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Abstract. We introduce an extended computational framework for studying bi-
ological systems. Our approach combines formalization of existing qualitative
models that are in wide but informal use today, with probabilistic modeling and
integration of high throughput experimental data. Using our methods, it is possi-
ble to interpret genomewide measurements in the context of prior knowledge on
the system, to assign statistical meaning to the accuracy of such knowledge and
to learn refined models with improved fit to the experiments. Our model is rep-
resented as a probabilistic factor graph and the framework accommodates partial
measurements of diverse biological elements. We develop methods for inference
and learning in the model. We compare the performance of standard inference
algorithms and tailor-made ones and show that hidden variables can be reliably
inferred even in the presence of feedback loops and complex logic. We develop a
formulation for the learning problem in our model which is based on deterministic
hypothesis testing, and show how to derive p-values for learned model features.
We test our methodology and algorithms on both simulated and real yeast data.
In particular, we use our method to study the response ofS. cerevisiaeto hyper-
osmotic shock, and explore uncharacterized logical relations between important
regulators in the system.

1 Introduction

The integration of biological knowledge, high throughput data and computer algorithms
into a coherent methodology that generates reliable and testable predictions is one of
the major challenges in today’s biology. The study of biological systems is carried out
by characterizing mechanisms of biological regulation at all levels, using a wide va-
riety of experimental techniques. Biologists are continuously refining models for the
systems under study, but rarely formalize them mathematically. High-throughput tech-
niques have revolutionized the way by which biological systems are explored by gen-
erating massive amounts of information on the genome-wide behavior of the system.
Genome-wide datasets are subject to extensive computational analysis, but their inte-
gration into existing (informal) biological models is currently done almost exclusively
manually. To rigorously integrate biological knowledge and high-throughput experi-
ments, one must develop computational methodologies that accommodate information
from a broad variety of sources and forms, and handle highly complex systems and
extensive datasets.

Recent studies on computational models for biological networks have attempted de-
novo reconstruction of a network on genes (e.g., [6]), used prior knowledge on network
topology (e.g., [9, 11]), or combined transcription factor location and sequence data



to learn a clustered model for the genome-wide behavior of the system [1, 23, 2]. Other
studies built detailed models manually, utilizing existing biological knowledge [3, 5] but
lacked computational methods for model reassessment in light of additional evidence.

In this study we describe a new algorithmic framework for representing biological
knowledge and integrating it with experimental data. Our methodology allows biolo-
gists to formalize their knowledge on a system as a coherent model, and then to use
that model as the basis for computational analysis that predicts the system’s behavior
in various conditions. Most importantly, our framework allows the learning of a refined
model with improved fit to the experimental data.

In previous works [25, 8] we have introduced the notions of model refinement and
expansion and studied it when applied to discrete deterministic models. Here we study
these problems in the more general settings of probabilistic models. The probabilistic
approach allows us to model uncertainty in prior biological knowledge, and to distin-
guish between regulatory relations that are known at high level of certainty and those
that are only hypothesized. The probabilistic model also allows us to mix noisy contin-
uous measurements with discrete regulatory logic. Unlike previous works that modeled
gene networks as Bayesian networks (or dynamic Bayesian networks) on genes, our
model expresses diverse biological entities (e.g., mRNAs, proteins, metabolites), and
directly accommodates undelayed feedback loops which are essential in many biologi-
cal systems. We formalize our model as a probabilistic factor graph [14], and show how
it can be developed naturally from basic assumptions on the biochemical processes un-
derlying the regulatory network and on the information we have on it.

Having established our methodology for probabilistic modeling, we develop algo-
rithms for inferring the system’s state given partial data. For example, we can infer
the activity of proteins given gene expression data. We use inference algorithms as the
basis for learning refined regulatory functions. We develop a formulation of the learn-
ing problem in our network model, which is based on deterministic hypothesis testing.
Our approach to the learning of regulatory models uses regulatory features with clear
biological meaning and allows the derivation of p-values for learned model features.

We tested the performance of our algorithms on simulated models and on two com-
plex pathways inS. cerevisiae: the regulation of lysine biosynthesis, and the response
to osmotic stress. In both cases our models successfully integrate prior knowledge and
high throughput data and demonstrate improved performance compared to extant meth-
ods. In particular, our results suggest a novel model for regulation of genes coding for
components of the HOG signaling pathway and robustly learn logical relations between
central transcription factors downstream of the Hog1 kinase. Our results show that in-
tegration of prior biological knowledge with high throughput data is a key step toward
making computational network analysis a practical part of the toolbox of the molecular
biologist. For lack of space some proofs and details are omitted.

2 Modeling prior knowledge and experimental observations

In this section we present our probabilistic model for a biological regulatory network.
The biological entities in the system under study are formulated as variables represent-
ing, e.g., mRNAs, proteins, metabolites and various stimulators. We assume that at a



given condition, each of the entities attain a logical state, represented by an integer
value of limited cardinality. We wish to study regulatory relations (or regulation func-
tions) among variables. Such relations, for example, determine the level of a mRNA
variable as a function of the levels of a set of transcription factor protein variables, or
the level of a metabolite variable given the levels of other metabolites and of structural
enzymes. Regulation functions approximate an underlying biochemical reaction whose
exact parameterization is not known. Note that the regulatory process is stochastic at
the single cell level, but the parameters of the reaction equations governing it are de-
terministic. Moreover, when we observe a large ensemble of cells in a high throughput
experiment, we average millions of stochastic processes and in theory should obtain
an almost deterministic outcome, or a superposition of several deterministic modes.
Such deterministic outcome is obscured by significant experimental noise so a practical
modeling strategy may assume deterministic logic and noisy observations. Given these
notions, we wish to find a discrete, deterministic model that adequately approximates
the system’s reaction equations, in a way that can take into account the different sources
of noise and uncertainty in the data.

In most studied biological systems, substantial prior knowledge on regulatory rela-
tions has accumulated. Such knowledge includes direct regulatory interactions, qualita-
tive functional roles (activator/repressor), combinatorial switches, feedback loops, and
more. Typically, that information is incomplete and of variable certainty. In order to
optimally exploit it, we must model both the relations and their level of certainty. We
do this by introducing a distribution on the regulation functions for each variable. This
distribution may determine the regulation function with high probability if our prior
knowledge is very strong. At the other extreme end, lack of information is modeled by
uniform distribution over all possible regulation functions.

We formalize these notions as follows (see Figure 1). LetX = {X1, ...Xn} be a
collection of biological variables. LetS = {0, 1, ..., k − 1} be the set of logicalstates
that each variable may attain. Amodel states is an assignment of states to all the vari-
ables inX. Each variableXi is regulated by a set of itsregulator (or parent) variables
Pai = {Pai,1, ..., Pai,di

} ⊆ X. When addressing a particular regulation relation, the
regulated variable is also called theregulatee. Lower case letters will indicate state as-
signments of the corresponding upper case variables. For example, given a model state
s, xsi is the state ofXi, pasi is the assignment of the setPai. Theregulatory dependency
graph is a digraphGR = (X,A) representing direct dependencies, i.e.,(Xu, Xv) ∈ A
iff Xu ∈ Pav (GR is sometimes called the wiring diagram of the model). The graph
can contain cycles. Theregulation function priorfor a variableXi is formulated as our
belief that the variable attains a certain state given an assignment to its parentsPai. It
is represented as in standard Bayesian networks, by the conditional probabilitiesθi:

θi(Xi, Pai) = Pr(Xi|Pai) (1)

Note that in current applications, the interpretation of theθ distributions is not as rep-
resenting a stochastic process in whichθi defines the conditional probability ofXi

given its regulators. Instead, we assume that the true model deterministically deter-
minesXi given its parents, but we are not sure which deterministic rule applies, and
therefore what valueXi will attain. In the future, given refined understanding of reg-



ulatory switches, and measurements at the single cell level, theθ distributions may be
applicable to describe the inherent stochasticity of some biological switches.

We wish to learn regulation functions from experimental data. In practice, biological
experiments provide noisy observations on a subset of the variables in the system. The
observations are continuous and we do not know in advance how to translate them
into logical states. We thus introduce a set of real valuedsensor variablesY1, .., Yn
anddiscretizer distributionsψi(Xi, Yi) that specify the joint distribution of a discrete
logical state ofXi and the continuous observation onYi. In this work, we shall use
mixtures of Gaussians (Figure 1b) to modelψi, but other formulations are also possible.

Our model is now represented as a probabilistic factor graph [14], defined
by the joint distribution over logical (X) and sensor (Y ) variables:

PrM (X,Y ) =
1
Z

∏
i

θi(Xi, Pai)ψi(Xi, Yi) (2)

WhereZ is a normalization constant. We call this formulation afactor graph network
(FGN) model. Factor graphs are widely used probabilistic graphical models that were
originally applied to coding/decoding problems. Recently, factor graphs were used in
computational biology, although in a different context [27].

When the dependency graphGR is acyclic, our FGN model is equivalent to a
Bayesian network on the variablesXi andYi, constructed using the edges ofGR and
additional edges from eachXi to the correspondingYi. This can be easily seen from (2)
by noting that in the acyclic caseZ = 1 (the proof is as in Bayesian networks theory,
e.g. [18]). When the model contains loops, the situation gets more complicated. For ex-
ample, we note that according to the FGN model,PrM (Xi|Pai) does not necessarily
equals the original beliefsθ(Xi, Pai). We note that derivation of the FGN model from
basic assumptions on deterministic approximations of the biological system and on our
prior beliefs on them is possible, and will be described in a later publication.

We now outline several important extensions of our model that are not used in this
study. In its simplest form, our model describes the steady state behavior of the system.
Biological processes are ideally described as temporal processes, but when sampling
rate is slow relative to the rate of the regulatory mechanisms, the steady state assump-
tion can be invoked. Different regulatory processes operate on different time scales:
In the typical high throughput experimental sampling rate, the steady state assump-
tion may be highly adequate for metabolic pathways and post translational regulation
and reasonable for transcriptional programs. For the models considered in this work
we have combined interactions from all types and validated empirically (using, e.g.,
cross validation) that the steady state assumption still enables biologically meaningful
results. Our model is unique in its handling of steady state feedback loops. It can be
extended to handle slower temporal processes in a way analogous to the construction of
dynamic Bayesian networks (DBN) [7, 24] from steady state Bayesian networks. As in
DBNs, the algorithms for inference and learning can be naturally generalized from the
steady state model to the dynamic model. Another possible extension is the considera-
tion of other classes of regulation functions (for example, we can consider continuous
or ranked function as in [26, 22, 12, 16]).



Fig. 1. An overview of the factor graph network model. A) Knowledge on the logical regulation functions is formalized as
conditional probabilities. B) Continuous measurements and logical states are linked by joint discretizer distributions. C) A
possibly cyclic network structure is transformed into a factor graph, using the regulation function priors and the discretizers’
distributions

3 Inference

In this section we discuss the inference problem in the FGN model. Each experiment
provides partial information on the value of model variables. Typically, a subset of the
sensor real valued (Y ) variables are observed in each experiment (for example, mRNA
variables are determined in a gene expression experiment). The values of some logical
(X) variables may also be determined by the experimenter (e.g., the nutritional condi-
tion is represented by the states of extra-cellular metabolite variables). Perturbations of
certain regulation functions (e.g., by gene knockouts) are not discussed here for sim-
plicity, but are easily incorporated by modifying theθ parameters at the appropriate
conditions. The inference problem is defined with respect to an observation on a subset
of the variables. The goal is to compute the posterior distribution of the unobserved
(hidden) variables, i.e. the probability distribution of hidden variables values given the
model and the observed data. For example, given a gene expression profile, we can
compute the posterior distribution of protein variables or estimate the level of a certain
metabolic intermediate. Solving instances of the inference problem is a pre-requisite
for learning refined models.

Inference in graphical models is an NP hard problem [4] that was extensively stud-
ied. A popular class of algorithms [28] uses an approximation of the posterior distribu-
tion assuming certain decomposition over independent variables or clusters of variables.
Algorithms from this class include loopy belief propagation (LBP), mean field, and their
generalizations. They provide in many cases an effective way for estimating posteriors
of small sets of variables. A different approach is needed if one is interested inpos-
terior modes- complete system states with high probability mass. Modes provide an



important insight into the system’s state space, and cannot be directly computed from
independent variable posteriors.

Posterior modes are particularly important when we study the behavior of systems
with feedback loops. For example, the single variable posteriors in a positive feedback
loop may contain no information even though the loop has two simple modes (all vari-
ables on or all variables off) that absorb all the probability mass. Still, when applicable,
algorithms that compute independent posteriors perform well.

We studied the effects of our model’s specific characteristics on the performance
of several inference algorithms. We implemented a Gibbs sampler, the LBP algorithm,
and a modes-based instantiation inference algorithm. OurGibbs sampler is a naive
MCMC algorithm [15] that performs a random walk over the space of model states,
based on sampling from local distributions. In our model, sampling is done only for the
X variables (unobserved sensors do not affect other posterior distributions). In Gibbs
sampling, the posterior is estimated from the set of terminal trajectory states, so any
query from the posterior is in principle possible (including single variable posteriors
or complete modes). TheLBP algorithm for the FGN model was implemented as de-
scribed in [28]. The algorithm is a message passing procedure that is guaranteed to
reach the exact solution for acyclic models. The algorithm, like others in the family,
decomposes the posterior across variables or sets of variables, so we could only use it
to obtain the posterior of small sets of variables. We also developed an instantiation-
based inference algorithm that exploits the known dependency structure of the model
and builds on ideas from [8]. Themodes instantiation (MI) algorithm first builds a
deterministic model by taking, for each variable, the maximum likelihood regulation
function (using the priorθi and breaking ties arbitrarily). It then identifies a feedback
set inGR (see [8]) and enumerate all possible value assignments for variables in this
set. Each feedback set configuration gives rise to a unique model state, which is used
as the basis for further greedy optimization of the state likelihood. We add to the re-
sulting set of high probability modes an additional small set of states derived using the
Gibbs sampler. We now estimate the posterior as a mixture of the set of locally optimal
and sampled model states, weighted by their likelihoods, where the partition function
(our estimation of theZ parameter) equals the sum of likelihood over all of the states
we consider. We thus map the posterior function landscape using a limited set of local
optima.

We tested the three inference algorithms on a simulated model (see Figure 2). We
constructed simulated FGN models by adaptation of a deterministic model. We use a
prior strengthparameterα to constructθ functions that assign probabilityα for the
anticipated deterministic function outcome and1−α

k−1 to other values. For detailed de-
scription of the simulation, see our website (www.cs.tau.ac.il/∼rshamir/fgn/). We ex-
plored the behavior of the different algorithms as a function of the prior strength (α)
using the correct posterior as the reference. Models withα near one represent very
good knowledge on the system under study. Models withα near 1

k represent complete
lack of knowledge. Our analysis (see Figure 2) indicates that for estimation of single
variable posteriors, LBP outperforms the other two algorithms (and also the mean field
algorithm and a simple clustered variational algorithm [13], data not shown). Also,
when the prior is strong, MI provides reasonable accuracy. However, the distribution
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Fig. 2.Performance of different inference algorithms on a simulated model. A) The dependency graphGR of the simulated
model. B) Effect of prior strength on inference accuracy. Y axis: the correlation of approximated and exact single variable
posteriors. X axis: prior strength (α). For strong priors, LBP and MI give a good approximation for the posterior, while the
accuracy of the Gibbs sampler is low. As priors get weaker, the performance of MI deteriorates, indicating that the mixture
of deterministic modes is a poor approximation for the posterior in these cases. C,D,E) Detailed correlation of algorithmic
and exact single variable posteriors forα = 0.7 (top) andα = 0.97 (bottom). F,G)Detailed correlation of algorithmic and
exact joint posteriors forα = 0.7 (top) andα = 0.97 (bottom). We see that MI outperforms LBP when comparing the
joint posteriors modes.

of posterior modes produced by MI is more accurate than that of LBP (Figure 2F,G),
exemplifying the limitations of the posterior independence assumptions. Overall, we
prefer using LBP to infer single variable posteriors and MI to approximate the global
posterior distribution.

4 Learning discretizers

Adequate transformation of continuous measurements into logical states (i.e., discretiza-
tion) is essential for the combined analysis of experimental data and a model represent-
ing accumulated biological knowledge. There are several alternative approaches to dis-
cretization. In most previous works on discrete models (e.g., [6, 8]), discretization was
done as a preprocess, using some heuristic rule to map real valued measurements into
discrete states. In these cases, the rule must be determined and tuned rather arbitrarily,
and typically, all variables are discretized using the same rule. The FGN model suggests
a different approach to discretization. Here the discretization is an integral part of the
model, so the dependencies between the discretization scheme and regulation function
priors are fully accounted for. It is thus possible to a) define different discretization
scheme for different variables and b) apply standard learning algorithms to optimize



the discretization functions used. Given a logical function prior and experimental evi-
denceD we learn the discretization functionsψi using an EM algorithm. We start by
initializing all ψ using any heuristic discretization scheme. On each EM iteration, we
infer the posterior distributions for each of the variablesXi in each of the conditions,
and then reestimate theψi mixtures using these posteriors, by computing the Gaussians
sufficient statisticsE(Yi|Xi = j,D), V (Yi|Xi = j,D). The newψi distributions are
used in the next iteration and the algorithm continues until convergence.

The FGN model thus provides a very flexible discretization scheme. In practice,
this flexibility may lead to over-fitting and may decrease learnability. One can control
such undesired effects by using the same few discretization schemes on all variables.
As we shall see below, on real biological data, variable specific discretization outper-
forms global discretization using a single scheme, and is clearly more accurate than the
standard preprocessing approach.

5 Learning regulation functions

Given an FGN model and experimental evidence, we wish to determine the optimal reg-
ulation function for each variable and provide statistical quantification of its robustness.
The standard approach to learning in graphical models seeks parameters that maximize
a likelihood or Bayesian score, possibly completing missing data using an EM algo-
rithm. The applicability of this approach relies heavily on our ability to interpret the
learned parameters in meaningful way. In many cases such interpretation is straight-
forward (e.g., learning the probabilities of each face in an unfair dice). In other cases,
for example, when learning regulation functions in the FGN model, such interpreta-
tion is less obvious and should be carefully evaluated given the phenomenon we try
to model. Specifically, if we assume the parameters of the logical factors in the FGN
model represent our prior beliefs on the logical relations between variables, we may
attempt to learn by confirming beliefs (deciding if a certain regulator assignment gives
rise to a certain regulatee assignment) rather than finding optimal new beliefs. Given
that currently most biological systems are only roughly characterized, and available ex-
perimental data provide estimated averages of the states of biological factors in them,
this hypothesis driven approach may be a realistic alternative to parameters learning. In
other cases (most importantly, when single cell measurements are available), we may
prefer the standard approach. We assume throughout that the network topology is fixed
and focus on learning regulation functions only. In principle, the methods introduced
below can also be used to refine the topology (add and remove edges).

We focus on the regulation of some variableXi given a fixed parents value assign-
mentpasi . Definehj as the FGN model derived fromM by settingθ(j, pasi ) = 1 and
θ(j′, pasi ) = 0 for j′ 6= j. We define the learning problem in our model as selecting the
maximum likelihoodhj . To that end we shall have to compute the likelihood of eachhj
given the data, essentially solving the inference problem in thehj model to compute the
full probability of the data. Computing the full probability is a difficult problem, and as
stated in section 3 we approximate it using the MI algorithm. We bound the likelihood
of the data givenhj by summing the likelihoods of the posterior modes sampled by the
MI algorithm (including modes computed from configurations of a feedback set inGR



and modes obtained using Gibbs sampling). While this is a very crude approximation,
our empirical analysis shows it is still adequate (see below).

To assign statistical meaning to the learning procedure we use two methods: boot-
strap and likelihood ratio testing. In the bootstrap method, we re-sample conditions
from the original dataD and reiterate the learning procedure. We count the number of
times eachhj was selected as the maximum likelihood model and define the feature ro-
bustness as the fraction of times it was selected. Bootstrap is in widespread use in cases
where sampling from the background distribution is impossible or very difficult. In our
case, approximated sampling fromPr(D|hj) is possible given our representation of
the posterior landscape as a mixture of modes. We can thus try to directly perform a
likelihood ratio test and derive p-values for the learned features.

We fix j and defineH1 : hj ,H0 : ∪k 6=jhk andλ = maxhi∈H0∪H1Pr(D|hi)

maxhi∈H0Pr(D|hi)
. In order

to compute a p-value for the observed statisticλ, we have to estimate the distribution of
λ givenH0. To that end we generate samples from the distributionPr(D|H0), compute
the correspondingλ’s and reconstruct the distribution. When sampling datasetsD, we
take into account both the model (defined byH0) and the properties of the original
dataset. We do this as follows: for each of the conditions in the original dataset, we fix
all observations ofX variables (these correspond to the experimental conditions) and all
model perturbations. We then apply the MI algorithm with theH0 model, and compute
the set of posterior modes matching these experimental conditions, without using any of
the observations onY variables. We then generate a sample by a) selecting a mode from
the mixture, and b) generating observations onY variables using the model discretizer
distributionsψ.

We analyzed the performance of the bootstrap and likelihood ratio test methods by
learning features in a simulated model (see our website for details). Figure 3 shows
ROC curves for learning in the simulated model using 15 and 80 conditions. We see
consistently better accuracy when using the likelihood ratio tests, probably due to better
resolution of features that are nearly ambiguous given the data. While bootstrap has the
advantage of not assuming an approximation to the global posterior, it is less accurate
when the posterior can be reasonably approximated.

6 Results on biological data

In order to test the applicability of our methods to real biological systems, we con-
structed models of two important yeast pathways, the lysine intake and biosynthesis
pathway, and the Hog1 MAPK pathway, which mediates the yeast response to osmotic
stress. For each of the models, we performed extensive literature survey in order to con-
struct the initial model of the system (for the lysine system, our previously developed
deterministic model [8] was the main source). The HOG model is outlined in Figure 6.
The lysine model contained 140 variables and the HOG model contained 50 variables.
We used prior strengthα = 0.9 in all reported experiments. We collected published
experimental data on each of the models. The data consisted of 23 conditions (cf. [8])
for the lysine model and 129 conditions for the HOG model [17]. Differential measure-
ments from cDNA microarrays were transformed into absolute values as described in
[8].
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Fig. 3. Accuracy of learning regulation functions. Each figure is a ROC curve (X-axis: false positives rate Y-axis: true
positives rate) for learning the functions in a simulated model using bootstrap and likelihood ratio test for determining the
significance of learned features. Results are shown for learning from 15 (A) and 80 (B) conditions. The accuracy of the
likelihood ratio test method is consistently higher.

6.1 Learning discretization

The FGN model couples continuous measurements and discrete states via the discretizer
distributionsψi. We tested our ability to learn the functionsψi by performing cross
validation using gene expression data for the HOG and lysine models.

We used cross validation to compare three alternatives: (A) single common prede-
fined mixture of Gaussians. (B) using the EM algorithm described in Section 4 to learn
a single common maximum likelihoodψ distribution (C) applying an unconstrained
EM to learn variable specificψi-s.

Cross validation was done as follows. For each condition, we used one of the above
methods to learn theψ distributions, using all data excluding that condition. We then
iterated over all the model’s variables. For each variablev, we hid its observation in the
omitted condition, and inferred its posterior distribution using the trainedψ’s. Finally,
we computed the likelihood ofv’s observation given the posterior.

Figure 4 shows the results of the cross validation on the HOG model. We present the
distribution and the average log likelihood ratio of each of the methods B and C to the
predefined discretization (method A). This comparison allows us to view the results in
terms of the generalization capabilities of the optimized discretizers: likelihood ratios
smaller than 0 represent cases where the refined discretization resulted in overfitting,
ratios larger than 0 represent successful generalizations. We conclude that for 80% of
the cases, incorporating the discretization into the model significantly improves per-
formance. Moreover, variable specific discretization outperforms the optimized global
discretization scheme. Similar results were obtained for the lysine model.

6.2 Learning Regulation functions

We used cross validation in the lysine model to confirm the capability of our method to
learn real regulation functions from real data and to compare its performance to the de-
terministic and to a naive Bayesian approaches. The deterministic model approach [8]
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Fig. 4.Learning discretization distributions. Cross validation results for alternative methods for estimating the discretiza-
tion functionsψi in the HOG model. Glob EM - optimized single common discretization function. Var EM - optimized
variable specific discretization. A) Cumulative distribution of log likelihood (ll) ratios comparing each of the two discretiza-
tion methods to the global preprocessed discretization scheme. B) Average ll ratios for the two methods. Bars indicate the
predicted standard deviation of the averages.

learns a deterministic regulation function by optimizing a least squares score. It assumes
a prior model that is 100% certain and solves the deterministic analog of the inference
problem to enable the learning of a regulation function from partial observations. To
allow comparison of the deterministic model with the current one, we transformed its
discrete predictions into continuous distributions using predefined Gaussians. The same
discretizers were used in the other two models, in order to ensure that differences in
model performance were not due to the discretization. In the naive Bayesian approach,
we assume the topology of a Bayesian network over the observed variables (the mR-
NAs in our case) is given, and we learn the conditional probabilities of each variable
separately given its regulators using complete data. The learning problem in this case
is trivially solved by building a frequency table. Learning in the FGN model was done
given the probabilistic function priorsθi. We used the hypothesis testing procedure de-
scribed above to repeatedly attempt the learning of regulation function features. For a
variable withm regulators we havekm such features, corresponding to each regula-
tors assignment. For each feature, and given a p-value threshold (we used 0.01), our
learning algorithm may or may not be able to decide on the correct regulatee outcome.
We update the regulation function to reflect a strong prior for the feature (α = 0.99)
in case a decision was made, and a uniform distribution prior where no decision could
be made. We iterate the learning process until no further improvement is possible and
report a regulation function in which only a fraction of the features are determined.

To perform the cross validation we repeatedly selected a variable and set its prior
θi to the uniform distribution. We removed one condition from the dataset, learned
the variable’s regulation function and used it to compute the posterior of the variable,
given the omitted condition without the observation for the test variable. Figure 5 de-
picts the log likelihood ratio distribution for the three methods (compared to a uniform
prior model). We see that the FGN model improves over the other two methods. De-
tailed examination of the distribution reveals that the probabilistic model makes half
as many erroneous predictions (negative log likelihood ratios) as does its deterministic
counterpart, probably due to its ability to tolerate mistakes in the prior model. Both the
deterministic and probabilistic methods make good use of the additional knowledge,
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Fig. 5. Learning regulation functions. Cumulative distributions (A) and averages (B) of the log likelihood (ll) ratio for
cross validation in the lysine model using three methods for learning regulation functions: A naive Bayesian method, assum-
ing the network topology, a deterministic learning scheme as in [8], and learning using the FGN model. Bars indicate the
predicted standard deviation of the averages.

formalized into the model logic, to obtain better results than the naive, topology based
approach.

6.3 Biological analysis of the HOG model

The response of yeast to hyper-osmotic stress is mediated through parallel MAPK sig-
naling pathways, the multi target kinase Hog1, and an array of transcription factors that
coordinate a complex process of adaptation by transient growth repression and mod-
ifications to glycerol metabolism, membrane structure and more [10]. We have con-
structed an FGN model that represents known regulatory relations in the HOG system
(Figure 6A) and used it to study the transcriptional program following treatment by
variable levels of KCl [17]. The data we used contained observations of all mRNA
variables in the model and assignments of fixed values for logical variables describing
experimental conditions (e.g., Turgor pressure). We used the MI inference algorithm to
estimate the states of all logical variables in the model and applied the model to test
the accuracy of the prior logic distributions modeled from the literature. We summarize
the model predictions in thediscrepancy matrixshown in Figure 6B. The discrepancy
matrix shows the correspondence between model predictions and experimental obser-
vations at the level of a single variable under a single condition. Essentially, the discrep-
ancy matrix is the result of a leave-one-out cross validation procedure. To generate it,
we examine each sensor variableYi in each condition. We infer the posterior distribu-
tion of Yi given the observations on all other variables and compute the expected value
and the probability ofYi observation. We present the difference between the predicted
values and the observations in a color coded matrix.

The discrepancy matrix reveals several important discrepancies between the current
model for osmo-regulation and the microarray experiments we analyzed. We discuss
here briefly two major trends. The first trend affects a group of genes coding for proteins
participating in the MAPK signaling cascade (SSK1, SHO1, STE20, PBS2, CDC42,
HOG1 and more). These genes are repressed during the peak of the osmoregulation
program (10-30 minutes after treatment with 0.5M KCl, around 60 minutes in the 1M
KCl treatment). This repression is not reported in the current literature. We hypothesize



Fig. 6.Analyzing yeast response to hyper-osmotic shock.mRNA variable names are capitalized, protein variables names
appear in initial capital letters. Stimulator variables appear as unoutlined ovals. A) Topology of the HOG FGN model used
in this study. B) The discrepancy matrix for the HOG model and data from O’Rourke et al. Columns correspond to mRNA
variables and rows to experimental conditions, see text for details. Green (Red) cells indicate observations that are smaller
(bigger) than the expected prediction. Color intensity is proportional to minus the log likelihood of the observation given the
inferred variable posteriors. C) examples of model features learned by the FGN methodology. We show logical relations that
were learned with significant p-values. Each graph depicts the regulation of one regulatee given the particular states of its
regulators. Variable states are indicated as node colors: white - 0, pink - 1, red - 2.

that as part of the adaptation to high levels of osmotic pressure, yeasts may reduce the
Hog1 signaling cascade sensitivity, by slowing down the production of some central
components in it.

A second group of discrepancies involves genes that are targets of the Hog1 down-
stream regulators Sko1, Hot1, Msn1 and Msn2,4 [19, 21, 20]. In many cases, the lit-
erature does not specify the logical relations among the regulators and each of their
regulatees, and this lack of knowledge is manifested as discrepancies.

We thus used our model learning machinery to refine the regulatory logic for sev-
eral model variables that are known to be affected by Hog1-downstream regulators.
Figure 6c shows examples of logical relations we learned. First, we were able to learn
the known repressive role of Sko1 in the regulation ofGRE2andENA1[19]. We learned
three model features that associated the mRNA variables of these two genes with the
opposite state of the inferred Sko1 regulator state. Note that the expression of theSKO1
gene during osmotic stress is static, and the correct regulation function could only be



learned given the inferred Sko1 activities. These inferred activities take into account,
in addition to the mRNA measurements, the entire model and its regulatory functions.
A second example for a variable we learned regulation for wasSTL1. The regulation
of STL1is reported to be completely dependent on Hot1 and Msn1 [20], but it is not
clear what are the logical relations among them. Our results show that although these
two regulators have a positive effect onSTL1expression, the gene can be induced even
when both regulators lack any activity. We can thus hypothesize that a third factor is
involved inSTL1regulation. A third, more complex regulation function, associates the
Hog1 specific regulators Hot1, Msn1 and the general stress factor Msn2/4 into a single
program controlling several genes (we model just four representatives of a larger regu-
lon: GPP2, GPD1, HSP12andCTT1[21]). Our results indicate that the two signaling
pathways (the HOG cascade and the general stress pathway) act in parallel, and each of
the branches can induce the regulon in the absence of activity from the other.
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