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Abstract 

Genomes undergo changes in organization as a result of gene duplications, chromosomal 
rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which 
genes of a common function are often organized in operons and reside contiguously along the genome, 
most eukaryotes show much weaker clustering of genes by function, except for few concrete functional 
groups. We set out to check systematically if there is a relation between gene function and gene 
organization in the human genome. We test this question for three types of functional groups: pairs of 
interacting proteins, complexes and pathways. We find a significant concentration of functional groups 
both in terms of their distance within the same chromosome and in terms of their dispersal over several 
chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear 
close in the 3D space of the nucleus, we show that members of the same functional group that reside on 
distinct chromosomes tend to co-localize in space. The result holds for all three types of functional 
groups that we tested. Hence, the human genome shows substantial concentration of functional groups 
within chromosomes and across chromosomes in space.  

Introduction 

Cellular processes involve multiple types of functional relations between genes, including protein-
protein interactions, regulatory relations and co-expression. Substantial research has been carried out 
regarding the interplay between functionally related genes and their arrangement on the genome. The 
most dramatic evidence for non-random organization of co-functioning genes is found in prokaryotes, 
where genes, usually from the same functional family, are often arranged in operons (1, 2) . Genes in an 
operon reside consecutively along the genome and are governed by a common promoter. In contrast, 
most studied eukaryotes lack operons, with few exceptions, including nematodes (3) and drosophila, 
where operons tend to be dicistronic (4) (see (3) for a review). 

Various computational studies utilized the availability of whole genome sequences to show that 
eukaryotic functionally related genes do tend to cluster. Hershberg et al. used network analysis methods 
to show that adjacent genes are often co-regulated by the same transcription factor (TF) (5). In the same 
spirit, Janga et al. discovered that the majority of TFs exhibit a strong preference to regulate genes on 
specific chromosomes (6). Moreover genome-wide studies of expression data in several organisms 
revealed that genes from the same genomic neighborhood tend to have similar expression (7–9). 
Tendency of interacting proteins to aggregate on chromosomes was observed in yeast (10, 11). The 
clustering trend was observed also in pathways, where Lee and Sonnhammer investigated the levels of 
clustering within pathways in five eukaryotic species, and found that a large fraction of the pathways 
exhibits significantly higher clustering levels than expected by chance (12). The aforementioned studies 
along with a handful of others indicate that there is a link between the relative genomic position of genes 
and their functional relations, though the eukaryotic clusters are usually much less compact than their 
prokaryotic counterparts (13). This relatively weaker clustering effect may imply that a more complex 
mechanism underlies gene arrangement in eukaryotes, incorporating a diversity of influences from 
multiple types of functional relations.  

Furthermore, throughout the past decade it has become clear that the spatial arrangement of genes within 
the nucleus is also non-random (14). Folding and intermingling of chromosomes may result in high 
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proximity between genes located at distant positions along the genome, including genes from different 
chromosomes. It was observed that while gene-rich chromosomes in human tend to occupy interior 
positions in the nucleus, their gene-poor counterparts tend to be peripherally located (15). Several 
studies have shown that transcription occurs within discrete regions known as transcription factories (16, 
17) and nuclear speckles (18) Moreover, evidence for co-expression of spatially proximal genes has 
been accumulating (19–21). 

In this study we develop a general methodology for analyzing the connection between functional gene 
groups and the linear and spatial arrangement of genes in the human genome. We focus on three types of 
functional groups: Protein-protein Interactions (PPIs), complexes and pathways. We analyze three 
different facets of gene arrangement: the tendency of genes from the same group to lie on specific 
chromosomes, the intra-chromosomal proximity of genes from the same group, and the degree to which 
genes from the same group tend to lie close to each other in the three dimensional space within the 
nucleus. Our findings show that functionally related genes tend to co-localize and manifest clustered 
organization within and across the chromosomes in all three levels.  

Materials and Methods 
 
Throughout the paper, we shall use the general term group to denote a single functional unit from any 
type, i.e. a PPI, a complex or a pathway. Note that each type reflects a relation of a different nature: The 
two members of PPI are in direct physical contact under some conditions, while complex members are 
simultaneously involved as building blocks in the same physical unit. In contrast, pathways summarize 
sequences of multiple chemical or signaling reactions, and hence some of their members may not 
physically interact, co-localize or even simultaneously exist. 
 
Human Data  

The Human PPIs, complexes and pathways analyzed in this study were taken from IntAct (22), 
Corum (23) and KEGG (24) respectively. Basic information about the three types of datasets that were 
used in the analysis is summarized in Table 1. 
 
 

Database Functionality 
Relation 

Number 
of 

groups 

Group sizes Total Number 
of genes 
involved 

min median max 

IntAct PPIs 27,947 2 2 2 7,669 

Corum Complexes 1,512 2 3 142 2,421 

KEGG Pathways 206 2 49 1,079 4,852 

Table 1 Statistics on the group types used. 
 

 
Chromosomal locations of genes were extracted from NCBI MapView, where only protein coding 
genes with a unique position were kept. This preliminary filtering resulted in 19,287 genes. 
Spatial distances between genes were based on the Hi-C experimental data of human lymphoblastoid 
cell line GM06990 (25). The 3D similarity matrices normalized by (26) were used.  
 
Removal of Tandem Duplicate Genes 
Duplicate genes are expected to have similar functionality by ancestry. Such genes, if generated by 
tandem duplication, are often located in physical proximity to one other. To avoid clustering effects 
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resulting from tandemly duplicated genes, we eliminated them as done in previous studies (8, 9, 27), in 
the following way. First, to identify proteins belonging to the same gene family, an all-against-all BlastP 
search was performed on all proteins in the genome, and families were defined using the MCL software 
(28) with default parameters. We then merged consecutive genes of the same gene family. The location 
of a merged gene is the interval spanning the consecutive genes that it replaced. The resulting set 
contained 18,029 genes.  

 

Statistical Methodology 

In order to investigate whether genes from the same group tend to preferentially lie in proximity to each 
other, we created several tests, each examining a different form of co-localization. The p-value 
calculation for each of the tests is performed as follows: 

1. Formulate a test statistic that measures the proximity between functionally related genes. 
2. Calculate the value of this statistic, v0, for the real genome. 
3. Estimate the probability to observe this value or higher (alternatively, smaller) for random gene 

order. 
a. Randomly permute the locations of genes to create a genome with random gene order  

(functional groups are unchanged). 
b. Calculate the statistic value, v, for the resultant genome. 
c. Repeat steps 3.a. and 3.b. n times 
d. Let k be the number of times v≥v0. 
e. P-value = (k+1)/(n+1) 

The random permutations used to create the null model ensure that the genes in the resultant genomes lie 
only in loci occupied by genes in the real genome, and that the number of genes in each chromosome 
remains unchanged. Moreover, the gene composition of the functional groups is unaltered. In this way 
we exclude from our null hypothesis effects that are not related to the gene order itself. We used the 
Bonferroni correction whenever multiple tests were performed. 
 
Our tests collect information regarding the distribution of values we are interested in, e.g., how many 
groups are concentrated in k chromosomes, or what is the distribution of distances along the 
chromosomes – or in 3D space - between genes from the same group. The most natural test statistics are 
the moments of the distribution. However, sometimes we need a more sensitive test that focuses on the 
concentration at the tail of the distribution. In the distribution tail test, values are measured and 
partitioned into bins 𝑏1,𝑏2, … , 𝑏𝑘  where the frequency 𝑓𝑖 of values in bin 𝑏𝑖  is calculated. The test 
measures the extent of concentration in the first few bins. We seek the minimal number 𝑗 for which the 
cumulative frequency 𝑓1 + ⋯+ 𝑓𝑗 is significantly higher than expected at random (see more details in 
the supplementary information). The p-value was calculated by comparing the real-genome 
cumulative histogram as in step 3 above, and Bonferroni corrected via multiplying by 𝑗. 

Results 
 
We set out to test the tendency of genes with a common function to cluster in the genome using three 
complementary measures (Figure 1a): Inter-chromosomally, by measuring the number of chromosomes 
co-functioning genes are distributed on; intra-chromosomally, using the genomic distances between co-
functioning genes, and in 3D space, by measuring the proximity in the nucleus between co-functioning 
genes. These three approaches are complementary and each addresses a different aspect of the 
concentration.  
 
Inter-chromosomal dispersal of genes with a common function  
We first investigated the tendency of genes from the same group to concentrate on a small number of 
chromosomes. Abstractly, each functional type (PPI, complex of pathway) is a collection of groups of 
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genes, where each group shares a common function. For each group, we defined the number of 
chromosomes involved in the group as the number of different chromosomes containing genes from that 
group. Our first test function was defined to be the average of this number over all groups of the same 
type. We generated 106 random genomes by randomly permuting the locations of the genes, and 
calculated a p-value for each of the group types using the procedure described in Statistical 
Methodology. The results show that for both PPIs and pathways, the groups tend to concentrate on a 
small number of chromosomes with p-values 0.001 and ≤  10−6   respectively. This test yielded no 
significant results for complexes (p-value 0.08). 

In light of these positive findings, we proceeded with a higher resolution examination of gene 
arrangement into chromosomes, and applied the distribution tail test. Here 𝑓𝑖 is defined as the number of 
groups involving 𝑖 chromosomes, in order to measure the extent to which genes from the same group 
tend to concentrate on few chromosomes. The p-value was calculated by comparing the real-genome 
frequencies to those in 106 random genomes. The results show that there is an enrichment of PPIs and 
complexes involving a single chromosome (p-value = 0.001 and 0.01, respectively), i.e. the number of 
PPIs and complexes all of whose genes reside on a single chromosome is significantly higher than 
randomly expected.  

In the case of pathways we reveal a similar trend. The number of pathways that are represented on at 
most c chromosomes is exhibited in Figure 1b. For c≥5, this number is significantly higher than 
expected at random (p-value = 0.03 after Bonferroni correction). Hence we observe a tendency of 
pathways to concentrate on fewer chromosomes than expected by chance.  

Intra-chromosomal distances of co-functioning genes  
In the previous section, we checked whether genes from the same functional group tend to concentrate 
on fewer chromosomes than expected by chance. In this section we would like to check whether genes 
from the same group that belong to the same chromosome tend to be closer than expected. In order to 
measure this clustering tendency, we calculated for each group 𝑖 the average distance (in bases), 𝑑𝑖 , 
between pairs of genes in group 𝑖 that reside on the same chromosome. We defined our test statistic to 
be the mean value of 𝑑𝑖  over all groups in the dataset (see supplementary information for more 
details). We used 106 random genomes to calculate the p-values based on our statistical methodology, 
where this time we randomly permuted the locations of genes within each chromosome separately. In 
this way we accounted for clustering effects due to concentration of genes from the same group on few 
chromosomes. The results show that the average intra-chromosomal distance between genes from the 
same complex and pathway is significantly smaller than expected by chance, obtaining p-values of 
 0.001 and ≤  10−6 respectively. No significant result was obtained for PPIs (p-value = 0.15).   

Next, we conducted the more sensitive distribution tail test, focusing on groups with short average 
distances between members. We partitioned the gene groups into 20 bins based on the distances 𝑑𝑖 
defined above, as follows. The distances were sorted, and thresholds 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡20 were set 
such that 5% of the distances were between 𝑡𝑖−1  and 𝑡𝑖  (see supplementary information for more 
details). We then used these thresholds to bin distances for each of 105 random genomes defined as 
above. We used a lexicographic order of bin frequencies to refine the results (see supplementary 
information). We discovered that for all group types, a statistically significant number of groups tend to 
cluster within smaller distances than expected at random (all three with p-values ≤ 10−5,  Bonferroni 
corrected). This tendency is illustrated in Figure 2. The cumulative distributions of the true genome are 
plotted along with their random counterparts obtained by averaging over the 105 random histograms. 
The figure shows the enrichment of short distances for each of the three functional group types. 
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Spatial arrangement of co-functioning genes 
In this section we analyze the spatial proximity of functionally related genes in the nucleus. The spatial 
distances that we used were based on contact map data generated by Lieberman-Aiden et al. using the 
Hi-C technology (25) and renormalized by Yaffe and Tanay (26) (see supplementary information for 
details). The contact map gives the frequency of observing each two genomic segments next to each 
other in the experiment. Segment sizes were 1Mb. As in (25), correlation between the frequency vectors 
of segments was used to measure proximity, and we use 1-correlation as a measure akin to 3D distance. 

We first applied the distribution tail test as follows. For each group we computed the average distance 
between pairs of genes in the group, irrespectively of whether they reside on the same chromosome or 
on different chromosomes. The results show that for all three types of groups, functional gene groups 
exhibit more spatial concentration than expected at random (p-value = 10−4 , calculated from 10−5 
simulations). However, the high correlation between linear intra-chromosomal distances (as measured in 
base pairs) and the corresponding 3D distances (see Figure S1 in supplementary information) raises 
the question whether the apparent 3D concentration is merely a result of the linear intra-chromosomal 
concentration observed earlier. In order to test for spatial concentration effects that are not related to 
linear gene proximity, we considered only inter-chromosomal gene pairs, excluding all intra-
chromosomal distances. To respect the chromosomal organization of each group, we again randomly 
permuted the locations of genes within each chromosome separately. So, for each group the number of 
pairs of genes along different chromosomes stays the same in simulated genomes. The results show that 
the average inter-chromosomal 3D distances between genes from the same pathway are significantly 
smaller than expected by chance (p-value = 0.009; complexes p-value = 0.09, PPIs p-value= 0.7). 
Applying the distribution tail test with 20 bins resulted in significant over-population of the first bin for 
PPIs only (p-value = 0.004). For complexes and pathways, p-values were 0.06 and 0.33 respectively.  

The distribution tail test used above checks whether the average inter-chromosomal distances between 
genes pairs within a group is significantly smaller than expected at random. However, if proximity 
tendency exists only between specific genes within a group, it may be undetected after averaging all 
pairs in the group. This could explain the fact that the test was significant for PPIs but not for the other 
types, which have larger groups. To examine whether such tendency exists, we applied the distribution 
tail test again, but this time we did not average over the distances in each group, but used the individual 
distances between gene pairs. We computed the distance between each pair of genes from the same 
group that reside on different chromosomes, binned the values obtained from the entire set of such pairs 
into 20 bins, and tested the concentration at the distribution tail. We found that for all three group types, 
namely pathways, PPIs and complexes, gene pairs from the same group tend to cluster within a small 
spatial region even when they lie on different chromosomes. For the three resultant distributions, the 
first bin in the real genome (5% of pairs with highest spatial inter-chromosomal proximity) was 
significantly more populated than the same bin in the random genomes, with p-values 0.004, 10-4 and 
0.02 for PPIs, complexes and pathways respectively. This result reflects the clustering tendency of genes 
from the same groups. For PPIs and complexes, the cumulative distribution of the histogram tail 
remained statistically significant also beyond the first bin. For PPIs, more than 25% of the pairs 
displayed strong clustering tendency (e.g., for the sum of frequencies in bins 1-6, the obtained p-value 
was ≤ 0.03). An even more pronounced effect was found for complexes, where about 90% of the pairs, 
populating bins 1-18 in the cumulative histogram, had all p-values below 0.02. These results, 
normalized by dividing by the real genome values for the sake of better visibility, are illustrated in 
Figure 3. 
 
All the tests that we conducted aimed to deduct concentration by looking together at the signal from all 
groups of co-functioning genes of the same types. As such, they provide answers regarding the general 
phenomenon of concentration. In addition, our analysis can also be applied to study the concentration of 
individual groups, which may be of independent interest. Supplementary file 1 contains the full results 
of each PPI, complex and pathway in each of our three tests. We also tested functional categories of 
complexes for concentration but obtained no significant results (see supplementary information).   
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Discussion 
 
We have observed that co-functioning genes manifest significant concentration in terms of their 
organization in the human genome. This holds separately for three types of sets of co-functioning genes 
(Table 1): gene pairs corresponding to interacting proteins, genes whose proteins belong to the same 
complex, and genes whose proteins take part in the same pathway. The concentration of co-functioning 
genes is established in three independent ways (Figure 1a). Co-functioning genes tend to reside on 
fewer chromosomes than expected by chance. When they are on the same chromosome, they are 
positioned more closely to each other than randomly selected genes. Moreover, co-functioning genes on 
different chromosomes tend to be closer to each other in the three-dimensional nuclear space, based on 
chromosome conformation capture (3C (29) or Hi-C) data. 
 
These tendencies are statistically significant, based on a cumulative signal collected from many groups 
of co-functioning genes. The distribution of the test statistic (e.g., the spatial distance or the number of 
involved chromosomes) in the known functional groups is compared to randomly permuted genes 
(within and/or across chromosomes, where appropriate). In some cases a simple test statistic, like the 
distribution mean, suffices to determine significance. In others, we tailored a test statistic to focus on the 
tail of the distribution, corresponding to the closest pairs.  
 
Why are co-functioning genes concentrated? The broadly accepted explanation has to do with co-
transcription. Co-location of genes of common function can facilitate direct cis-regulation of several 
genes simultaneously, at the level of transcription factors and co-factors, and on the nucleosome and 
other epigenetic levels. Caron et al. observed clustering of highly expressed genes on intervals along the 
chromosomes in a variety of human tissues (30). Lercher et al. later observed the same phenomenon for 
housekeeping genes, and in fact argued that the findings of Caron et al. are due primarily to 
housekeeping genes (9). In lower eukaryotes, by focusing on two or at most three consecutive genes, the 
co-regulation of adjacent divergent transcriptional units was shown to be prevalent in yeast (5). Taking 
an evolutionary perspective, Veron et al. analyzed chromosomal rearrangements between mouse and 
human and showed significant correlation between intra-chromosomal 3D proximity in the human 
genome and breakpoint pairs, suggesting the functional relevance of the structure (31). Another 
evolutionary analysis was recently provided by Dai et al., using gene orders in 17 yeast species (32). 
The authors showed that gene pairs that are adjacent in other yeast species but reside on different 
chromosomes in S. cerevisiae tend to show stronger nuclear co-localization, as measured in (33). 
Moreover, these co-localized pairs tend to be regulated by the same transcription factors and by the 
same histone modifications. Hence co-localization is correlated with co-regulation even after separation 
due to recombination.  
 
The connection between spatial organization within chromosomes and gene expression was attributed to 
active chromatin hubs (34), nuclear speckles (18) and more generally to transcription factories. These 
are discrete nuclear regions in which multiple RNA polymerases are active (35). However, evidence for 
and against the existence of transcription factories is still debated (36). Li et al. recently studied 
extensively chromatin interactions in human cell lines and observed promoter-promoter interactions, to 
the extent that they proposed a chromatin-based operon-like mechanism ("chroperon") for gene 
regulation in eukaryotic cells (37). Co-expression and proximity in space were shown to be associated 
both in studies focusing on a few genes using FISH and microscopy, and, more recently, in genome-
wide studies of promoter-enhancer associations (38, 39).  One novel perspective that we add to this area 
is the inter-chromosomal dispersion: We show that genes of a common complex or pathway tend to be 
dispersed on fewer chromosomes than expected by chance. With such clustering, co-regulation of the 
co-functioning is conceivably better than when the dispersal is completely random.  
 
Is it possible that we see co-clustering of members of the same functional gene groups only because they 
have similar expression levels?  Put differently, is the primary phenomenon co-expression of genes of 
the same functional group, and the co-localization is only its secondary effect? While it is hard to say 
which effect is primary, co-expression and common function clearly both affect co-localization. There 
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are, however, several advantages to analysis based on common function over analysis based on co-
expression: (a) Sharing the same functional group is a "cleaner" and more universal property than co-
expression, which is measured on condition-dependent datasets. (b) Co-expression quantification is 
based on measurements of expression, which are noisy. (In fact, co-expression may even be the result of 
biological noise, cf. (40)). Moreover, gene transcription, the main source of co-expression measurements 
today, is only moderately correlated with protein transcription, where the function is manifest (41, 42). 
Moreover, gene transcription, the main source of co-expression measurements today, is only moderately 
correlated with protein transcription, where the function is manifest (41, 42) (c) Different pathways or 
complexes may show co-expression under some conditions even if they have completely different 
functions. (d) Since many pathways summarize a temporal sequence of events and interactions, different 
segments of the pathway may be active at different times and in that case will not show co-expression, 
even though they belong to the same functional unit.  (e) The definition of a group of co-expressed 
genes can vary depending on the correlation function, the correlation threshold, the normalization 
methods etc. On the other hand, functional groups are defined based on a holistic understanding of the 
underlying biology. (f) Our analysis enables us to examine different types of co-functioning groups, and 
discern differences among them, which is impossible using co-expression.  Further study is required to 
show which effect is more primary, or that perhaps both co-expression and co-localization are artifacts 
of yet another more basic, global effect. 
 
The study of nuclear organization has undergone a revolution over the last decade, with the combined 
contribution of microscopy techniques, chromosome conformation and epigenomics. Seminal studies 
have established chromatin proximity maps in human (25), baker's yeast (33), fission yeast (43), 
drosophila (44) and mouse (45), among others. Very recently, an interesting paper by Ben-Elazar et al. 
(46) studied localization of co-regulated genes in S. cerevisiae using 4C data (33). Focusing on the set 
of targets of each transcription factor, the authors showed that for about half the transcription factors, the 
concentration of these targets in space exceeds their linear clustering along the chromosomes. This adds 
support to the transcription factories paradigm. Note, however, that the statistical test for 3D 
concentration does not distinguish between targets that are on the same chromosome and those on 
different chromosomes. In fact, the intra-chromosome contact level observed in 3C maps exceeds the 
inter-chromosomal level by orders of magnitude (25, 33), and therefore it is highly likely that the 
effect observed by Ben-Elazar et al. is based overwhelmingly on intra-chromosomal contacts. In 
contrast, our test (Figure 3) separates completely the inter- and intra-chromosomal signals, and shows 
directly inter-chromosomal spatial proximity among co-functioning genes. Another recent paper (47) 
analyzed the same yeast contact map data (33) together with gene expression data. Using a large panel 
of expression profiles, and focusing on inter-chromosomal gene pairs only, Homouz and Kudlicki 
showed that the measured expression levels of nearby genes are significantly correlated. Moreover, they 
showed that many of the high level gene ontology groups (GO-slim groups) significantly show more 3D 
contacts between gene pairs than random gene groups of the same sizes. This test is similar in spirit to 
the one we have performed here. Note, however, that we took care to create gene sets by randomly 
permuting genes within each chromosome independently, thereby avoiding possible bias due to uneven 
distribution of group genes across chromosomes. Another salient difference between our study and these 
two reports is that our test was conducted on human DNA, for which the contact map resolution is much 
lower than for yeast, and hence detecting the concentration signal is more challenging. To the best of our 
knowledge, this is the first study of this kind on the human chromosomal conformation data. 
 
In Figure 3, the normalized cumulative distributions for randomized genomes remain below the real 
genome plot for PPIs and complexes, showing spatial concentration of co-functioning genes. For short 
distances this is the case for pathways as well, but for longer distances the real genome apparently has 
fewer pairs than the randomized genomes. A possible tempting explanation may be due to the different 
nature of the functional groups. PPIs and complexes consist of proteins that are simultaneously 
interacting, and thus their co-location (and consequently co-expression) may be an advantage. In 
contrast, for pathways a time dimension is involved (e.g. when a sequence of metabolic or signaling 
reactions is performed), and therefore not all the building blocks of the pathway may be active 
simultaneously. In a large pathway it may be favorable for subunits that act together to be closer in 
space, and subgroups that act at different times to be well separated in space. Since many of the 
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pathways that we have analyzed are rather large (median size 49), they may contain such non-
simultaneous blocks that may give rise to their distinct distribution. This hypothesis requires further 
analysis and testing. 
 
Gene clusters and tandem gene duplications can affect our intra-chromosomal statistics. In order to 
remove such effects, we removed known gene clusters and also filtered tandem duplicated genes as done 
previously (8, 9, 27). It is possible though that part of the effect that we observe is a result of unknown 
clusters or remaining duplicated genes that do not appear in tandem. However, this would not explain 
the inter-chromosomal spatial concentration. 
 
Finally, the test methodology that we developed here can be useful for studying other questions as well. 
It provides a uniform approach for comparison of true and random distributions for a broad variety of 
test statistics. 
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Figure legends 
 
 
Figure 1 Distribution criteria and pathway concentration. (a) Criteria for chromosome concentration of co-
functioning genes. Circles correspond to genes and the shaded circles are all the members of a group with a 
common function. i: concentration within a chromosome (intra-chromosomal). Here clustering/concentration is 
gauged based on pairwise linear distance (in base pairs or in the number of intervening genes) between co-
functioning genes. ii: dispersal across chromosomes (inter-chromosomal). Out of the 23 pairs of chromosomes, 18 
do not contain the group’s genes, so this group is concentrated in few chromosomes. This measure takes into 
account only the chromosomes on which the co-functioning genes reside and ignores the relative locations within 
each chromosome. iii: concentration in the 3D space. Curved lines show positions of chromosomal segments in 
space, with the genes on them. The group is concentrated in space. By identifying the chromosome each segment 
belongs to, one can distinguish between proximity of inter- and intra-chromosomal gene pairs, and analyze them 
separately. (b) Pathway concentration in few chromosomes. For each number j of chromosomes, the plots show 
the number of pathways whose genes reside in at most j chromosomes. Plots for the real genome (red curve) and 
for an average over 106 random genomes (blue curve) are shown. The shaded area around the blue curve shows ±1 
standard deviation. Inset: Zoom in on the region of a small number of chromosomes. 
 
Figure 2 Intra chromosomal distances. The plot shows the average intra-chromosomal distance between genes 
from the same group in the real (red) and randomized (blue) genomes. (a) PPIs; (b) Complexes; (c) Pathways. Bins 
were selected so that the occupancy of pairs from the real genome is uniform (hence the straight red line). The 
clustering effect is reflected by the larger cumulative fraction in the real genome histograms compared to the 
random model in the smaller distance bins. The light blue shaded region around the blue curve stands for ±1 
standard deviation.  

Figure 3 Spatial proximity between inter-chromosomal gene pairs from the same functional group. The 
cumulative distribution function (cdf) of inter-chromosomal proximity between genes from the same group was 
computed for real and randomized genomes. The plot shows each cdf divided by the cdf of the real genome.  As a 
result the real genome curve has a constant y-value of 1. Red: real genome, blue: average over 105 random 
genomes. The light blue bands show ±1 standard deviation. (a) PPIs; (b) Complexes; (c) Pathways. The x-axis 
units are 1 minus the correlation between the normalized Hi-C contact profiles of the regions containing the gene 
pairs, so that smaller values reflect higher correlation and shorter distances. 
 
“Supplementary Data are available at NAR online: Supplementary table S1, Supplementary figure S1, 
Supplementary methods and Supplementary references." 
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Supplementary Information 
 
Data 
Human genome 
For gene location in the Human genome, we used the July 2011 versions of NCBI 1  files 
Homo_sapiens.gene_info.txt2 for the curated genes, and seq_gene.md3

Finally, from 𝒢′ we obtained a set 𝒢 of size 18,029 by merging tandem duplicated genes into a single 
gene as described in the Methods section. 

 for the genes’ base position. 
Among the 42,158 entries of Homo_sapiens.gene_info.txt, we selected the set 𝒢𝐺𝐼  of 20,329 genes 
annotated as protein coding and present in a homologous chromosome. Among the 1,534,264 entries of 
seq_gene.md, we selected the set 𝒢𝑀𝑉  of 36,429 annotated as protein coding genes, and according to the 
GRCh37.p2-Primary assembly, present in a homologous chromosome with only one known base 
position. Then, we defined the set 𝒢′ ⊆  𝒢𝐺𝐼 ∪  𝒢𝑀𝑉 of 19,287 genes whose chromosome was the same 
in 𝒢𝐺𝐼 and 𝒢𝑀𝑉. In this way, all genes in 𝒢′ had a single gene ID in Entrez. Genes from chromosome Y 
were excluded from the analysis.  

 
Co-functioning genes 
For PPIs we used the IntAct database (July 2011 version). For pathways, we used KEGG (30 June 2011 
version). For complexes, we used CORUM (September 2009 version). In order for a functional gene 
group to be included in our analysis the following conditions were set:  

- The group is unique, 
- It has at least two different genes in 𝒢, 
- At least 95% of the genes in the group are in 𝒢, 
- The group has at most one gene from each known gene cluster (Hox genes, olfactory receptor 

genes, Human Leukocyte Antigen (HLA) genes and Hemoglobin genes). 
The last constraint removes the influence of large known gene clusters from our analysis.  

In IntAct, the genes in each group were given by their UniProt4 identifier which we converted to 
gene IDs using the file HUMAN_9606_idmapping.dat5

 

. PPIs with at least one protein that had either no 
geneID match or several matches were ignored. 

 
3D Human genome 
Lieberman-Aiden et al. used the Hi-C method to study the three-dimensional architecture of a whole 
genome by coupling proximity-based ligation with massively parallel sequencing (1). They constructed 
spatial proximity matrix of the human lymphoblastoid cell line GM06990 genome, based on contact 
probability between genomic regions at a resolution of 1Mb. In order to reduce biases, we adopted the 
normalization method proposed by Yaffe and Tanay (2) , which was shown to outperform the original 
one of Lieberman-Aiden et al.. A later method of Imakaev et al. (3) was reported to yield essentially the 
same matrix of biases. Because the extremities of chromosomes are not included in the proximity 
                                                           
1 http://www.ncbi.nlm.nih.gov/ 
2 ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/ 
3 ftp://ftp.ncbi.nih.gov/genomes/MapView/Homo_sapiens/sequence/BUILD.37.2/initial_release/ 
4 http://www.uniprot.org/ 
5 ftp://ftp.uniprot.org/pub/databases/uniprot/previous_release/releases-
2011/knowledgebase/idmapping/by_organism/ 
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matrix, some genes do not have spatial measurements. As a result, groups containing less than 2 genes 
with spatial measurements are ignored during our the 3D proximity tests. This excluded 426 PPIs 
(among 27,947) and 5 complexes (among 1,512). 
 
 
Methods 
Inter-chromosomal dispersal of genes with a common function - the distribution tail test  
Let 𝑁𝑖𝐺  be the number of groups involving exactly 𝑖 chromosomes in genome 𝐺, and let 𝑋𝐺  be a vector 
representing the total number of groups involving at most 𝑖 chromosomes, namely, the i-th component 
of 𝑋𝐺  is given by 𝑋𝑖𝐺 = ∑ 𝑁𝑗𝐺𝑖

𝑗=1 . Denote the number of chromosomes by 𝑁. To calculate the relative 
fraction of random distributions that are at least as concentrated as the real one, we use the following 
definition: Given two frequency vectors 𝑋𝐺  and 𝑋𝐺′, we define 𝑋𝐺  to be more concentrated than 𝑋𝐺′ 
starting from bin 𝑖, iff 𝑋𝐺  is lexicographically larger than 𝑋𝐺′ starting from bin 𝑖, i.e., there exists 𝑚, 
𝑖 ≤ 𝑚 ≤ 𝑁, such that 𝑋𝑚𝐺 > 𝑋𝑚𝐺′ and ∀ 𝑖 ≤ 𝑘 ≤ 𝑚 𝑋𝑘𝐺 =  𝑋𝑘𝐺′. Clearly, the two histograms are equally 
concentrated if and only if 𝑋𝑘𝐺 = 𝑋𝑘𝐺′ ∀ 1 ≤ 𝑘 ≤ 𝑁. 
 
Testing intra-chromosomal distances between co-functioning genes  
Define the distance between two genes on the same chromosome as the number of base pairs between 
the last base of the first gene and the first base of the second gene. Let 𝐷ω be the average distance 
between all pairs of genes from the same chromosome involved in group ω. (Note that the average can 
include different pairs from different chromosomes). 

• The average test: The average test function is defined to be the average of 𝐷ω over all groups 
ω of the same type. 

• The distribution tail test: The distances 𝐷ω for the real genome were sorted, and thresholds 
0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡20 were set such that 5% of the distances were between 𝑡𝑖−1 and 𝑡𝑖, i.e., in 
bin 𝑖. More precisely, when the number of distances 𝑁𝐺  did not allow the bins to be evenly 
populated, the first 19 bins were populated with ⌊𝑁G/20⌋ groups each, and the last bin with the 
remaining groups. Moreover, cases where multiple groups had the same average distance as the 
bin threshold often resulted in slight differences between the bin populations. For genome 𝐺, let 
𝑌𝑖𝐺  be the number of distances that fall in bin 𝑖. By generating many randomized genomes and 
recording their 𝑌𝑖𝐺 vectors, the significance of the concentration of the values within the first 
few bins in the real genome can be evaluated. Starting from the first bin we perform a sequence 
of tests with the test functions  𝑌𝑖𝐺  to find the first 𝑖 for which a significant p-value (after 
Bonferroni correction) is obtained. 

 
Intra-chromosomal distances along the genome and in space  
We wanted to test the correlation between spatial and linear intra-chromosomal distances. For the spatial 
normalized matrix, we computed the Pearson correlation of each pair of rows. This computation yielded, 
for each pair of 1Mb chromosomal regions 𝑟1 and 𝑟2, a value 𝑚(𝑟1, 𝑟2) between -1 and 1. For every pair 
of genes, 𝑔1 and 𝑔2, residing on regions 𝑟1 and 𝑟2 respectively, we defined the distance between them to 
be 𝑑(𝑔1,𝑔2) = 1 −𝑚(𝑟1, 𝑟2) (if a gene is spread over several different regions, we take the weighted 
average of 𝑚 according the number of bases present in each region). The 265 genes located on regions 
that were not included in the spatial proximity matrix from (1) were removed from our analysis. Figure 
S1 shows the high correlation between the spatial and the linear measures, at short intra-chromosomal 
distances. 
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Figure S1 Relation between intra-chromosomal linear distance (number of bases) between pairs of 
genes and the spatial proximity between them (represented by 1-correlation), as measured in (1, 2). 
 
 
Testing the association between functional categories of complexes and inter-chromosomal 3D 
distances 
 
We conducted the following additional test to see if certain functional categories of complexes are 
significantly concentrated in 3D. 
 
1. Filter out any gene that is not covered by the Hi-C data.  

Filter out complexes whose number of genes is zero or one after genes filtering.   
[5 complexes were filtered out due to missing 3D data.] 

2. Order all inter-chromosomal gene-pairs that are found within complexes by their proximity in 3D  
(overall there were 31648 such pairs) 

3. For a tested functional category of complexes, derive the set of inter-chromosomal gene pairs 
appearing in its complexes. Call this set S. 

4. Test whether S is enriched with low/high 3D distances by a GSEA test (4, 5) and obtain an 
enrichment score ES(S). To compute its significance, apply the following procedure: 

i. Randomly permute all genes within their chromosomes 
ii. Rank inter-chromosomal gene pairs by the 3D-proximity values corresponding to 

their new locations 
iii. Recompute the enrichment score of S on the resulting set.  

Report the empirical p-value of ES(S) obtained by 1000 runs of the procedure 
 
We used MIPS FunCat for functional annotation scheme of CORUM complexes, covering 1512 
complexes.  We applied the test described above to the 23 classes in the highest level in this 
annotation hierarchy.  Table S1 below presents the results of the test. None of the tested functional 
categories was found to be significantly enriched with lower 3D values after Bonferroni correction for 
multiple testing. 
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Table 
S1: Significance results for enrichment of MIPS functional categories in inter-chromosomal 3D 
distances 
 
 
 
1. Lieberman-Aiden, E., Berkum, N.L. van, Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, 

I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009) Comprehensive Mapping of Long-
Range Interactions Reveals Folding Principles of the Human Genome. Science, 326, 289–293. 

2. Yaffe, E. and Tanay, A. (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic 
biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059–1065. 

3. Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J. 
and Mirny, L.A. (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome 
organization. Nat. Methods, 9, 999–1003. 

4. Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., 
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267–273. 
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