNA levels on a log-log scale led to the observation
of a slope lower than 1, or, in other words, range compres-
sion between protein FC and mRNA FC. They hypothe-
sized that a trend of lower PTR with increasing mRNA
levels is the cause.
To test this hypothesis on our data, for all pairs of

groups in all datasets, we regressed log FCprotein on log
FCmRNA using a variant of major axis (MA) regression,
and tested whether the slope is significantly different from
1 (Additional file 4: Table S3). All slopes were significantly
less than 1 for the EAR and PRIMATE datasets, and for
all except one pair in the MMT dataset (see Fig. 2 for ex-
amples). For the NCI60 and brain-cerebellum [MMT] the
slopes were significantly higher than 1. When using ordin-
ary least square (OLS) regression, all the slopes calculated
were significantly less than 1 (q − value ≤ 0.01), consistent
with the aforementioned range compression phenomenon
(discordance between the regression methods is demon-
strated in Figure S6 [Additional file 2]). However, MA
regression is not sensitive to regression dilution bias,
which can severely lower the estimate of the slope in OLS
regression [19]. Using MA, it appears that the range com-
pression is a common phenomenon for pairs of tissues, or
species. For cell lines, an opposite phenomenon of range
expansion occurs.

Next, we used a nonparametric approach to test
whether genes that are up-regulated in one group versus
the other in the mRNA domain will show lower PTR in
that same group versus the other. If this hypothesis is
correct, it can explain the compressed ratios in the non-
cancerous datasets. We formulated two complementary
testing approaches: A global test that considers all the
genes ranked by their mRNA differential expression (DE)
values, and a local test that focuses on those that are
DE. Importantly, we separated the repeats on which
PTR and DE values are computed in order to avoid bias
in the significance evaluation (see Additional file 2:
Supplementary Methods, Figure S7). Figure 3 provides
an example of the DE-PTR comparison in inner-ear
tissues. The PTRs in the cochlea were plotted against
the PTRs in the vestibule, with the genes DE between
the tissues highlighted. We observe that genes up-
regulated in one tissue tend to have higher PTRs in
the other tissue. This property is tested by the local
approach.
The global tests were significant for all group pairs in

the EAR, MMT, and PRIMATE datasets (q − value ≤
0.01, Additional file 5: Table S4). The results were in
complete agreement with those of the local approach.
The positive results support the buffering observation
for all these datasets, and those of the local approach
specifically indicate that within these datasets reduced
protein expression changes have a major effect on the
DE genes. For the NCI60 dataset, none of the pairs were
significant, and all the correlations were very close to
zero. Therefore, we cannot determine the presence of a
compression or an amplification effect based on this ap-
proach. As mentioned before, the different cell lines
have very similar expression profiles, and this might
cause a low signal-to-noise ratio.

Fig. 2 Examples of range compression. Comparing either the cochlea and the vestibule EAR tissues (left), or the heart and the cerebellum MMT
tissues (right), the protein fold changes (y-axis) were regressed on the mRNA fold changes (x-axis). The fitted regression lines using ordinary least
squares (OLS, red, solid) and major axis regression (MA, blue, dashed) were plotted, along with their 95% confidence interval (thinner lines). The
black line is y = x. Both OLS and MA slopes are significantly lower than 1, suggesting range compression
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Predicting protein abundance from mRNA levels
Next, we examined whether we can predict protein
levels based on the mRNA data. We compared three
estimators all of which are trained on a subset of each
dataset, and examined their ability to predict the protein
level in the rest of the samples. The first estimator was
built on the average PTR (APTR); the second estimator,
which is fold change based (FCB), assumes a constant
compression ratio of the fold changes between protein
and RNA; the third infers the protein levels from the
average protein (AP) levels in other tissues. AP and
APTR also have a weighted version, which gives higher
weight to the tissues with higher similarity, and FCB has
a relaxed version (RFCB) that allowed for protein levels
to change exponentially between groups, independent of
change in mRNA. This accounts for differences between
groups in the activity of the translational mechanisms
and in protein stability.
In all datasets, the FCB and RFCB models achieved

better results than the others (Fig. 4). For all models, the
weighted/relaxed versions achieved better results than
their unweighted counterparts. The difference was very
apparent for the MMT dataset, where the presence of
two related tissues, brain and cerebellum, lowered the
prediction error dramatically for those tissues; analysis
of this dataset after the removal of one of the two still
showed an advantage for the weighted versions, albeit
smaller (Additional file 2: Figure S8). These findings sup-
port the use of a weighted estimator, which gives higher

weights to tissues that are closer in their protein levels
and PTRs.
The average improvement in the Mean Square Error

(MSE) using the RFCB model over the next best
weighted/relaxed model was 24.0%, 15.2%, 14.3%, 8.9%
in the EAR, MMT, PRIMATE, and NCI60 datasets.
Overall, the superiority of the FCB and RFCB supports
the model of constant compression or expansion ratio
between mRNA and protein fold-changes. Our previous
analysis supports compression, at least for the EAR,
MMT, and PRIMATE. The value of the compression
parameter, α, of the FCB model is directly linked to the
extent of compression. High variance between datasets
and between groups was observed in the estimated value
of this parameter (Additional file 2: Supplementary
Results, Figure S9). We thus conclude that this param-
eter should be adjusted separately for each protein level
prediction task. We also compared the protein predic-
tion power between the different datasets, and showed
that the task of predicting protein levels where one is
given expression data from a similar tissue, is easier than
predicting using data from less similar tissues (Additional
file 2: Supplementary Results). This explains why the
lowest MSE is achieved in the EAR dataset and the highest
in MMT.
So far, our analysis showed the superiority of the RFCB

method at the level of a dataset. This superiority still
holds when moving to the level of a group, as in all
groups the MSE of the RFCB predction is the lowest

Fig. 3 Protein-transcript ratio (PTR) and differential expression between two inner-ear tissues. The PTRs in the cochlea (x-axis) are plotted against
the PTRs in the vestibule (y-axis), where the PTRs were calculated using mRNA data of samples SA623 and SA626 respectively. Marked in red
are genes that are up-regulated in the cochlea, and in green are genes that are up-regulated in the vestibule (edgeR, q − value ≤ 0.05). Samples
SA623 and SA626 were excluded from the differential expression analysis. The black line is y = x. There is a clear tendency for the genes that are
up-regulated in the cochlea (red points) to have higher PTR in the vestibule (be above the black line), and vice versa. Note that to emphasize the
DE status, significant (colored) genes are drawn at the front and may occlude some non-significant ones
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among all methods. Focusing on the NCI60 dataset, the
greatest improvement in predictions in terms of normal-
ized MSE is achieved for the leukemia and prostate,
these cell lines having the lowest protein prediction
power to begin with (Additional file 2: Supplementary
Results, Figure S10). Next, we focused on the gene level,
checking how well our prediction performs in predicting
oncogene levels in cancer cell lines. Out of the 24 onco-
genes surveyed in [20], we had full protein and mRNA
data for CTNNB1, NRAS, and RB1. Using the six de-
scribed methods, we predicted their protein levels in
each NCI60 group, and compared the results to the
measured protein levels (Additional file 2: Figure S11).
For 21 out of 27 combinations of gene and group, all six
predictions method performed well, with less than 2-fold
difference between the expected and predicted levels. In
the few cases where the difference was greater than 2-
fold, the six methods were biased in their prediction in
the same direction. An exception to this agreement was
found in the prediction of NRAS expresion in breast and
prostate cell lines, where the predictions of the AP and

APTR methods suffered from ~1.4-fold prediction biases
in opposite directions. In both cell lines the FCB and
RFCB methods had a nearly perfect prediction.

Differential expression indicates protein profiles are more
similar than their RNA counterparts
We compared the DE genes between tissues in the EAR
dataset, both at the protein and the mRNA domain. This
type of comparison, as well as the comparison of the
functional enrichment of the DE genes on the mRNA
and protein levels, can suffer from several biases
(Additional file 2: Supplementary Results). There is de-
tection bias against lowly expressed proteins, which tend
to have more missing measurements, and so our power
to detect DE for a lowly expressed protein is lower.
Consequently, the power to detect up-regulated func-
tions that are performed mainly by lowly expressed
proteins is lower. The problem of missing data was
evident in our data for the protein domain (Additional
file 2: Supplementary Results, Figure S12). To account
for this effect, we reran DE using different filters on the

Fig. 4 Performances of methods for protein level prediction. Boxplots show the distribution of the normalized root mean square error (NRMSE) in
the prediction of protein levels, using six described methods: Averaged Protein (AP), Weighted Average Protein (WAP), Average PTR (APTR),
Weighted Average PTR (WAPTR), FC Based (FCB), and Relaxed FCB (RFCB). In each tissue, RMSE values are divided by the standard deviation of
the protein levels in that tissue. The error sizes are averages over tissues of 10-fold cross validation. In the EAR dataset there are only two groups,
so the weighted/relaxed versions are irrelevant. Boxplots show median, a box for the middle 50% and whiskers to the largest and smallest values
that are not classified as outliers. If the distance of an observation from the box is higher than 1.5 times the box size, it is classified as an outlier.
Outliers are labeled

Perl et al. BMC Genomics  (2017) 18:305 Page 6 of 14



minimum number of measurements in the protein do-
main. We focus here on the results when analyzing only
proteins for which all measurements were available.
Plotting the RNA and protein fold-changes of the DE

genes (Fig. 5), we observed that (i) more DE genes were
found in the mRNA domain (235 versus 46 and 358
versus 156, upregulated in the cochlea and vestibule, re-
spectively), (ii) genes found to be DE in protein were
usually DE also in mRNA in the same direction (in the
cochlea, of the genes upregulated in protein, 78% were
upregulated in mRNA and only 2.2% were downregu-
lated; in the vestibule, the corresponding numbers were
76 and 2.6%, respectively), and (iii) genes found to be
DE in both domains had more extreme mRNA fold
changes than those found to be DE only in mRNA (me-
dian FC: 2.90 versus 1.62 and 2.37 versus 1.69 for genes
upregulated in the cochlea and vestibule, respectively; q
− values = 9.4 × 10−11, 4.8 × 10−20, one-sided Wilcoxon
rank sum-test). These observations imply that we expect
the similarity between protein profiles to be higher than
between their mRNA counterparts. We note that these
results remain valid when using other filters or other DE
detection procedures (Additional file 2: Supplementary
Results). We could not perform this type of analysis on
the MMT dataset as statistically reliable DE techniques
require replicates.

Some tissue-functionalities coded in mRNA are not
manifested in protein
For mRNA and protein, we looked for GO enrichment
in the set of genes up-regulated in the cochlea versus

the vestibule and vice-versa (Additional file 6: Table S5).
We observed that the terms found in the mRNA domain
represent a far broader list of functions than those found
in the protein domain, when summarizing over the
enrichments found using all filters. However, when com-
paring only the lists of enrichment terms found in the
full data filter (i.e., using only the proteins with measure-
ments values in all samples), the lists were similar in
size, yet quite distinct in content. Only three terms over-
lapped in the vestibule, representing 33 and 30% of the
enrichments in the mRNA and protein, respectively, and
none overlapped in the cochlea. The similar size of the
two lists was surprising, considering the much higher
number of DE genes in the mRNA domain. It was also
unexpected to see so little overlap between the lists, as
77% of the genes found to be DE in protein were also
DE in the same direction in mRNA in this analysis.
The analysis in the cochlea captured the functions of

cell morphogenesis and nucleobase catabolic process in
the mRNA domain, and the function of sensory percep-
tion in the protein domain. Importantly, the functions
enriched in the protein domain were found in the
mRNA domain when using less stringent filters, but not
vice versa.
The analysis of the vestibule identified functions related

to cell development and morphogenesis, biological adhe-
sion, and response to wounding in both domains.
Responses to general stimulus and chemicals, localization
and cellular component movement, and renal system de-
velopment, known to be related to ear development [21],
were functions observed only in mRNA enrichments.
Terms relating to anatomical structure morphogenesis,
and specifically to the process of endochondral bone mor-
phogenesis, were enriched in the protein, as was the less
expected term of phagocytosis. Here also, all the functions
enriched in the protein domain were either found, or simi-
lar terms to them were found, in the mRNA domain with
less stringent filters. In contrast, none of the functions
unique to the mRNA domain were found in the protein
domain when using less stringent filters. These observa-
tions fit the hypothesis that some functionalities coded in
mRNA are not manifested in protein.
An exception to this behavior, that is, a function

that is relatively more ‘active’ in the protein domain,
was found using a different approach for detecting
post-transcriptional regulated functionalities, in which
we compared the functional profiles [22] of the DE
genes between protein and mRNA. Using this
approach, we concluded that the function of cell
adhesion is post-transcriptionally controlled in the
vestibule, with a relatively large number of genes that
are not DE in the mRNA, but are so in the protein
(Additional file 2: Supplementary Results; Additional
file 7: Table S6).

Fig. 5 RNA and protein expression fold changes between inner ear
tissues. For mRNA differential expression and fold-change estimation
we used the edgeR package, with a detection threshold of q −
value ≤ 0.05. For protein we used the samr package (two class
unpaired test) with threshold q − value ≤ 0.1. Only proteins with
measurements in all samples were included. Note that to emphasize
the DE status, significant (colored) genes are drawn at the front and
may occlude some non-significant ones
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We performed enrichment analysis on the MMT
dataset as well, by ranking the genes according to their
fold-changes in protein and mRNA, and using a cut-off
independent approach [23] to identify enrichments in
both domains (Additional file 8: Table S7; see Additional
file 2: Supplementary Methods). Inspired by [24], we
scored each pair of tissues according to how specific the
terms that arise from the enrichment analysis are, to ei-
ther the protein or the mRNA domain (Additional file 2:
Figure S13). For most pairs of tissues, this analysis
showed that there are more functions unique to the
mRNA than to the protein. This was very prominent in
functions upregulated in the heart compared to the liver.
In contrast, functions up-regulated in the cerebellum,
compared to the liver and kidney, were more specific to
the protein domain. Next, we pooled the unique terms
from all pairs, to determine which functions are uniquely
enriched in one of the domains. After aggregating the re-
sults at the level of ‘GO slim’ [25], we observed that pro-
tein modification and amino acid metabolism, as well as
transport, including vesicle-mediated transport, tend to be
unique in the protein domain (Additional file 2: Figure
S14). In contrast, lipid metabolism and catabolic processes,
along with stress response, are more transcriptome-specific
functions. Terms related to cell death, cell adhesion, and
immune system response, all appeared multiple times (≥5)
and only in the mRNA comparisons.
To complete the analysis we also analyzed genes that

show relatively high expression in the mRNA, but their
measurements are completely missing from the protein.
We performed this analysis on all datasets. For some of
the cancerous cell lines, we found tumor related function-
alities that are controlled through post-transcriptional
repression (Additional file 2: Supplementary Results;
Additional file 9: Table S8), namely, functionalities that
are coded in mRNA but are less ‘active’ in protein.

Discussion
In this study we compared mRNA and protein expres-
sion across diverse datasets: mouse inner ear tissues,
mouse organs, cancer cell lines and primate lymphoblas-
toids. We observed that the correlations in protein
expression between groups are higher than the correla-
tions in mRNA expression, across all datasets. It was
previously observed that across taxa protein levels are
more conserved than mRNA levels [8]. We showed this
phenomenon across tissues as well, and explained it by
changes in the transcript level that are attenuated at the
protein levels. A direct outcome of this phenomenon is
the compression of large differences in mRNA expression
to smaller ones in the protein domain. This is the first ob-
servation of this phenomenon for non-proliferating
tissues, though it was previously seen in proliferative ones
[7]. Moreover, the aforementioned studies used OLS

regression, which is known to suffer from a strong dilu-
tion bias [12]. Using the more robust MA regression in-
stead, we provided evidence for such compression in EAR,
PRIMATE and in MMT (except for one tissue pair). In
NCI60 and the brain-cerebellum pair [MMT] the regres-
sion results supported expansion, instead of compression.
When comparing tissues that are very similar in level of

expression, small biases can render the regression invalid.
In order to solve this issue, we tried a non-parametric ap-
proach, which can be less powerful but is not dependent
on an underlying linear model. Using this approach, we
showed buffering for all datasets except NCI60. We there-
fore conclude that a partial buffering between translation
and transcription exists in the MMT, EAR, and PRIMATE
datasets. For NCI60, the results were insignificant, and
supported neither compression nor its opposite, signal
amplification. Perhaps a more powerful test (for example,
a random effects model [12]) may provide the answer. For
the PRIMATE dataset such an observation was made
previously [10]. In this study, by addressing some of the
limitations of that statistical analysis, we reaffirmed the
correctness of the observation (Additional file 2:
Supplementary Results).
We did not necessarily expect to see the same

phenomena in cancer cell lines as in healthy tissues, for
obvious reasons: cell lines are programmed to prolifer-
ate, whereas cells in healthy tissues divide slowly, if at
all; cell lines somewhat lose their resemblance to their
tissue of origin, thus becoming more similar to a “global
cancer pattern”; and cell lines of the same origin may
diverge in their transcriptomic and proteomic profiles as
they follow different paths of cancer evolution. In
addition, the post-transcriptional regulation may be
altered or even damaged in cancer. We showed one
manifestation of these biological differences, namely the
lesser ability to separate NCI60 samples based on their
origin, compared to the EAR and MMT datasets. Since
the cell lines are more similar to each other in their ex-
pression profiles, the compression effect is expected to
be less dominant in cancer.
A translational model has been proposed, where tran-

scriptional signals are amplified by translational regula-
tion [12]. The existence of an amplifying mechanism
might appear to contradict the buffering suggested here.
However, the authors studied budding yeast, a single cell
type. In this model an increase in the mRNA level of a
transcript would translate into an exponential increase
of the matching protein, while our analysis is based on
multiple tissues. In each tissue the transcriptional, trans-
lational and post-translational regulations are fine-tuned
to enable the correct function of the tissue. Both mecha-
nisms can coexist, i.e., the expression profiles that we
observed result from a balance between compressing
and amplifying mechanisms. The first is related to the
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tissue identity (perhaps through epigenetic marks), and
the second is connected to the way the translational ap-
paratus of a cell functions. A very similar argument was
made in [12], in the context of different species. We
speculate that the contradicting evidence we observe for
buffering in groups that are more similar to one another
might be the result of such balance; i.e., in such groups,
the balance between the two mechanisms leans towards
amplification.
What biological mechanism explains the buffering

observation? Decoupling is achieved by changing the
translation rates, the protein degradation rates, or both.
We cannot distinguish between these three options
using our analysis, yet according to the literature, pro-
tein translation is assumed to be the major contributor
to the variance of protein concentration [18], and was
shown to change through tissue differentiation [5].
Hence we can speculate that the translation rate is the
factor that is changing between the two tissues, although
in a different context, of expression quantitative trait
locis in LCLs, the buffering observed between protein
and mRNA was attributed mainly to protein degradation
[26]. In Supplementary Results [Additional file 2] we dis-
cuss explanations from the literature [6, 7] as to how the
coordination of translation and transcription is achieved,
and demonstrate that alternative polyadenylation, one of
the proposed mechanisms [7], plays only a minor role, if
any, in this balance in the EAR dataset.
We acknowledge the possibility that mRNA measure-

ment error might cause an overestimation of the buffer-
ing effect. It is well known that distinct tissues may
contain different amounts of RNAase that degrade
mRNA at dissimilar degrees and with different specific-
ities [27]. Given the impact mRNA integrity has on tran-
script quantification [28], these differences may result in
measurement errors that are inconsistent between
tissues. By using ribosome profiling data instead of
RNA-seq measurements, one can avoid this problem
altogether, and obtain more rigorous results. Another
source of error is the number of amplification cycles and
the precise PCR conditions used for each sample. We
used the Spearman’s correction to mitigate the between-
replica error but we did not account for systemic errors
between tissues. Tighter experimental controls, together
with more elaborate statistical normalization techniques,
can address this potential error.
We demonstrated how the prediction of protein can be

improved by taking the range compression into account.
Models that allow PTR to vary between tissues in a direc-
tion that buffers the change in protein levels (R\FCB), per-
formed better than models that did not allow this
variation or ignored RNA levels altogether. The improve-
ment in the prediction error was between 9 and 24%,
depending on the dataset. The largest improvement was

achieved in the EAR, but in this dataset the prediction
was very good to begin with. In the PRIMATE dataset the
smaller improvement of 14% can make a large difference
in the prediction quality. This enhanced ability to predict
protein levels can be utilized, for example, to better
predict disease status using machine learning. The higher
accuracy exhibited by the RFCB method in the prediction
of the NRAS protein level in breast cancer cell lines, sup-
ports its usage in disease status evaluation, as overexpres-
sion of NRAS is associated with poor prognosis in breast
cancer [29]. In the future, as understanding of mRNA-
protein relationship improves, more sophisticated pre-
diction tools can be developed that will be aware of
this mechanism and explore different features of it
(for example, whether it saturates in higher mRNA
expression levels).
If buffering worked in the linear fashion captured by

the FCB model, and the noise level was similar in the
measurements of protein and mRNA, we would expect
the correlations between tissue pairs in the protein and
the mRNA domains to be almost equal. We observed,
however, that the correlations in the protein domain
were higher. This is a surprising finding, especially in
light of the higher noise level in protein, suggesting that
a more powerful nonlinear buffering model could be de-
scribed. Another support for a stronger buffering comes
from the number of DE genes we found, which was
much higher in the mRNA domain. As mentioned, the
protein measurements are slightly noisier, though prob-
ably not to the extent that justifies these high
differences.
In the enrichment analysis we observed that the func-

tionalities represented at the protein domain were, by
and large, a subset of the functionalities represented at
the mRNA domain, which were far more numerous. The
fact that we find less enrichment categories in protein is
partially explained by the missingness pattern in the
protein measurements: we have less chance to detect
categories in which some or all of the genes are lowly
expressed in the protein domain (or characterized by
low detectability by MS). Focusing on the subset of
genes with full measurements in protein allows a more
fair comparison, but nearly ignores the possible differ-
ences between those ‘low expression’ categories. In that
comparison we found a similar number of enrichment
categories for protein and mRNA. The lists differ greatly;
however, we notice that the categories that were found
in the protein and not in the mRNA, were represented
in the analysis of the full, non-filtered, mRNA data. We
can conclude that all the functionalities that are repre-
sented in the protein are also evident in the mRNA data.
For the opposite direction it is much harder to tell; to
accurately answer this question we need to somehow
predict the missing values in the protein, or develop an
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enrichment analysis tool that is aware of the ‘missing
not at random’ nature of the data [30].
Why does one tissue maintain higher mRNA levels

but the same protein levels compared to another, where
such practice requires more energy from the cell? We
suggest that functionally distinct tissues possess different
mRNA profiles but similar protein profiles, in rest, as
part of a preparation for a stimulus. Under some stimu-
lus a translational inhibition is removed from a gene (or
group of genes) that is DE between the tissues only at
the mRNA domain, so that the tissue that possesses
higher levels of the gene’s transcript will synthesize the
protein faster. Indeed, one of the virtues attributed to
translational control is the possibility of rapid response
to external stimuli [31]. Moreover, when exposing mam-
malian cells to stress induced by dithiothreitol, mRNA-
and protein-level regulation contribute equally to the
change in protein expression [32], demonstrating the
importance of protein-level regulation under stress. If
our suggestion is correct, it might be beneficial to meas-
ure both mRNA and protein levels in order to deduce
functionality of genes. If a gene is DE at the protein
domain, then the protein is important to the function of
the resting tissue. If a gene is DE only at the mRNA do-
main, then it is required for the tissue functionality
under some stimulus.
The fact that the vestibular up-regulated genes are

enriched for response to stimulus and chemicals only in
the mRNA domain might be a manifestation of this
hypothesis, as a role for these responses in the normal
development of the ear is not known. Also fitting this
hypothesis are the multiple immune related terms found
in the mRNA domain, in the analysis of the non-filtered
data. Nevertheless, the lack of these terms from the
protein analysis might be related to a relatively low ex-
pression of the genes in these categories. In the MMT
analysis we see a similar pattern. Response to stress
terms are enriched in mRNA data and not in protein,
and those of immune system response are unique only
to mRNA. In the literature we can find examples where
the translational regulation of genes changes in response
to heat shock [33], hypoxic stress [34], changes in iron
concentration [35], and exposure to EGF [24]. It is inter-
esting to explore whether the genes activated in these re-
sponses are highly expressed in the mRNA domain,
compared to a tissue that is not normally subjected to
these types of stress, even before the actual exposure.

Conclusions
Our work demonstrates that protein levels are more
conserved between tissues than mRNA levels. We
employed this observation to improve the prediction of
protein levels in a non-proliferating tissue based on the
mRNA levels measured in that tissue, by using data from

several other tissues. A biological explanation is pro-
posed as to why tissues maintain different levels of
mRNA and similar levels of protein, by providing exam-
ples where this phenomenom serves as a preparation for
a stimulus.

Methods
EAR mRNA data generation
Cochlear and vestibular sensory epithelia were dissected
from 20 inner ears of 10 P0 C57Bl/6 J mice, generating
2.4 and 1.5 μg of total RNA, respectively. Four hundred
and fifty nanogram RNA from each sample was used to
create libraries with the TruSeq Stranded mRNA Sample
Prep Kit (Illumina), followed by high-throughput se-
quencing at 100 bp paired end (PE) at the Technion
Genome Center, Haifa, Israel. Six samples were gener-
ated, three cochlear and three vestibular, for sequencing
in triplicate. Read quality was assessed using ShortRead
and reads were aligned using tophat2 against a mouse
reference genome (Mus_musculus.GRCm38.74). BAM
files were manipulated using Samtools and per-gene
counts of the reads were computed using htseq-count.
edgeR was used for calculating DE, fold changes and
RPKM normalized values. Only genes that have one read
per million in three or more of the samples were in-
cluded in the analysis. See [36] for references to each
software tool.

EAR proteomics data generation
Cochlear and vestibular sensory epithelia were dissected
from 15 P0 C57Bl/6 J mice, with samples from each set
of five mice pooled to generate one of three replicates of
protein from cochlear or vestibular tissues. Protein
samples were reduced with DTT and alkylated with
iodoacetamide followed by in-solution digestion with
trypsin. Peptides from two replicates were analyzed by
single LC-MS runs and one replicate was further sepa-
rated into six fractions, each analyzed by LC-MS on the
EASY-nLC1000 UHPLC coupled to the Q-Exactive MS.
Raw MS files were analyzed with MaxQuant and the
Andromeda search engine. The label-free algorithm was
used for protein quantification with a minimum two ra-
tio counts for normalization. The database search was
performed against the Mouse Uniprot database (2013)
with 50,807 entries and a list of common contaminants.
False discovery rate (FDR) was determined using the
forward-reverse approach, and set to 1% FDR on the pep-
tide and protein levels. Database search parameters in-
cluded Trypsin/P as the proteolytic enzyme, N-terminal
acetylation and methionine oxidation as variable mod-
ifications, and carbmidomethyl cysteine as a fixed
modification. Maximum two miscleavages and a max-
imum peptide charge of +7 were allowed. First data-
base search was used for mass recalibration with an
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error tolerance of 20 ppm followed by the main An-
dromeda search with mass tolerance of 4.5 ppm for
MS spectra and 20 ppm for the MS/MS spectra.
Peptide length was set to a minimum of seven amino
acids. Analysis of the raw MS data identified 7244
proteins, with correlations of 0.9 and 0.95 between bio-
logical replicates of cochlea and vestibule, respectively.
The expression profiles are available in Additional file 1:
Table S1. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium
[37] via the PRIDE partner repository with the dataset
identifier PXD003379.

MMT RNA data preprocessing
Multiple Mouse Tissues (MMT) data were downloaded
as fastq files from ArrayExpress database (www.ebi.a-
c.uk/arrayexpress) under accession number E-GEOD-
30352 and processed into read counts using the same
protocol and reference genome as the EAR data. Out of
36,441 genes, only 16,969 genes that have one read per
million in three or more of the samples were included in
the analysis. We used samples for both wild mice and
C57Bl/6 J mice. There was clear separation of the
samples by tissue and only poor separation by strain
(Additional file 2: Figure S15). Therefore, we chose to
summarize tissue information from both strains in order
to increase the statistical power.

MMT protein data preprocessing
Proteomic data was taken from [15]. For each tissue,
the study provides two types of measurements, the
MS intensity of the light version of the peptide, and
the intensity ratio of heavy and light versions of the
peptide. The choice of which quantity to use in each
analysis is detailed in section ‘Units of measurements’.
Protein samples of three different brain regions were

merged into a single summary sample by computing a
weighted mean. This summary sample can be com-
pared to the RNA brain samples that were produced
from entire brain except olfactory bulb and cerebellum
[14]. The weights used, based on the volume propor-
tions of the regions in an adult C57BL/6 J mouse brain
[38], were 61.9, 24.3, and 13.8% for the cortex, medulla
and midbrain respectively. The midbrain volume is
computed from the sum of volumes of the superior and
inferior colliculi, central gray, and the structure named
“the rest of midbrain”. Similarly, protein samples of two
different kidney regions were merged into a single
representing sample. The weights used here were vol-
ume proportions of the regions in a newborn Swiss
Webster mouse [39] (58.5 and 41.5% for the cortex and
medulla, respectively).

NCI60 RNA data retrieval
Transcriptomics (series accession GSE32474 [16, 40])
and proteomics [17] data were downloaded from:
http://129.187.44.58:7070/NCI60/.

Units of measurement
In the MMT and PRIMATE datasets proteins were quan-
tified using the SILAC technique, which gives for each
protein the ratio of expression between an individual sam-
ple to an internal standard (SILAC tissue). In both data-
sets, we also quantified the protein levels based on the
intensity of the peptides in the light version, which corre-
sponds to peptides from the non-SILAC tissue. The abso-
lute levels were used in the production of summary
statistics, calculation of correlations, and prediction of
protein levels, whereas the SILAC ratios were used in
MDS plotting, DE analysis, and testing whether PTRs vary
in a direction that reduces protein divergence. The use of
SILAC ratios was preferred in the last scenarios as it yields
a more accurate estimate of protein abundance between
two proteomes [41].

EAR
The protein unit is LFQ Intensity/MW, where LFQ is a
commonly used normalization for protein intensity [42],
and MW is the molecular weight in kDa. The mRNA
unit is RPKM (Reads Per Kilobase per Million mapped
reads) [43]. For DE analysis using edgeR [44], the read
counts were used.

MMT
The unit used for absolute protein levels is Intensity. L/
MW, where Intensity.L is the sum of the measured inten-
sities of the light version of the peptides composing the
protein. The unit used for relative protein levels is
Ratio.H.L.normalized, where Ratio.H.L.normalized is the
ratio of the heavy to light intensities, after applying
normalization as in [15]. A mix of SILAC mouse tissues
served as an internal standard. The mRNA unit is RPKM.
For DE analysis using edgeR, the read counts were used.

NCI60
The protein unit is LFQ Intensity/MW. The mRNA unit
is the intensity level measured from the microarray chip,
normalized as in [16].

PRIMATE
The unit used for absolute protein levels is iBAQ [18],
based on the intensities of the light version of the peptides
composing the protein. The unit used for absolute mRNA
levels is RPKM. The unit used for relative protein levels is
Ratio.H.L.normalized. A single human SILAC served as an
internal standard. The unit used for relative mRNA levels
is RPKMsample/RPKMstandard, using the same reference cell
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line. The relative mRNA levels were used for the same
purposes as the relative protein levels.

Spearman’s correction
When we wish to compute the correlation between two
parameters, measurement errors of each parameter
weaken our results. Spearman’s correction accounts for
this effect and utilizes repeated measurements to correct
it. We can infer the Pearson correlation between the la-
tent variables φ and ψ, given N measurements of φ,
marked x1,…, xN, and M measurements of ψ, marked
y1,…, yM. The following estimator for the Pearson correl-
ation between φ and ψ is then used [12]:

r̂ϕψ ¼
XN ;M

i;j
rxi;yj

� � 1
N�M

XN

i<i0
rxi;xi0

� � 1
N N−1ð Þ XM

j<j0
ryj;yj0

� � 1
M M−1ð Þ

Where rxi;yj is the empirical correlation between mea-

surements xi and yj. We assume that all the empirical
correlations are positive. The estimator is in [0,∞).
To correct the mRNA correlation between the groups, we

treat φ as the levels of mRNA in one group, and ψ as the
levels in the other group. We do the same for protein levels.
Note that this method can also be used to correct mRNA-
protein correlations within a group, treating φ as the levels
of mRNA, and ψ as the levels of protein in that group.

MDS plots
Multi-dimensional scaling was used to plot and visualize
sample similarity. Plots were calculated using the function
cmdscale in package stats (https://www.r-project.org/). For
the MMT dataset, the relative protein levels were used.

Regressing log FCprotein on log FCmRNA

For all pairs of groups in all datasets, we regressed log
FCprotein on log FCmRNA using ordinary least square
(OLS) or a variant of the major axis (MA) regression.
For EAR, MMT, and PRIMATE we used regular MA.
For NCI60 we used scaled MA (SMA). The choice of
which variant of MA to use followed [45] (see Additional
file 2: Supplementary Methods). We employed three dif-
ferent versions of F − test supplied in the smatr package
[46] to test whether the slope is significantly different
from 1 for OLS and (S)MA regression. We applied FDR
correction for each dataset and method separately.

Protein levels prediction models
Assuming we have T − 1 groups with matching mRNA
and protein profiles, and we want to predict the pro-
tein levels in a new group T, using the data from the
first T − 1 groups and the mRNA levels in group T.
We compared three different estimators:

1. Average PTR (APTR): It was previously suggested
to use the average translational efficiencies measured
in the first T − 1 groups, and multiply them by the
matching mRNA levels in group T [8]. A trivial linear
model describing this prediction for a single gene is:

logPT ¼ 1
T−1

XT−1

i¼1

log
Pi

Ri
RT

Where Pi and Ri are the measured protein and mRNA
levels, respectively, in group i. This model can general-
ized by giving weights to the different groups. The result
is called Weighted Average PTR (WAPTR) estimator.
Weights are obtained by regression.

2. FC Based (FCB): A different model assumes linear
relationship between logP and logR (similar to [7]).
If for group i log Pi = α log Ri + β, then for two
groups: log P1

P2
¼ α log R1

R2
. α is estimated by

regression. We expect 0 < α < 1, in concordance with
our previous results. By averaging over all groups,
we obtain the following estimator for log PT:

logPT ¼ 1
T−1

XT−1

i¼1

α log
RT

Ri
þ logPi

� �

Or in a different form, which shows the relation to the
APTR estimator:

logPTFCB ¼ logPTAPTR þ
1

T−1

XT−1

i¼1

1−αð Þ log Ri

RT

To generalize the model by allowing group weights,
the simplest way assumes an exponential scaling of
the protein levels between different groups, that is γi
log Pi = α log Ri + β, with γT = 1. This would yield the
Relaxed FCB (RFCB) estimator:

logPT ¼ 1
T−1

XT−1

i¼1

α log
RT

Ri
þ γ i logPi

� �

The group-specific exponents are obtained by regression.

3. Average Protein (AP): The simplest estimator is
averaging over the protein levels in the other groups,
ignoring the mRNA data:

logPT ¼ 1
T−1

XT−1

i¼1

logP

This model can also be expanded to give weights for the
different groups (Weighted Average Protein (WAP)
estimator). Weights are obtained by regression.
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Scoring prediction models
For each dataset we included only the genes for which
we had proteomic and transcriptomic data from each of
the groups, i.e. a measurement was available for at least
one sample belonging to the group (5048, 3514, 3223,
and 3394 genes in EAR, MMT, NCI60, and PRIMATE
datasets, respectively). We then averaged the data over
the repeats in each group. We iterated over the groups,
each time setting another one as missing. For each of
the aforementioned models we fitted a regression model
that allowed scaling of the original estimator and also
included an intercept. We performed 10-fold cross-
validation on the fitted model, and collected the Root
Mean Square Error (RMSE), using the DAAG package
(cran.r-project.org/web/packages/DAAG). For each group
we divided the RMSE by the standard deviation of the
protein levels in the group. The result is a dimensionless
measure for prediction quality called NRMSE, which can
be used to compare predictions across datasets.
We followed a different procedure when calculating

how much of the variance in protein level is explained
by a specific model. We fitted the model for each group
separately, and took the median percentage of variance
explained. A similar technique [47], which is more
appropriate for the evaluation of prediction under a
cross-validation scenario, gave results within a range of
<1% of the reported results.
For the prediction of protein levels of oncogenes in

the NCI60 dataset, we fitted the regression models using
data from all genes except the selected oncogenes.
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Additional file 1: Table S1. Protein Data for EAR. Results from mass
spectrometry and metadata used to normalize protein intensities and to
connect proteins with genes. (XLSX 1184 kb)

Additional file 2: Supplementary Data. Supplementary table legends,
figures, methods and results. (PDF 2108 kb)

Additional file 3: Table S2. Summary Statistics for Datasets. Statistics are
available at the level of a dataset, a group within a dataset, and a sample,
for samples quantified for both RNA and protein. All statistics are based on
genes with some measurements in both protein and RNA. (XLSX 46 kb)

Additional file 4: Table S3. Log FC Regression. Results of OLS and
(S)MA regression of logFCprotien on logFCmRNA. (XLSX 17 kb)

Additional file 5: Table S4. Non Parametric Tests for the Relation of
PTR and DE between Pairs of Groups. Results of the nonparamteric
approach in demonstrating relation of PTR and DE between pairs of
groups, using either global or local testing procedures. (XLSX 29 kb)

Additional file 6: Table S5. EAR Differential Expression and Enrichment.
Statistics of the differential expression analysis in the EAR dataset, and
emerging terms in the enrichment analysis. (XLSX 87 kb)

Additional file 7: Table S6. Cell Adhesion Annotated Genes. List of
genes up-regulated in the vestibule [EAR] in either protein or mRNA, and
annotated for the GO term ‘cell adhesion - GO:0007155’. (XLSX 17 kb)

Additional file 8: Table S7. MMT Enrichments and Domain Specificity.
Emerging terms in the enrichment analysis of the MMT dataset, and

scoring of their specificity, to either the protein or the mRNA domain.
(XLSX 1597 kb)

Additional file 9: Table S8. Post-Transcriptional Repression. Statistics of
the post-transcriptionally repressed genes analysis, and emerging terms
in their enrichment analysis. (XLSX 63 kb)
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