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Clustering large data sets is a central challenge in
gene expression analysis. The hybridization of syn-
thetic oligonucleotides to arrayed cDNAs yields a fin-
gerprint for each cDNA clone. Cluster analysis of these
fingerprints can identify clones corresponding to the
same gene. We have developed a novel algorithm for
cluster analysis that is based on graph theoretic tech-
niques. Unlike other methods, it does not assume that
the clusters are hierarchically structured and does not
require prior knowledge on the number of clusters. In
tests with simulated libraries the algorithm outper-
formed the Greedy method and demonstrated high
speed and robustness to high error rate. Good solution
quality was also obtained in a blind test on real cDNA
fingerprints. © 2000 Academic Press

INTRODUCTION

Information on the expression levels of genes under
various conditions is key to elucidating their function.
One way to measure gene expression levels is by sam-
pling cDNAs from the tissue and measuring the
amount of cDNA of each gene in the sample. If the
cDNAs are picked at random, the abundance of cDNAs
extracted indicates the relative expression levels of
their genes.

Out of about 100,000 different human genes, the
number of genes active in a human cell at any time is
over 10,000 (Kinzler et al., 1997). The relative abun-
dance of cDNAs of different genes may vary by a factor
of 10,000. This clearly indicates that the size of the
sample of cDNAs that must be extracted from a cell to
obtain adequate representation of low-abundance
genes must be on the order of 100,000 or more.

Sequencing some 100,000 cDNAs per sample is slow
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and prohibitively expensive. It is also very inefficient,
as the high-abundance transcripts are resequenced
again and again. Normalized libraries do not fully
overcome this redundancy (Bonaldo et al., 1996). Oligo-
fingerprinting was developed as an alternative ap-
proach (Lennon and Lehrach, 1991; Crkvenjakov et al.,
1991; Vicentic et al., 1992; Drmanac and Drmanac,
1994; Drmanac et al., 1996; Meier-Ewert et al., 1994;
Milosavljevic et al., 1995). It is based on spotting
poly(dT)-primed cDNAs on high-density filters. When a
short synthetic oligonucleotide probe hybridizes with
the filter under stringent conditions, one obtains a
positive hybridization signal with all cDNA clones that
contain a DNA sequence complementary to that of the
probe. By repeating the experiment with different
probes, one obtains for each clone a fingerprint vector,
indicating its hybridization level with each probe.
cDNAs originating from the same gene have similar
oligomer contents and thus should have similar finger-
prints. Based on the fingerprints, one can devise com-
puter algorithms to identify and cluster cDNAs origi-
nating from the same gene. As a result, ideally, only
one cDNA will have to be sequenced from each cluster,
and the cluster size will tell the abundance of its gene.
Good algorithms must overcome practical difficulties,
which include error-prone fingerprints and substantial
variability in cDNA length (Meier-Ewert et al., 1998).

Alternative technologies such as DNA microchips
(Fodor et al., 1993; Schena et al., 1996) have the ad-
antage of being able to determine the expression lev-
ls of thousands of genes in parallel through a single
ybridization. However, they are not applicable in all
ases, as their application requires that the gene/ORF
nsemble be known exactly in advance, and much
arger amounts of tissue RNA are required for a single
nalysis. While the sensitivity is increasingly im-
roved, the oligo-fingerprinting approach is currently
ne of the most effective strategies for the analysis of
ovel genes or organisms with few identified genes.
arge sequencing projects have successfully identified
he majority of human genes and will undoubtedly do
he same for a limited number of model organisms.

owever, it is highly unlikely that the same resources
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will be made available in the near future for sequenc-
ing other important model genomes such as Am-
phioxus, sea urchin, and a number of plants and fungi.
For such species, oligofingerprinting is an effective
means to large-scale gene discovery.

We present here a new algorithm for clustering,
called HCS (abbreviation of highly connected sub-
graphs). The algorithm has been tested intensively on
simulated data and was shown to give good results
even in the presence of relatively high levels of noise. It
was also shown to outperform a central algorithm that
has been used for expression analysis (Milosavljevic et
al., 1995). In a blind test on a real data set consisting of
2329 cDNAs, the algorithm achieved very good results.

Several graph theoretic approaches to cluster anal-
ysis have been suggested (see, e.g., Mirkin, 1996;
Matula, 1972; Hansen and Jaumard, 1997). Those in-
clude finding connected components, strongly con-
nected components in directed graphs, cliques, and
maximal cliques. For a critique of these approaches,
see Matula (1970). Our approach is different and is
based on repeated minimum-cut computations. Two
other approaches that are more similar to ours were
proposed by Matula (1969, 1970, 1972, 1977) and by
Wu and Leahy (1993). Both of these approaches lack
our important stopping criterion, with the ensuing
provable results on the clustering quality. In particu-
lar, these algorithms do not guarantee a key property
of HCS solutions: clusters have diameter 2; i.e., two
elements in the same cluster have a high degree of
similarity to each other or to a common third member
of that cluster. Wu and Leahy’s algorithm requires that
the number of clusters be known in advance, and all
the cuts are computed with respect to the same original
graph. For other limitations of these methods, see Har-
tuv (1998).

For the specific problem of clustering cDNA finger-
prints, several approaches were suggested previously:
Drmanac et al. (1996) build clusters around connected
components in the similarity graph. In that graph,
vertices correspond to cDNAs and edges correspond to
pairs whose similarity is above a threshold u (see Ma-
terials and Methods for definitions). Even with a low
false-positive rate in the data, such an algorithm would
incorrectly connect true clusters. The way to avoid this
is by increasing sharply the threshold for similarity,
which causes the splitting of many clusters. Meier-
Ewert et al. (1998) and Poustka et al. (1999) build
clusters by computing all maximal cliques and merging
maximal cliques with sufficiently large overlap into a
single cluster. Computing all maximal cliques is com-
putationally intractable (Garey and Johnson, 1979).
Moreover, a high false-negative rate may break large
clusters into many maximal cliques with a complicated
and hard-to-detect overlap structure. Milosavljevic et
al. (1995) build clusters using the Greedy algorithm. In
each step a new seed clone is chosen, and all clones that
are sufficiently similar to the seed are added to its

cluster and removed from the data set. To merge
falsely separated clusters, the algorithm is run twice:
Before the second phase, an average fingerprint is com-
puted for each cluster, and the fingerprints of all the
clones in that cluster are replaced by it. Like most
Greedy approaches, this algorithm cannot handle well
high noise levels, and the quality of its results is very
sensitive to the starting point. Meier-Ewert et al.
(1998) use an algorithm that combines ideas from the
two previous methods. Our approach is completely dif-
ferent from all previous cDNA clustering methods. We
shall show real data and simulation results that dem-
onstrate the superiority of our algorithm over the
Greedy algorithm.

MATERIALS AND METHODS

Library and Fingerprint Construction
The 2329 cDNAs originating from 18 genes used in testing the

clustering algorithm were part of a library of some 100,000 cDNAs
prepared from purified peripheral blood monocytes. These were iso-
lated, and the cDNA was synthesized by Will Phares (Novartis
Forschungsinstitut, Vienna, Austria). cDNAs were synthesized by
oligo(dT) priming, cloned into the plasmid vector pSPORT1 (Life
Technologies) and transformed into DH10B Escherichia coli cells
(Life Technologies). Individual colonies were plated out on agar
plates and picked into microtiter plates using a Q-bot robot (Genetix,
Dorset, UK). A total of 100,000 primary cDNA clones were picked
and then arrayed at high density onto nylon membranes using the
same Q-bot device.

High-density arrays were then hybridized with whole cDNA clones
(also oligo(dT) primed, average length ;1000 nt) whose identity had
previously been determined by sequencing (see Table 1). Probes were
labeled by random hexamer priming using [a-33P]dATP. Hybridiza-
tions were carried out in 0.5 M sodium phosphate, pH 7.2, 7% SDS,
at 65°C for at least 3 h and then washed twice at high stringency in
40 mM sodium phosphate, pH 7.2, 0.1% SDS, at 65°C, for 30 min.
Positive hybridization signals were scored on three intensity levels,
and only those with the highest scores were considered for the
purpose of this analysis. By this approach we were able to identify
2329 clones representing the 18 selected gene sequences in the entire
library of 100,000 cDNAs. Hybridized membranes were exposed to
phosphor storage screens and subsequently scanned using a Phos-
porimager (Molecular Dynamics, Sunnyvale, CA). Resulting hybrid-
ization image files were then analyzed, and positive clones were
identified using custom-written software (VisualGrid, available as
free download from http://www.gpc-ag.com).

Oligonucleotide fingerprints were generated as described in Meier-
Ewert et al. (1998), by successive hybridization of 139 decamer
oligonucleotides. Each decamer oligonucleotide probe was in fact a
pool of 16 decamers that share a common 8 nt core sequence (i.e.
NxxxxxxxxN, where N is any nucleotide, and xxxxxxxx is the specific
core sequence). The fingerprints of all the cDNAs that were positive
in the back hybridizations with the 18 gene-specific probes were then
input into the clustering algorithm.

Hybridization Data Preprocessing
Hybridization intensities were renormalized as described in

Meier-Ewert et al. (1998). From the fingerprints, a real-valued ma-
rix S was formed, containing similarity values between all pairs of
DNAs, with values ranging from 3.42 to 139. The graph Gu used by

the algorithm had a vertex for each clone and an edge connecting two
clones if and only if their similarity exceeded u 5 110 (see details
elow).

Simulation Set-Up
The simulation process receives as input the following parameters:
The number of genes in the experiment is Ngenes. Gene i has Ci copies,



o
d

t
o
r

e
a
fi
s

i
p

d
o
f

w
fi
(
a
h

m
c
c
t
d

L
(
m

251CLUSTERING cDNA FINGERPRINTS
so Ci is the true size of the cluster of gene i. Hence, the total number
of clones in the simulation is n 5 ¥i51

NgenesCi. La and Lb are the mini-
mum and maximum possible lengths, respectively, of a cDNA. Clone
lengths are generated according to a normal distribution with mean
m 5 (La 1 Lb)/2 and standard deviation s 5 (Lb 1 La)/6. The number
f probes is p. Probes are assumed to occur along a gene with Poisson
istribution with rate l. This assumption was originally suggested in

Michiels et al. (1987) and was adopted by other researchers (Alizadeh
et al., 1995; Platt and Dix, 1997; Mayraz and Shamir, 1999). The
probability that an oligonucleotide occurrence did not register (false-
negative hybridization probability) is a. False-positive hybridiza-
ions are assumed to have Poisson distribution with rate b. All probe
ccurrences and error events are assumed to be independent. The
esult of the simulation is an n 3 p hybridization matrix H, in which

Hij 5 1 if clone i hybridized with probe j and Hij 5 21 otherwise.
We note that the probabilistic assumptions are used only to gen-

rate the data for the simulations and are not used by the HCS
lgorithm. The only assumption that the algorithm makes is that
ngerprints of clones from the same cluster tend to have higher
imilarity values.

The HCS Clustering Algorithm

The input to the clustering process is the n 3 p hybridization
matrix H, in which rows correspond to the cDNA clones in the
library, and columns correspond to the probes. Hi, j is the intensity
level of the hybridization of clone i with probe j. The ith row, Hi, is
the fingerprint of the ith clone. Since cDNAs that originate from the
same gene have similar fingerprints, a good clustering algorithm
should form a partition in which each cluster contains cDNAs orig-
inating from the same gene. The matrix H is used to form the n 3 n
similarity matrix S, where Sij 5 ¥kHik z Hjk. For a real value u, the
similarity graph Gu is a graph with vertices corresponding to the
clones and edges connecting clones whose pairwise similarity is at
least u (Matula, 1977; Mirkin, 1996).

We provide some standard graph theoretic terminology needed to
describe the algorithm: A cut in a graph is a set of edges whose
removal disconnects the graph. The connectivity of a graph G, de-
noted k(G), is the minimum size of a cut in G. A minimum cut is a cut
with minimum number of edges. Several algorithms are available for
efficient computation of a minimum cut (Ahuja et al., 1993). Our
algorithm is based on the following key observations: A group of
clones originating from the same gene should form a subgraph with
a relatively high connectivity value. In contrast, the subgraph
formed by clones from different genes should have lower connectiv-
ity.

The clustering algorithm works on the similarity graph. Had the
similarity graph represented the cluster structure perfectly, each
cluster would have been a clique, as all members of a cluster are
highly similar, and no two clusters would be connected by an edge, as
elements from distinct clusters are supposed to be dissimilar. In
reality, searching for cliques in the graph would fail in two ways:
First, finding maximum cliques is computationally intractable
(Garey and Johnson, 1979). Second, and more important, real hy-
bridization matrices contain many errors. Errors in the hybridiza-
tion data generate inexact fingerprints, leading in turn to errors in
the similarity graph: missing edges between vertices in the same
cluster and false (extra) edges between vertices in different clusters.
Our algorithm was designed to withstand high error rate and work
in low-degree polynomial time.

Below we give a high-level description of the algorithm. The de-
tailed exposition and proofs of the algorithm’s mathematical proper-
ties are given elsewhere (Hartuv and Shamir, submitted for publi-
cation). A key definition for our approach is the following: A graph G
with n . 1 vertices is called highly connected if k(G) . n/2. A highly
connected subgraph is an induced subgraph that is highly connected.
Our algorithm identifies highly connected subgraphs as clusters. The
basic HCS algorithm is recursive: On an input graph G, it deter-
mines whether that graph is highly connected by computing a min-
imum cut in G. If G is highly connected, then its vertices form a

cluster and the algorithm halts. Otherwise, the edges of a minimum
cut are removed, forming two connected components, and the algo-
rithm continues recursively on each component.

The running time of the basic HCS algorithm is bounded by 2N 3
f(n,m), where f(n,m) is the time complexity of computing a minimum
cut in a graph with n vertices and m edges, and N is the number of
clusters. Typically N ,, n. The best deterministic time bound known
for f(n,m) is O(nm) (Matula, 1987; Nagamochi and Ibaraki, 1992).

Improvements

Singleton adoption. The basic HCS algorithm may leave certain
vertices as unclustered singletons. Subsequently, each singleton is
checked whether it fits into one of the clusters. For each singleton x,
we compute the number of neighbors it has in each cluster and in the
singleton set S. If the maximum number of neighbors is sufficiently
large, and is obtained by a cluster (and not by S), then x is added to
that cluster. The process is repeated up to I times (I 5 50 was used
n practice) to accommodate the changes in clusters as a result of
revious adoptions.

The low-degree heuristic. When the input graph contains low-
egree vertices, initial minimum cut iterations will separate them
ne by one from the rest of the graph. Removing low-degree vertices
rom Gu eliminates such noninformative iterations and significantly

reduces the running time. To utilize this idea, the algorithm receives
as input a degree sequence, i.e., a decreasing sequence of integers
d1,d2, . . . ,dt, and performs t major iterations. In major iteration i, we
remove all vertices with degrees below di and then apply the HCS
algorithm, followed by singleton adoption. All clustered vertices are
set aside, and the next major iteration is applied to the remaining
graph, using the smaller value di11.

Cluster merging. To overcome the possibility of cluster splitting,
e applied a final cluster-merging step. This step uses the raw
ngerprints and was implemented as described in Milosavljevic et al.
1995), to facilitate a comparison of the two algorithms. Specifically,
n average fingerprint is computed for each cluster, and clusters that
ave highly similar fingerprints are merged.

Iterated HCS. When there are several cuts attaining the mini-
um value in the current subgraph, the minimum cut algorithm

hooses one arbitrarily. This may cause some splitting of small
lusters into singletons. The HCS algorithm can then be reapplied on
he subgraph induced by unclustered elements. Iterating this proce-
ure several times overcomes the problem.

Implementation. The simulation algorithm was written in MAT-
AB. HCS was written in C11 within the LEDA 3.4.1 environment

Mehlhorn and Naher, 1995). The minimum-cut algorithm imple-
ented in LEDA has an O(nm 1 n2log n) time complexity (Stoer and

Wagner, 1997). Average elapsed time on a 194 MHZ SGI challenge L
machine with 32 kB instruction cache and 1024 kB main memory
was about 43 min for the 2329 clones data set (see Results). Clus-
tering of another 7800 elements in simulation with slightly lower
noise levels required only 6 min.

RESULTS

Clustering Real cDNA Data

We tested the algorithm in a blind test on real cDNA
data. The input contained hybridization fingerprints of
2329 cDNAs with 139 oligonucleotide probes. The
clones originated from 18 different genes. The high-
fidelity clustering, obtained by hybridization with long,
unique sequences, is given in Table 1. Note the high
variability in abundance of genes, ranging from over
700 cDNAs to a single cDNA per gene. The HCS algo-
rithm found 16 clusters and left 206 entities as single-
tons. The results of the algorithm are shown in Fig. 1

and Table 2. In 13 of the 16 clusters, over 92% of the
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252 HARTUV ET AL.
entities belong to the same gene (Table 2). Therefore
we call those clusters almost pure. Note the high level
of noise (Fig. 1B).

To quantify the quality of a solution in comparison
with the true clustering, we used the following mea-
sure: Represent a clustering solution of n elements by
n n 3 n symmetric matrix C, where Cij 5 1 if i and j
elong to the same cluster and Cij 5 0 otherwise. Given

such matrix representations of the true clustering T
and any clustering C of the same data set, the
Minkowski measure for the quality of C (Sokal, 1977;
Jardine and Sibson, 1971) is the normalized distance
between the two matrices, (iT 2 Ci)/iTi, where iTi
5=¥i ¥ jTi, j

2 . Since the matrices are binary, this is sim-
ly the number of pairs on which the two solutions
isagree (i.e., they are clustered together in one solu-
ion but not in the other), normalized according to the
rue solution. A perfect clustering would thus obtain
he score zero.

Table 3 summarizes the quality of clustering results
f the algorithm in comparison with the true solution
nd with two other algorithms. The Minkowski score of
he solution formed by the HCS algorithm is 0.71,
ompared to 0.77 of the Greedy algorithm. (To give
aximum power to the Greedy algorithm, we tried

everal combinations of threshold values for the two
hases of the algorithm and chose the combination that
inimizes the Minkowski score. For the HCS, we chose
fixed threshold value in a blind manner and opti-
ized the threshold only in the cluster-merging phase;

ee Materials and Methods.) The application of cluster
erging was essential to obtaining a superior score.
lthough the gap in the Minkowski score is not large,

TABLE 1

True Clusters and Gene Identities
in the Real Data Set

Cluster Size Gene name

T18 709 Elongation factor 1 a
T17 285 Clone 190B1
T16 284 Cytochrome Ce oxidase
T15 213 Tubulin b
T14 187 40S Ribosomal protein S6
T13 146 40S Ribosomal protein S3
T12 108 40S Ribosomal protein S4
T11 91 Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH)
T10 86 60S Ribosomal protein L4
T9 67 Elongation factor 1 b
T8 43 Calmodulin
T7 39 Heat shock cognate protein KD71
T6 32 Heat shock cognate protein KD90
T5 14 TNF receptor
T4 12 AEBP1
T3 10 Clone 244D14
T2 2 Clone 241F17
T1 1 Anion channel protein

Note. Clusters are numbered by increasing size. For unidentified
enes, only their cDNA number is given.
he solutions differ dramatically on other parameters:
reedy generated an excessive number of clusters and
eft more than twice as many singletons. Note that
oth algorithms do not assume knowledge of the true
umber of the clusters.
As another measure to the solution quality, Table 3

lso gives the number of false-positive and false-nega-
ive errors that correspond to each of the three solu-
ions, as reflected in Gu. The true (reference) solution

had 70% missing edges (“false-negative” errors with
respect to the graph Gu) and 0.7% extra edges (“false
positives” in Gu). In comparison, HCS had 62% missing
edges and 0.77% extra edges. Greedy had the lowest
missing edges rate but obtained a substantially higher
extra edges rate.

As a side remark, we suspect that cluster T13, which
was the most fragmented in (40S Ribosomal protein
S3) our solution (Table 2), is in fact incorrect. Its inho-
mogeneity can also be seen in the similarity matrix
(Fig. 1B). (See Discussion for further comments.)

Simulation Results

We tested the algorithm on simulated data gener-
ated with varying noise levels. The detailed description
of the simulation setup is given under Materials and
Methods. Figure 2 summarizes the results of system-
atic experiments with the HCS algorithm on simulated
data. Figure 2A shows the performance of the algo-
rithm for various sizes of problems. The results are
consistently good, and they improve as the problem
size increases, as the effect of the smaller clusters
diminishes. Figure 2 also gives results of the Greedy
algorithm of Milosavljevic et al. (1995) on the same

roblems. Since only binary fingerprints were gener-
ted in the simulation, the cluster-merging phase was
ot used by both algorithms (see Discussion). The HCS
lgorithm is consistently superior, and the difference
n quality is up to an order of magnitude. Moreover, the
olutions of the Greedy algorithm deteriorate as the
roblem size increases, while those of the HCS algo-
ithm improve. The variance in the quality of the
reedy solutions is substantially larger, due to the
xtreme dependence of that algorithm on the starting
oint.
The effective range of the number of probes (Fig. 2B)

s 100–300. Increasing the expected false-positive hy-
ridization rate up to 25% has a negligible effect on the
uality of the results. In contrast, the false-negative
ybridization rate can be increased to 40–50% with

ittle effect. Beyond these values, quality decreases
apidly as the error parameters increase. These results
re quite encouraging, as the error rate in real large-
cale hybridization experiments is quite high, but it
alls within the range giving high-quality clustering
esults according to our experiments.

DISCUSSION

We have designed a novel algorithm for clustering

cDNA fingerprints and have tested it on real and sim-
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ulated expression data with very good results. Experi-
ence with more real data examples would allow even
better tuning of the algorithm. The test reported here
was the first run of the algorithm on real data for
which the solution was known.

Although the solution generated by the algorithm is
not perfect, we argue that it is quite good and can serve
as a useful tool in gene discovery and expression anal-
ysis. By sequencing a small sample from each cluster,
one can identify those clusters that are relatively pure
and concentrate on sequencing the nonpure and low-

FIG. 1. Clustering results on real cDNA data. (A) The binarized
110. (B) Reordering of A according to the true clustering. cDNAs from
borders between different clusters. (C) Reordering of A according to
computed cluster appear consecutively, with no borderlines. Cluster
to the solution produced by the Greedy algorithm.
abundance clusters only. Another strategy for using
the clustering results is to compute the average finger-
print of each cluster and compare it to known gene
sequences from databases. This approach was success-
fully demonstrated by Meier-Ewert et al. (1998) and
Poustka et al. (1999). Using that strategy, most known
genes can be detected without any sequencing. This
strategy can also detect impure clusters.

Our real data test used as the “true” reference a
clustering obtained by hybridization with long (;1000
nt) probes. Though not always completely accurate,
that clustering has high fidelity. The stringent hybrid-

ilarity matrix S. A black point at position (i, j) indicates that Si, j $
e same true cluster appear consecutively, and black lines delineate
clustering produced by the HCS algorithm. cDNAs from the same

e presented in the order of detection. (D) Reordering of A according
sim
th

the
s ar
ization conditions permit the detection of highly com-



f
c
m

c
s
a
t
u
n
h

p

t
t
s
M
N

254 HARTUV ET AL.
plementary sequences only, as false-positive matches
require significant homology over stretches of more
than 300 nt (Sambrook et al., 1989). Certainly, a per-
ectly true solution would be to sequence fully all
DNAs used in this analysis, but for quality assess-
ent this reference is quite adequate.
The basic HCS algorithm repeatedly splits the set of

lones using minimum cuts until a highly connected
ubgraph is formed. Such an algorithm has some prov-
ble properties that are desirable for clustering (Har-
uv and Shamir, submitted for publication). In partic-
lar, it guarantees that every cluster has diameter 2,
amely, each two elements in the same cluster are
ighly similar (i.e., with similarity level above u) or are

both highly similar to a common third member of the
cluster. In contrast, the union of any two subgraphs
split by the algorithm is unlikely to manifest such
cohesive properties.

The low-degree heuristic is intended to speed up the

TAB

Comparison of the Clusters Formed by t

T1 T2 T3 T4 T5 T6 T7 T8 T9 T

S 7 6 2 9 19 21 9
C1 1 1 6 2 5 13 18 5
C2

C3

C4 1 15 1
C5 5 1 2
C6 83
C7 1 1 1
C8

C9 42
C10

C11

C12 1 2 4 4 5
C13 6
C14

C15 4
C16

Total 1 2 12 14 10 32 39 43 67 8

Note. T1, . . . , T18: the true clusters. C1, . . . , C16: clusters found by t
that belong to Ci and Tj. Boldface numbers indicate 92% or more (95

ure clusters.

TAB

Quality of Solutions Given by Three A

Solution type
Total
edges

Missing
edges

Missing
edges (%)

True 400,278 281,895 70
HCS without merge 220,434 114,810 52
HCS 302,544 186,711 62
Greedy 182,435 99,523 55

Note. Total edges: number of intracluster pairs of clones in the sol
he threshold. Extra edges: intercluster pairs that have similarity a
hat optimizes its Minkowski score (the threshold used for the true so
olution. HCS without merge: the HCS algorithm without the clus
ilosavljevic et al. (1995). Minkowski: the score of solution quality (se

ote the extremely high error rate in the true solution.
basic algorithm. Our experience shows that a judicious
choice of the degree sequence has a dramatic effect on
the running time with only a minor effect on the clus-
tering quality. For example, on the real data set dis-
cussed above, different degree sequences reduce the
running time by a factor of 40 and yet lead to extremely
similar results (Hartuv, 1998). Selecting the appropri-
ate degree sequence requires some experience or ex-
perimentation with the problem data. One useful aid
may be the knowledge of the correct clustering on some
small subset of the data. Such knowledge is often avail-
able for fingerprint data, since some known genes are
used as internal controls to monitor the quality of the
hybridization process (Meier-Ewert et al., 1998).

A key parameter that influences the clustering qual-
ity is the threshold u. Like the degree sequence, a good
value of u can be determined using a control subset.
Our simulations show that the range of u values that
give near-optimal clustering results is quite wide (re-

2

HCS Algorithm with the True Clusters

T11 T12 T13 T14 T15 T16 T17 T18 Total

7 5 43 14 9 10 21 23 206
17 6 16 7 25 9 51 85 269

162 162
62 62

4 1 1 563 587
4 2 2 199 2 217

2 85
2 224 2 1 232

97 97
1 43

170 170
61 1 62

7 4 7 4 10 31 81
6

1 26 27
5 4 3 16

6 6
91 108 146 187 213 284 285 708 2329

HCS algorithm. S: singleton set. Position (i, j) is the number of clones
or more except for C5) of their row totals, indicating pure or almost

3

orithms on the 2329 Clones Data Set

xtra
dges

Extra
edges (%)

No. of
clusters Minkowski

No. of
singletons

,909 0.69 18
,668 1.15 17 0.83 206
,459 0.77 16 0.71 206
,380 2.03 66 0.77 478

n. Missing edges: intracluster pairs with similarity that falls below
e the threshold. The threshold for each algorithm was set in a way
on was the same as for the HCS algorithm). True: the true clustering
merging phase. HCS: the full algorithm. Greedy: the algorithm of
xt). Singletons: elements that are left unclustered by the algorithms.
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sults not shown). Consequently, a good value can be
rapidly found. The initial value of u can be based on
prior knowledge of the abundance distribution and the
expected noise levels.

In our simulation we assumed that all probes have
the same rate, which is not satisfied by randomly cho-
sen probes on real gene sequences. However, as was
shown by Mayraz and Shamir (1999), this can be rem-
edied by a judicious choice of probes. The results on the
real data set also demonstrate that the effect of this
problem is not large.

The simulation we have performed demonstrates the
robustness of the algorithm to very high noise levels. It
is, however, limited to generating only binary finger-
prints. This handicaps to some extent the capabilities
of the HCS algorithm and to an even larger extent the
Greedy algorithm, which depends strongly on the real
valued fingerprints. Generating real valued finger-
prints would be more realistic, but the complex process
of obtaining the real fingerprints is not easy to model in
simulation. The results of the algorithm with real val-
ued fingerprints should be at least as good as with
binary fingerprints, since more information is ex-
ploited.

Additional improvements to the algorithm can be

FIG. 2. Impact of problem parameters on the performance of the
algorithm. Cluster structure: 450 elements in nine clusters of sizes
expected rate of false-positive hybridizations is 25%. a 5 0.4, so the e

t. Poisson rate for probe appearance is l 5 0.005. In each experim
efault values. Averages and standard deviations are based on 50 s
mpact of problem size and comparison to Greedy. Cluster sizes wer
aking the first 3, 4, . . . , 13 sizes. HCS: dotted line; Greedy: contin
umber of probes. (C) Impact of false-positive rate. (D) Impact of fa
achieved by using a faster minimum cut algorithm
(e.g., Karger, 1996) and by attempting to find maximal
highly connected subgraphs (e.g., using the cohesive-
ness function of Matula, 1972). Using a weighted min-
imum-cut algorithm may also improve the results.

A comparison of our algorithm with classical clus-
tering algorithms like k-means (Hartigan, 1975) may
be interesting. One clear advantage of our algorithm
is that the number of clusters need not be prespeci-
fied. Comparison with classical hierarchical cluster-
ing algorithms is also of interest. Finally, although
the algorithm we developed was tested in the context
of gene expression, its use is not limited to this
application, and it can be used to solve other clus-
tering problems.
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orithm on simulated fingerprints, and comparison with the Greedy
, 20, 30, . . . , 90. The number of probes is 200. b 5 0.0015, so the
cted false-negative hybridization rate is 40%. La 5 500 nt; Lb 5 2500
one parameter value was changed while the rest were kept at the
lations per data point. All results are for the Minkowski score. (A)
, 20, 30, . . . , 130, and the different problem sizes were obtained by
us line. Error bars denote 1 standard deviation. (B) Impact of the
negative rate.
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