
Compact universal k-mer hitting sets

Yaron Orenstein1, David Pellow2, Guillaume Marçais3, Ron Shamir2, and
Carl Kingsford3

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, USA

2 Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
3 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

yaronore@mit.edu, dpellow@tau.ac.il, gmarcais@cs.cmu.edu,

rshamir@tau.ac.il, carlk@cs.cmu.edu

Abstract. We address the problem of finding a minimum-size set of
k-mers that hits L-long sequences. The problem arises in the design of
compact hash functions and other data structures for efficient handling
of large sequencing datasets. We prove that the problem of hitting a
given set of L-long sequences is NP-hard and give a heuristic solution
that finds a compact universal k-mer set that hits any set of L-long
sequences. The algorithm, called DOCKS (design of compact k-mer sets),
works in two phases: (i) finding a minimum-size k-mer set that hits every
infinite sequence; (ii) greedily adding k-mers such that together they
hit all remaining L-long sequences. We show that DOCKS works well
in practice and produces a set of k-mers that is much smaller than a
random choice of k-mers. We present results for various values of k and
sequence lengths L and by applying them to two bacterial genomes show
that universal hitting k-mers improve on minimizers. The software and
exemplary sets are freely available at acgt.cs.tau.ac.il/docks/.

1 Introduction

Inspired by Grabowski and Raniszewski’s sampled suffix array using minimiz-
ers [1], we consider the following problem involving covering strings by selecting
short k-mer substrings:

Problem 1. Given integers k and L, find a smallest set UkL of k-mers such that
any string of length L or longer must contain at least one k-mer from UkL.

The set UkL is called a universal set of hitting k-mers, and we call each k-mer in
the set universal. Such a set has a number of applications in speeding up genomic
analyses since it can often be used in places where minimizers have been used
in the past [2]. For example:

1. Hashing for read overlapping. A näıve read overlapper must test O(n2)
pairs of reads to see whether they overlap. If we require an overlap of length
L, any pair of reads with such an overlap must contain a k-mer from set
UkL in this overlapped region. By bucketing reads into bins according to the
universal k-mers they contain, we need only test pairs of reads in the same
bucket. The number of buckets is limited by |UkL|.

2. Sparse suffix arrays. A sparse suffix array of a string S saves memory by
storing an index for only every sth position in S [3, 1]. To query a sparse
suffix array for string q, we perform at most s queries starting from indices
0, . . . , s − 1 in q; one of these queries will intersect a position stored in the
suffix array. Using UkL, we can instead store only positions in S that start
with a k-mer in UkL. Any query with |q| ≥ L must contain one of these
selected k-mers and will be matched when searching the suffix array.

3. Bloom filters to speed up sequence search. Bloom filters have been
used to speed up sequence search by storing k-mers present in a read set for
quick testing [4]. In current implementations, all k-mers present in a read
set are stored in these filters. If, instead, only the set of k-mers in a UkL

is stored, any window of length ≥ L is still guaranteed to contain one of
these representative queries, potentially reducing the size of Bloom filters
that must be maintained.

Minimizers have been used for some of these and similar applications [5–7].
Minimizers are the lexicographically first k-mer within a window of length L,
which were introduced by Roberts et al. [2] for genome assembly. MSP [8] com-
presses k-mers by hashing them to their 4-mer minimizer to efficiently construct
a de Bruijn graph for assembly. SparseAssembler [9] represents the de Bruijn
graph using only every g-th k-mer in the sequence (and has also been imple-
mented using minimizers). Kraken [10] uses minimizers to speed up database
queries for k-mers during metagenome sequence classification. The Locally Con-
sistent Parsing (LCP) [11] provides the concept of “core substrings” which, like
minimizers, are guaranteed to be shared by long enough identical strings. The
SCALCE software package [12] uses core substrings to compress DNA sequences.

A universal set UkL, if it can be found, has a number of advantages over min-
imizers for these applications. First, the set of minimizers for a given collection
of reads may be as dense as the complete set of k-mers, whereas we show below
that UkL is often smaller by a factor of k. Second, for any k and L, the set of
universal k-mers needs to be computed only once and not recomputed for every
dataset. Third, the hash buckets, sparse suffix arrays, and Bloom filters created
for different datasets will contain a comparable set of k-mers if they are sam-
pled according to UkL. The universal set of k-mers also has the advantage over
dataset-specific sets because one does not need to look at all the reads before
deciding on the k-mers to use, and one does not need to build a dataset-specific
de Bruijn graph to select covering k-mers.

The need for faster and more memory efficient genomic analysis methods is
rapidly increasing as fast as the size and depth of sequencing data is increasing.
The NIH Sequence Read Archive, for example, contains over 3.5 petabytes of
sequence data and is growing at a fast pace. Increased use of RNA-seq in many
conditions and in clinical settings leads to high processing burdens. Metagenomic
sampling at increasing depth to quantify and assemble microbes from environ-
mental samples leads to even larger sequencing datasets. New ideas in indexing,
data structures, and algorithms are essential to keep computational pace with
this data generation. The minimizer idea has been extremely successful in re-

2

ducing computational requirements. The universal set of k-mers proposed here
will lead to further improvements in speed and memory.

The problem is also of theoretical interest as it can be rephrased as an equiva-
lent problem on the complete (original) de Bruijn graph (see Definition 1 below).
This is the viewpoint we take for most of this article:

Problem 2. Given a de Bruijn graph Dk of order k and an integer L, find a
smallest set of vertices UkL such that any path in Dk of length L − k passes
through at least one vertex of UkL.

A solution to this problem may reveal additional hidden structure contained
within the class of de Bruijn graphs.

We show that the problem of finding a minimum-size k-mer set that hits
every string in a given set of L-long strings is NP-hard, further motivating the
need for a universal k-mer set. We provide a heuristic called DOCKS that is
based on the combination of three ideas. First, we use a decycling algorithm [13]
to convert a complete de Bruijn graph into a directed acyclic graph (DAG)
by removing a minimum number of k-mers, building off an implementation by
Knuth [14]. We then supply a novel dynamic program to score remaining k-
mers by the number of remaining length-` paths that they hit. Finally, we use
that dynamic program in a greedy heuristic to select the additional k-mers and
produce a small universal set ÛkL, which we show empirically to often be close
to the optimal size. Our use of a greedy heuristic is motivated by providing a
proof that finding a small `-path cover in a graph G is NP-hard even when G is
a DAG.

DOCKS provides the first practical solution to the identification of universal
sets of k-mers. The software is freely available on acgt.cs.tau.ac.il/docks/,
as are universal sets of k-mers over a range of values of L and k. We report on
the size of the universal k-mer hitting set produced by DOCKS and demonstrate
on two datasets that we can better cover sequences with a smaller set of k-mers
than is possible using minimizers. Our results also provide a starting point for
additional theoretical investigation of these path coverings of de Bruijn graphs.

2 Definitions

Definition 1 (de Bruijn Graph). A de Bruijn graph of order k over alphabet
Σ is a directed graph in which every vertex has an associated label (a string over
Σ) of length k (k-mer) and every edge has an associated label of length k + 1.
There are exactly |Σ|k vertices in a de Bruijn graph, each representing a unique
k-mer. If an edge (u, v) has a label l, then the label of u must be a k-prefix of l
and the label of v must be a k-suffix of l.

A complete de Bruijn graph contains all possible edges, which represent to-
gether all (k + 1)-mers over Σ. Every path in a de Bruijn graph represents a
sequence. A path v0, e0, v1, e1, v2, . . . , vn of length n spells a sequence s of length
n+ k such that the label of vi occurs in s starting at position i for all 0 ≤ i ≤ n,

3

and the label of ei occurs in s starting at position i for all 0 ≤ i ≤ n− 1. Note,
that vertices may repeat in a path.

We will need two bits of terminology involving k-mers intersecting and not
intersecting sequences over an alphabet Σ:

Definition 2 (hits). K-mer w hits sequence S if w ⊆ S, i.e. w appears as a
contiguous substring in string S. K-mer set X hits sequence S if ∃w ∈ X s.t.
w ⊆ S. Denote hit(w,L) = {S ∈ ΣL | w ⊆ S} for k-mer w and length L. Denote
hit(X,L) = ∪

w∈X
hit(w,L).

Definition 3 (avoids). Sequence S avoids k-mer w if w 6⊆ S. Sequence S
avoids k-mer set X if ∀w ∈ X,w 6⊆ S. Denote avoid(w,L) = ΣL \ hit(w,L) for
k-mer w and similarly avoid(X,L) = ΣL \ hit(X,L) for k-mer set X.

3 Methods

It is not known how to efficiently find a minimum universal (k, L)-hitting set.
As we show in Section 4, the corresponding problem when restricted to a given
set of input sequences is NP-hard (Sec. 4.1). Here, we give a practical heuristic
to find small (but non-optimal) universal k-mer sets. This algorithm works in
two steps: first it finds and removes a minimum-size k-mer set hitting all infinite
sequences, and then it removes additional k-mers to hit all remaining L-long
sequences. We now describe these two steps in detail.

3.1 Finding a minimum k-mer set hitting all infinite sequences

The problem of finding a minimum-size k-mer set hitting all infinite sequences
is known in the literature as finding an ‘unavoidable set’ of constant length [15].
This is a set of words of the same length k that hits any infinite word (but finite
words may avoid the set). The problem of finding an unavoidable set for a given
k can be solved in time polynomial in the output size [15]. The original algorithm
is due to Mykkeltveit [13]. Its running time is O(kM(k)), where M(k) is the size
of the minimum unavoidable set. M(k) converges to |Σ|k/k (an exact formula
is given in Section 5.1, Equation 5), so the running time is O(|Σ|k).

An unavoidable set of constant length k is equivalent to a set of vertices in
a complete de Bruijn graph of order k whose removal turn it into a DAG. Each
k-mer in the set corresponds to a vertex, and the removal of vertices from every
cycle guarantees that no infinite sequence is represented as a path in the graph.
This set is known as a decycling set.

3.2 A greedy algorithm to hit all remaining L-long sequences

Unfortunately, finding an unavoidable set is not enough, as there may be L-long
sequences that avoid that set. Thus, we need additional k-mers to hit those. If
we consider the graph formulation, after removal of the unavoidable set from the

4

graph, we are left with a directed acyclic graph, which may contain (L−k)-long
paths representing L-long sequences. We need to remove additional vertices, so
that there is no path of length ` = L−k. The problem of finding a minimum-size
set of vertices that hit all `-long paths in a directed acyclic graph is NP-hard,
as we prove in Subsection 4.2. Therefore, we give a heuristic algorithm.

Our algorithm is based on the greedy algorithm for the minimum hitting
set [16]. We define the hitting number T`(v) of a vertex v as the number of
paths of length ` that contain it. The main observation is that we can calculate
the hitting number of each vertex efficiently using dynamic programming. The
solution is based on calculating the number of paths of length i that terminate
at vertex v, and the number of paths of length i that start at vertex v, for all
v ∈ V and 0 ≤ i ≤ `. Then, the number of `-long paths through v is directly
computable from these values by breaking any path into a i-long path ending
at v and a (` − i)-long path starting at v, for all possible values of i. We set
` = L− k to get the hitting number of each vertex.

Specifically, let G′ = (V ′, E′) be the directed acyclic graph, after removing
the decycling set. Denote by D and F matrices of size |V ′|×(`+1), where D(v, i)
is the number of i-long paths in G′ starting at vertex v and F (v, i) is the number
of i-long paths ending at vertex v.

The calculation of D and F is as follows:

D(v, 0) = F (v, 0) = 1,∀v ∈ V ′ (1)

D(v, i) =
∑

(v,u)∈E′

D(u, i− 1) (2)

F (v, i) =
∑

(u,v)∈E′

F (u, i− 1) (3)

To get the number of `-long paths vertex v participates in, we sum:

T`(v) =
∑̀
i=0

F (v, i)×D(v, `− i) (4)

The running time is proportional to the sum of all vertex degrees (which is
Θ(|E|)) times `, giving a running time of O(|Σ|k · `) for ` = L− k.

3.3 The complete DOCKS algorithm

To get the complete algorithm, we combine the two steps. First, we find a decy-
cling set in a complete de Bruijn graph of order k and remove it from the graph.
Then, we repeatedly remove a vertex v with the largest hitting number T`(v)
until there are no `-long paths, recomputing T`(u) for all remaining u after each
removal. This is summarized below (Algorithm DOCKS).

Finding the decycling set takesO(|Σ|k), as the size of the set isΘ(|Σ|k/k) and
the running time for finding each k-mer is O(k) [13]. In the second phase, each
iteration calculates the hitting number of all vertices using dynamic program-
ming in time O(|Σ|kL). The number of iterations is 1+p, where p is the number

5

Algorithm 1 DOCKS: Find a small k-mer set hitting all L-long sequences

1: Generate a complete de Bruijn graph G of order k, set ` = L− k.
2: Find a decycling vertex set X using Mykkeltveit’s algorithm.
3: Remove all vertices in X from graph G, resulting in G′.
4: while there are still paths of length ` do
5: Calculate the number of starting and ending i-long paths at each vertex, for

0 ≤ i ≤ `.
6: Calculate the hitting number for each vertex.
7: Remove a vertex with maximum hitting number from G′, and add it to set X.
8: end while
9: Output set X.

of vertices removed. Thus, the total running time is dominated by steps 4–8 and
is O((1 + p)|Σ|kL).

4 Complexity

4.1 NP-hardness of MINIMUM (k, L)-HITTING SET

The problem of finding a dataset-specific hitting set is NP-hard, further moti-
vating the need for the design of a universal k-mer set:

MINIMUM (k, L)-HITTING SET
INSTANCE: Set S of L-long sequences over Σ and k.
VALID SOLUTION: Set X of k-mers s.t. S ⊆ hit(X,L).
GOAL: Minimize |X|.

We prove that MINIMUM (k, L)-HITTING SET is NP-hard. For simplicity,
we study the problem on DNA alphabet, but it can be easily generalized to any
finite alphabet Σ. We show a reduction from HITTING SET [17]. While the
problems look similar, HITTING SET is not a special case of the other since in
HITTING SET the subsets are arbitrary, while in MINIMUM (k, L)-HITTING
SET problem each subset is made of overlapping k-mers.

Theorem 1. MINIMUM (k, L)-HITTING SET is NP-hard.

Proof. Given an input to HITTING SET, a set S of subsets of E = {e1 . . . en},
we generate an input to MINIMUM (k, L)-HITTING SET problem as follows:
Denote by m the size of the maximum cardinality set, i.e. m = maxSi∈S |Si|. We
choose ` = dlog2(max(m,n))e, L = 3`m and k = 2`. We map each set Si ∈ S to
a k-long binary representation of i, where instead of bits we use nucleotides C

and G. We map each element ej ∈ E to a k-long binary representation of j, where
instead of bits we use nucleotides A and T. We call these representations the set’s
{C,G}-representation and the element’s {A, T}-representation and denote them
by fCG(Si) and fAT (ej).

We generate a sequence set T , which is the input to MINIMUM (k, L)-
HITTING SET. For each set Si ∈ S we generate a sequence that contains

6

all of its elements’ {A, T}-representations, each appearing twice consecutively
and buffered by the set’s {C,G}-representation. Formally, for the set Si =

{ei1 , . . . , ei|Si|
} we create the sequence: Ti := (

∏|Si|
j=1 fAT (eij) · fAT (eij) · fCG(Si))·

(fAT (ei1) · fAT (ei1) · fCG(Si))
m−|Si| (here

∏
indicates concatenation). The new

instance T is {T1, . . . , T|S|}.
Denote by TOPT an optimal solution to MINIMUM (k, L)-HITTING SET. If

a k-mer contains a complete {A, T}-representation w, then the element f−1AT (w)
is in the optimal solution to HITTING SET. If a k-mer contains a complete
{C,G}-representation w, then any element from the set f−1CG(w) can be part of
the optimal solution. The running time of the reduction is bounded by O(|S|×L)
to generate the input sequence set T . In terms of m and n the running time is
O(|S| ·m · (log(m) + log(n))).

We now prove the correctness of the reduction. We start with proving several
properties of the solution.

Lemma 1. A k-mer that contains a complete {A, T}-representation w can be
replaced by k-mer ww to produce a hitting set of the same cardinality.

Proof. The k-mer contains a complete {A, T}-representation w. Thus, it can only
hit sequences that contain w. Since the sequences were constructed to contain
two adjacent {A, T}-representations per element, and since this representation
is unique, k-mer ww hits the same set of sequences. ut

Lemma 2. A k-mer that contains a complete {C,G}-representation can be
replaced by a k-mer that contains two adjacent occurrences of any {A, T}-
representation from this sequence to produce a hitting set of the same cardinality.

Proof. A {C,G}-representation is unique to each sequence. Thus, it can only hit
one sequence, and replacing it by any other k-mer from that sequence preserves
the hitting properties of the set. ut

We now prove the two sides of the reduction:

1. MINIMUM (k, L)-HITTING SET ⇒ HITTING SET: all L-long sequences
in T are hit by k-mers in TOPT . By Lemmas 1 and 2 we can transform
any hitting set to a hitting set of the same cardinality, but containing only
k-mers over {A, T}. These correspond to elements in an optimal solution
of HITTING SET. Assume contrary that there is a smaller solution U to
HITTING SET. Then, the set {fAT (w) · fAT (w) | w ∈ U} hits all sequences
in the k-mer hitting problem, and by that producing a smaller solution,
contrary to its optimality.

2. HITTING SET ⇒ MINIMUM (k, L)-HITTING SET: denote SOPT an op-
timal solution to HITTING SET. Then, a set of k-mers {fAT (w) · fAT (w) |
w ∈ SOPT } is an optimal solution to MINIMUM (k, L)-HITTING SET.
Assume contrary that there is a smaller solution U to MINIMUM (k, L)-
HITTING SET. By Lemmas 1 and 2 there is a solution composed of k-mers
over {A, T}. The set of element {f−1AT (w1:k/2) | w ∈ U} is a smaller hitting
set in HITTING SET, contrary to its optimality. ut

7

4.2 NP-hardness of MINIMUM `-PATH COVER IN A DAG

Our heuristic to find UkL searches for a minimum `-path cover in the DAG
created after removing a decycling set (Sec. 3.1). We show now that this problem
is in general NP-hard (by a reduction from VERTEX COVER [17]) — motivating
our use of a greedy heuristic to solve this subproblem.

MINIMUM `-PATH VERTEX COVER IN A DAG

INSTANCE: A directed acyclic graph G = (V,E) and integer `.

VALID SOLUTION: Vertex set X s.t. G′ = (V \X,E) contains no `-long paths.

GOAL: Minimize |X|.

Theorem 2. MINIMUM `-PATH COVER IN A DAG is NP-hard.

Proof. Given a graph G = (V,E) as input to VERTEX COVER, we construct an
instance to MINIMUM `-PATH COVER IN A DAG as follows. We first remove
from G any vertices that are incident to self-loop edges, since these must be
part of any vertex cover. We then transform the remaining graph into a DAG
by arbitrarily ordering the vertices of G, and directing the edges from lower-
index to higher-index vertices. Since there are no self-loops, the result is a DAG
D = (V,A). The input to the `-path cover is I = (D, 1). The running time of
the reduction is linear in the size of the graph.

A set of vertices U ⊆ V is a vertex cover in G iff it intersects every edge in
E. But this is true iff it hits every path of length 1 in D. Hence, U is a minimum
vertex cover iff it is a minimum 1-path cover in D. ut

5 Results

5.1 A theoretical lower bound for the number of k-mers

For a given k-mer w, its conjugacy class is the set of k-mers obtained by rotation
of w. Conjugacy classes form cycles in the de Bruijn graph and form a partition
of the k-mers. The number of conjugacy classes over all k-mers is given by [15]

C(|Σ|, k) =

k∑
i=1

|Σ|gcd(i,k)/k. (5)

A decycling set necessarily contains a k-mer in each conjugacy class. Golomb’s
conjecture, proved by Mykkeltveit [13], states that the smallest decycling set has
cardinality C(|Σ|, k). Consequently, a (k, L)-hitting set has a size ≥ C(|Σ|, k).

Table 1 reports Lmax = `+k, the length of the longest sequence in a complete
de Bruijn graph after the decycling set is removed. The length of sequences
avoiding the decycling set is too long for most applications. Additional k-mers
must be selected to obtain a hitting set for smaller longest path.

8

Table 1. Maximum length of longest sequence avoiding an unaviodable set for different
k. For each value k, a decycling set was removed from a complete de Bruijn graph, and
the length Lmax of the longest sequence, represented as a longest path, was calculated.

k 2 3 4 5 6 7 8 9 10 11 12 13 14
Lmax 5 11 20 45 70 117 148 239 311 413 570 697 931

5.2 Computational results

We implemented and ran DOCKS over a range of k and L: 5 ≤ k ≤ 9 with
20 ≤ L ≤ 200, in increments of 10. These are typical values used for minimizers
of longer k-mers and read lengths of short read sequences. We also implemented
two random procedures that we compare to as baselines. One, termed “random”,
removes random vertices until no ` = L− k paths remains. The second, termed
“decycling+random” (DR), first removes a minimum-size decycling set and then
randomly removes vertices until no path of length ` = L − k exists. In both
cases checking the termination condition is done by first testing if there are any
cycles, and if there are no cycles, computing the maximum-length path, which
takes linear time in a DAG.

The results are summarized in Figure 1. Our method outputs a set of k-
mers that is much smaller than both random procedures. The results also show
that there is a significant benefit in removing a minimum-size decycling set first
and then additional vertices if we wish to hit all `-long paths, as the random
procedure that starts from the complete graph performs far worse than the one
that is applied to the graph after removing an optimal decycling set. Note that
random sometimes removes the same number for different values of L, since by
the time it gets an acyclic graph, only short paths remain. As expected, the
ratio compared to the lower bound decreases with L. It is easier to hit longer
sequences as they contain more k-mers.

Table 2. Running times of the DOCKS algorithm for different k and L values. The
user run time is in seconds (s) or minutes (m).

k / L 100 110 120 130 140 150 160 170 180 190 200

7 0.7s 0.5s 0.4s 0.4s 0.4s 0.4s 0.4s 0.4s 0.4s 0.4s 0.4s
8 11.1s 7.6s 4.3s 2.6s 1.3s 0.7s 0.7s 0.7s 0.7s 0.7s 0.7s
9 8.8m 6.9m 5.4m 4.2m 3.2m 2.5m 1.8m 1.4m 1.0m 0.7m 0.5m

Table 2 reports the running times for different values of k and L. For all
instances, the dominant running time is of the second step, greedily finding
an `-path cover. This computation needs to be done only once per (k, L) pair.
Running times were benchmarked on a high-performance cluster of nodes, where
each combination of (k, L) was run serially on a separate IBM BladeCenter HS22
node with 20 GB of allocated RAM.

9

Fig. 1. Performance of DOCKS. For different combinations of k and L we ran DOCKS
and two random procedures over the DNA alphabet. The results are shown in com-
parison to the size of the decycling set. When the ratio is 1, all the sequences avoiding
the decycling set were of length shorter than L. DR: decycling+random.

5.3 Comparison to minimizers on bacterial genomes

Although the number of universal hitting k-mers for a given path length can
be a significant proportion of all k-mers (around |Σ|k/k), the actual number
of k-mers hitting a given sequence is much less, even less than the number of
minimizers. In Table 3, we compare the distribution of the universal hitting k-
mers and the minimizers in two bacterial genomes. Acetobacter tropicalis (RefSeq
NZ CP011120) has a genome of 2.8 Mbp and a GC content of 47.8%. Caulobacter
vibriodes (RefSeq NC 002696) is larger at 4.0 Mbp and has a higher GC content
of 67.2%. For each genome, we computed the number of minimizers using k = 8
and a window length of 100. Also, for each window of 100 bases we found a k-mer
from the set ÛkL for k = 8, L = 100, computed by DOCKS. Each such window is
guaranteed to contain at least one universal k-mer, and usually more than one.
In each window, we select only one of the universal k-mers, the smallest one in
lexicographic order. In addition, we measured the distances between the selected
k-mers (minimizers or universal k-mers) and computed the mean and standard

Table 3. Comparison of the number of selected minimizers and universal k-mers, for
k = 8, L = 100, and their distribution, in bacterial genomes. We report the mean
distance (±std) between positions at which consecutive selected k-mers appear in the
sequence.

minimizers universal k-mers

selected mean distance selected mean distance

Acetobacter 3119 44.1 ± 33.6 2439 50.8 ± 29.2
Caulobacter 7315 47.2 ± 31.0 4585 51.2 ± 28.4

10

deviation of the distances. Using universal hitting k-mers instead of minimizers
gives a smaller set of selected k-mers, which is also sparser in the sequence and
more evenly distributed.

6 Conclusion

In this work, we presented the DOCKS algorithm, which generates a compact
set of k-mers that together hit all L-long DNA sequences. DOCKS’s good per-
formance can be attributed to its two components. It first optimally removes a
minimum-size set that hits all infinite sequences, which takes care of most L-long
sequences. It then greedily removes vertices that hit remaining L-long sequences.
Its feasibility stems from the first step, which runs in time O(k) times the size
of the output, and the second step, which uses dynamic programming to bound
the running time to be quadratic in the output size times L.

A limitation of our approach is its heuristic nature, which does not guaran-
tee any ratio over the optimal solution. Unfortunately, as we show, the general
problem of finding a minimum (k, L)-hitting set is NP-hard. On top of that, even
after removing a decycling edge set, the problem of finding a minimum set that
hits all L-long sequences in a directed acyclic graph is NP-hard.

Some problems from this work remain open. First, is the problem of the uni-
versal (k, L)-hitting set polynomial in O(|Σ|k)? The size of the output Θ(|Σ|k/k)
is doubly exponential in the size of the input (the parameters k and L), but
the computational complexity remains open. Second, is the problem of `-path
cover in a DAG polynomial in the special case of directed acyclic subgraphs of
de Bruijn graphs? Third, since the dominant run time is the second phase, which
re-calculates the vertex hitting numbers on each iteration, can we update this
number more efficiently after the removal of one vertex? Fourth, is there a tight
upper bound on the number p of vertices that will be removed by the greedy
heuristic? Fifth, can we give an upper bound or a tighter lower bound on the
size of UkL? Sixth, is the `-path cover problem polynomial for L > 1?

In conclusion, we demonstrated the ability of DOCKS to generate compact
sets of k-mers that hit all L-long sequences. These k-mer sets can be generated
once for any desired value of k and L and then used easily for many different
purposes. For example, there is a set of only 700 6-mers out of a total of 4096
that hits every sequence longer than 70 bases — a typical read length for many
sequencing experiments — enabling efficient binning of reads. These sets of k-
mers could improve many of the applications that use minimizers, as we showed
that they are both smaller and more evenly distributed across typical sequences.

Acknowledgments

R.S. was supported in part by the Israel Science Foundation as part of the ISF-
NSFC joint program 2015-2018. D.P. was supported in part by a Ph.D. fellow-
ship from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University.
This research is funded in part by the Gordon and Betty Moore Foundation’s

11

Data-Driven Discovery Initiative through Grant GBMF4554 to C.K., by the US
National Science Foundation (CCF-1256087, CCF-1319998) and by the US Na-
tional Institutes of Health (R01HG007104). C.K. received support as an Alfred
P. Sloan Research Fellow. Part of this work was done while Y.O., R.S. and C.K.
were visiting the Simons Institute for the Theory of Computing.

References

1. Grabowski, S., Raniszewski, M.: Sampling the suffix array with minimizers. In:
String Processing and Information Retrieval, Springer (2015) 287–298

2. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20 (2004) 3363–
3369

3. Karkkainen, J., Ukkonen, E.: Sparse suffix trees. In: Computing and Combina-
torics: 2nd Annual International Conference, COCOON’96. Volume 2., Springer
(1996) 219–230

4. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing
experiments. Nature Biotech 34 (2016) 300–302

5. Movahedi, N.S., Forouzmand, E., Chitsaz, H.: De novo co-assembly of bacterial
genomes from multiple single cells. In: 2012 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). (2012) 1–5

6. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: Fast and
resource-frugal k-mer counting. arXiv:1407.1507 [cs, q-bio] (2014)

7. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the rep-
resentation of de Bruijn graphs. Journal of Computational Biology 22 (2015)
336–352

8. Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X., Suri, S.: Memory efficient mini-
mum substring partitioning. In: Proceedings of the VLDB Endowment. Volume 6.,
VLDB Endowment (2013) 169–180

9. Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Douglas, W.Y.: Exploiting sparseness in
de novo genome assembly. BMC Bioinformatics 13 (2012) S1

10. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biology 15 (2014) R46

11. Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm. In: 37th Annual Symposium on Foundations of
Computer Science. Proceedings. (1996) 320–328

12. Hach, F., Numanagi, I., Alkan, C., Sahinalp, S.C.: SCALCE: boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics 28 (2012)
3051–3057

13. Mykkeltveit, J.: A proof of Golomb’s conjecture for the de Bruijn graph. Journal
of Combinatorial Theory, Series B 13 (1972) 40–45

14. Knuth, D.E.: Unavoidable2. http://www-cs-faculty.stanford.edu/~uno/

programs/unavoidable2.w (2003)
15. Champarnaud, J.M., Hansel, G., Perrin, D.: Unavoidable sets of constant length.

International Journal of Algebra and Computation 14 (2004) 241–251
16. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of

Operations Research 4 (1979) 233–235
17. Karp, R.M.: Reducibility among combinatorial problems. In: 50 Years of Integer

Programming 1958-2008. Springer (2010) 219–241

12

