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Abstract

Most shotgun sequencing projects undergo a long and costly phase of finishing, in which
a partial assembly forms several contigs whose order, orientation and relative distance is un-
known. We propose here a new technique that supplements the shotgun assembly data by
experimentally simple and commonly used complete restriction digests of the target. By com-
putationally combining information from the contig sequences and the fragment sizes measured
for several different enzymes, we seek to form a “scaffold” on which the contigs will be placed in
their correct orientation, order and distance. We give a heuristic search algorithm for solving
the problem and report on promising preliminary simulation results. The key to the success of
the search scheme is the very rapid solution of two time-critical subproblems that are solved
to optimality in linear time.
Our simulations indicate that with noise levels of some 3% relative error in measuring

fragment sizes, using six enzymes, most datasets of 13 contigs spanning 300kb can be correctly
ordered, and the remaining ones have most of their pairs of neighboring contigs correct. Hence,
the technique has a potential to provide real help to finishing. Even without closing all gaps,
the ability to order and orient the contigs correctly makes the partial assembly both more
accessible and more useful for biologists.
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1 Introduction

In this paper we propose a novel approach that combines computation and experimental data
to help in the challenge of “finishing” sequencing projects. One of the common strategies for
sequencing large clones (e.g., cosmids or BACs) is shotgun sequencing. Larger genomes are
often sequenced clone-by-clone (cf. [1].) In this strategy, the researchers clone short subfrag-
ments of the target, and then apply to each clone a sequencing reaction, which produces its
sequence, also called a read. In the shotgun process, read locations along the target are random
and initially unknown. Typical read lengths are 500-700 bases. Subsequently, the reads are
put together computationally using the overlaps between them, in a process called sequence
assembly. Moreover, reads may come from both strands of the DNA, and their “strandedness”
(orientation) is unknown. Since successful sequence assembly requires substantial read over-
laps, high redundancy of reads is needed. In order to obtain almost complete coverage of the
target and to be able to assemble the sequence, a high redundancy of 5-10 is needed.
Sequence assembly “glues” together reads that have large overlaps and forms contiguous

sequence stretches, called contigs. Before the sequence has been completely determined, the so-
lution is a collection of contigs whose relative position, orientation and distances are unknown.
It is this information that we set out to compute.
For many applications, achieving high redundancy is too expensive and even unnecessary.

For example, in a gene hunting project, one typically would like to obtain the target gene in a
BAC, and there is no need to fully assemble all of the reads. If the gene falls into few contigs
then studying these contigs may be enough. In another situation, only a rough draft of the
target, of relatively low redundancy, may be affordable.
Consider the situation when the assembly process has produced several contigs covering

together most (say 95% or more) of the target. The sequence content of the contigs is quite
accurate, but the relative positions of the contigs and their orientation (straight or reverse-
complemented) are undetermined by the assembly. The “finishing” phase of a sequencing
project aims to orient and order the contigs and complete the missing sequences between
neighboring contigs (cf. Figure 1.) Determining the correct ordering and orientation of the
contigs, and the distances between successive contigs, would greatly expedite the finishing.
Unlike the shotgun phase that is highly automated, finishing is a slower and more laborious

process [2]. For example, in the public human genome project [6], where each BAC clone
is shotgun-sequenced separately, thousands of BACS are yet to be finished.1 Due to the
importance of sequencing for current biological and medical research, and the large resources
put into sequencing, many approaches have been suggested for expediting finishing. These
include:
• “The double barrel shotgun” strategy, which uses additional information on pairing of reads
at approximately known distance [7, 11, 3] (this is the strategy at the basis of the whole genome
shotgun approach used for the commercial human genome project [12, 10]);
• Software systems to help with the choice of finishing reads and automate decisions [2];
• Obtaining targeted reads designed to close the gaps between contigs. This is often a very
expensive process.
• Performing PCR experiments with primers taken from the ends of two contigs. Since the
order and orientation of the contigs is unknown, this requires a lot of trial and error to match
the right contig ends. Recently, PCR multiplexing was suggested to ease this problem [9].
In this paper we explore a complementary approach in which we completely digest the

1The current version of the sequence, Build 31 of November 15 2002, contains 10024 BACs
in Phase I, defined as unfinished, perhaps unordered, unoriented contigs, with gaps. See
http://www.ncbi.nlm.nih.gov/genome/guide/human/HsStats.html

1



Figure 1: Fraction of a contiguration and one enzyme data. Top: the contigs; bold arrows denote
the orientation of each contig. Vertical lines: restrictions sites. Bottom: restriction fragments
between neighboring sites.

target with several restriction enzymes (typically 4–6 6-cutters), and obtain for each enzyme
the list of restriction fragment sizes contained in the target. Then it may be possible to infer
the position and orientation of each contig from the combination of the known sequences of the
contigs and the restriction fragment data. The restriction data is thus used as the “scaffold”
for placing and orienting the contigs. For this reason, the reconstruction problem is called the
Restriction Scaffold Problem (RSP).
We shall give a heuristic search algorithm for solving the RSP and report on some promising

preliminary simulation results. The key to the success of the search scheme is very rapid
solutions of two subproblems that are solved precisely in linear time. Those subproblems
are solved at the innermost loop of the search and are thus repeated millions of times, so
efficiency in solving them is paramount. Our simulations indicate that with noise levels of
some 3% relative error in measuring fragment sizes, using six enzymes, most contig adjacencies
in datasets of 13 contigs spanning 300kb were correctly determined. Hence, the technique has
a potential to provide real help to finishing using cheap gel experiments and computations.
Even when the target clone remains temporarily unfinished, the ability to order and orient the
contigs correctly makes the partial assembly both more accessible and more useful to biologists.
The paper is organized as follows: Section 2 contains preliminaries and definitions. Sec-

tion 3 outlines the algorithm, followed by detailed description of algorithms used for efficient
solution of the two subtasks in Sections 4 and 5. We describe simulation results in Section 6.
Some proofs are deferred to appendices.

2 Problem Formulation

The input to our problem consists of two types of data:

• For each enzyme i, a set m(i) of positive real numbers, representing the measured sizes
of the restriction fragments obtained in a complete digest of the target by enzyme i.

• For each contig j and enzyme i, a vector cj(i), giving the sequence of computed restriction
fragment sizes resulting from the complete digestion of contig j by enzyme i, in the order
of their distance from a reference end of contig j. This vector is computed from the
sequence of contig j, together with knowledge of the recognition sequence for enzyme i.
(We assume that the recognition sequences are palindromic, i.e., identical to their reverse
complements, as is the case for most enzymes.)

Note that for this abstraction we assume that the sequences of the contigs are known precisely
as otherwise computing the vectors of fragment sizes may be incorrect. We now introduce the
notion of a solution to RSP. Assume there are n contigs. Any solution must orient and order the
contigs, and also determine the sizes of the gaps between successive contigs. A contiguration
(short for configuration of contigs) is a pair S = (π, g) where π is a signed permutation of
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{1, . . . , n} and g = (g1, . . . , gn+1) is a vector of real numbers. (a signed permutation is a
permutation in which each number has a + or − sign.) The interpretation is that π gives the
order of the contigs along the target along with the orientation for each contig (positive for
straight, negative for reverse), and g gives the sizes of the gaps, which are the segments of the
target not covered by contigs, in the order of their occurrence along the target. Thus gi is the
size of the gap just preceding the ith contig in the ordering, and gn+1 is the size of the gap
following the last contig in the ordering. Note that gap sizes can be negative if short overlaps
of contigs were not detected. We assume that there are no restriction sites in the gaps. Since
we are focusing on clone sequencing projects in the finishing phase, where the vast majority
of the target is covered by contigs, this is a reasonable assumption.
A contiguration (see Figure 1) positions the contigs along the target. It also determines, for

each enzyme, the sizes of the fragments between consecutive cut sites along the target. These
include fragments that have endpoints in different contigs. We call such subfragments bridges.
A bridge usually contains end parts of neighboring contigs, but it may sometimes contain full
contigs that happen to have no cut sites for the enzyme. In the absence of restriction sites
within bridges, one can compute from a contiguration S the multiset of all restriction fragment
sizes for enzyme i, including both bridges and fragments internal to a single contig. We denote
that multiset by FS(i).
Suppose that, for a given contiguration we have determined, for each enzyme i, the following

information: m = m(i), the set of measured fragments for enzyme i, and f = FS(i), the
multiset of computed fragments. Note that m is a set rather than a multiset because in
the gel elecrophoresis experiments that determine the fragment sizes, one cannot accurately
distinguish the exact number of fragments that contribute to the same band. Consequently, we
do not know the multiplicities of measured fragment sizes. The multiset f is computed from
the positions and orientations of the contigs, together with the ordered sequence of computed
restriction fragment sizes within each contig.
In the ideal case where the contiguration is correct and all measurements and computations

are exactly correct, the set of distinct values in f should be exactly m. In practice, this ideal
situation will never occur because of imprecise gel measurement and computation errors, but
we expect that, if the contiguration is chosen correctly, then the set m and the multiset f
should resemble each other closely. In particular, we would expect that each element of f is
close to some element of m, and each element of m is close to some element of f .
We assume a prespecified cost function Q(f,m) for each pair (f,m), that measures the

degree of disagreement between f andm. We now describe how the overall cost is assessed. An
assignment is a function from f onto m. Thus an assignment associates a measured fragment
with each computed fragment, while requiring that each measured fragment is associated with
at least one computed fragment. The cost of assignment A is

∑
x∈f Q(x,A(x)). The cost

associated with a particular enzyme that has data f,m is the least value of an assignment
between them. The cost of a contiguration is the sum of the costs associated with the different
enzymes. We are finally ready to define the main formal problem of this paper:

Restriction Scaffold Problem (RSP):
Given measured and computed fragments, find a contiguration of minimum cost.

3 Overview of the Algorithm

In this section we present an overview of the algorithm we employ for the RSP. A complete
description is given in the following sections.
In searching for the best contiguration we must determine three components:
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Start from a random signed permutation π
Let t denote a starting temperature
Repeat until convergence:
Let π′ be obtained from π by a reversal.
Start with a uniform gap vector g
Repeat until convergence:

Find an optimal assignment A, given π and g
Find an optimal gap g, given π and A

Let δ denote cost(π′)− cost(π).
If δ ≤ 0 then π ← π′.
Otherwise, π ← π′ with probability exp(−δ/t)
Update t according to the cooling scheme.

Report π

Figure 2: Outline of the algorithm

1. A signed permutation π;

2. A gap vector g associated with π;

3. For each enzyme, an assignment from the multiset f of computed fragment sizes onto
the set m of measured fragment sizes.

The algorithm can be extended to deal with restriction sites within bridges. Such a re-
striction site for enzyme i can be modeled as a fictitious contig of length zero containing a
restriction site for enzyme i and no other restriction sites. Since the number of restriction
sites within bridges is initially unknown, the algorithm must provide for the operations of
inserting or deleting a fictitious contig, as well as the operation of reversal, at the step where
contiguration π′ is obtained from contiguration π. Since the number of restriction sites within
bridges is expected to be small, the cost of a contiguration should include a penalty term which
increases sharply with the number of fictitious contigs. This extension of the algorithm has
not yet been implemented.
The problem is NP-hard even in very degenerate variants (see Appendix A). Two challenges

present themselves. First, the space of signed permutations is too large (n!·2n) for enumeration
even for a very moderate n. Second, it is not clear how to find the best gap vector for a given
π, since this involves two optimization problems that depend on each other: choosing the gap
vector g, and choosing the assignment A.
The approach we take in this paper is a combination of a local search heuristic (namely,

Simulated Annealing [5]) that searches in the space of signed permutations, and two very
efficient algorithms, one that optimizes gaps (given π and an assignment A), and one that
optimizes the assignment (given π and the gaps g). We employ these two algorithms iteratively
until convergence. An outline of the algorithm is described in Figure 2. A reversal operation
on a signed permutation reverses the order and signs of numbers in a contiguous segment.
In order to make the algorithm even more robust we repeat the local search described above

a number of times, each time starting from a different random signed permutation. In addition
to reporting the best contiguration discovered, we rank the contig adjacencies (between pairs
of signed contigs) according to how many times they occur in the returned solutions.
Our detailed description of the algorithm is organized as follows. In Section 4 we describe

an efficient assignment algorithm (given π and g). Finally, in Section 5 we describe how to
efficiently compute gaps (given π and an assignment A).
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4 Computing an Optimal Assignment

In this section we present an efficient algorithm, which, given a contiguration (π, g), computes,
for each enzyme, an optimal assignment mapping the set of computed fragments f onto the
set of measured fragments m. In the next section we describe how to optimally choose the gap
vector g, given the signed permutation π and, for each enzyme, a fixed assignment of bridges
to measured fragments. Each of these optimization problems requires a cost function Q. We
assume that the function Q should satisfy the following properties:

• Q(x, x) = 0;

• if the interval [x, y] contains the interval [x′, y′] then Q(x, y) ≥ Q[x′, y′];

• (order-preserving property) if x1 < x2 and y1 < y2 thenQ(x1, y1)+Q(x2, y2) ≤ Q(x1, y2)+
Q(x2, y1).

It would be natural to use the same cost function in both optimization problems. This
would ensure convergence to a limit in which the gap vector is optimal for the assignment and
the assignment is optimal for the gap vector. Instead we use slightly different cost functions in
the two optimization problems. This slight inconsistency enables us to achieve a vast increase
in computational speed, at the cost of sacrificing the theoretical convergence property.
We shall give a linear-time algorithm for computing an optimal assignment when the func-

tion Q is chosen in a particular way. We begin by presenting and solving an abstract assignment
problem. We then show how computing the score of a contiguration can be reduced to a special
case of this problem, for which a linear-time algorithm is available.

4.1 An Assignment Problem

We consider the following assignment problem: given a set of girls G = {g1, g2, · · · gt} and a
set of boys B = {b1, b2, · · · , bs} with t ≥ s, and a cost function Q from G×B to the reals, find
a function F from G onto B to minimize

∑r
i=1Q(gi, F (gi)). Note that the function F assigns

every girl to exactly one boy, and every boy to at least one girl.
By formulating this problem as a minimum-cost flow problem and using known properties

of that problem we can show that the problem can be solved by the following two-stage process.
Stage 1: Matching
Construct a matching of minimum cost in which each girl is matched with at most one

boy and each boy is matched with exactly one girl, where the cost of matching gi with bj is
Q(gi, bj).
Stage 2: Assigning the Unmatched Girls
For each girl gi, define F (gi) as follows: if gi is matched with bj then F (gi) = bj ; otherwise

F (gi) = bk where Q(gi, bk) = minj Q(gi, bj). Thus the assignment assigns each unmatched girl
to her closest boy.

4.2 Linear-Cost Matching

The linear-cost matching problem is a special case of the matching problem to be solved in
Stage 1. In this special case the boys and girls are mapped to points on the real line, the
number of girls is greater than or equal to the number of boys, each girl is to be matched with
at most one boy, each boy is to be matched with exactly one girl, and the cost of matching girl
i with boy j is the distance between the corresponding points. The cost function is defined
more formally as follows. Let S be the union of the set of girls G and the set of boys B. Note
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that S contains at least as many girls as boys. Associated with each element e ∈ S is a real
number p(e) called the position of e. For each girl gi and boy bj , C(gi, bj) = |p(gi)− p(bj)|.
A 1975 paper by Karp and Li [4] gives an efficient algorithm for solving the linear-cost

matching problem. It is based on the following observations. Suppose the elements of S are
sorted in increasing order of their positions (thus, if p(e1) < p(e2), then e1 precedes e2 in the
ordering). For each element e, let L(e) be the number of boys preceding e in the ordering
minus the number of girls preceding e in the ordering. Define the level of girl gi as L(gi) − 1
and the level of boy bj as L(bj). The following facts can be shown:

• Within each level, the number of girls is either equal to the number of boys or one greater
than the number of boys, and the boys and girls in each level alternate in the ordering
of S.

• There is an optimal matching in which each boy is matched with a girl within the same
level.

These facts imply that the following algorithm produces an optimal matching:
(1) Sort S in increasing order of position and determine the level of each element. (2)

Within each level, determine a matching of minimum cost in which each girl is matched with
at most one boy and each boy is matched with exactly one girl (such a matching can be found
in linear time). (3) Construct the union of the matchings at the different levels.
If S has n elements then Step (1) can be carried out in time O(n log n), and steps (2) and

(3) can be carried out in time O(n). In practice, the algorithm is extremely fast. An example
of the algorithm is given in Appendix C.
In the application of linear-cost matching to computing the score of a contiguration, it

is desirable to require that the matching satisfy the following order-preserving property : if
p(g1) < p(g2), g1 is matched with b1 and g2 is matched with b2, then p(b1) ≤ p(b2). There
is always a minimum-cost matching satisfying this property, and such a matching can be
constructed as follows:

1. Construct an optimal matching;

2. Delete the girls not used in the matching;

3. Construct an order-preserving one-to-one matching between the remaining girls and the
boys.

The overall algorithm for solving the linear-cost assignment problem is as follows:

1. Sort S;

2. Construct an optimal matching;

3. Construct an optimal order-preserving matching;

4. Assign each unmatched girl to her closest boy.

4.3 Computing an Optimal Assignment

As a first cut at the problem we can take the girls to be the computed fragments and computed
bridges, and the boys to be the fragment measurements. Each girl must be matched with one
boy, and each boy must be matched with at least one girl (reflecting the fact that each fragment
measurement corresponds to at least one physical fragment, but may correspond to two or more
physical fragments comprising a single band on the gel). For each girl or boy e we define s(e),
the size of e, as the size in base pairs of the corresponding computed fragment or fragment
measurement.
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However, we must also take into account that physical fragments below some detection
limit (which we take to be 300bp) may fail to be detected on the gel. Considering this, we
allow each girl of size below the detection limit to be assigned to an “imaginary” extra boy
of exactly the same size, and each girl above the detection limit to be assigned to an optional
boy of size 300bp. In setting up the assignment problem, we also require the constraint that
each boy (even the imaginary ones) must be matched with at least one girl. Assuming that the
cost of matching a computed fragment with a measurement of exactly the same size is zero,
the following trick allows us to enforce this constraint:

1. For each girl of size s below the detection limit, create an additional imaginary girl of
size s and an imaginary boy of size s; also, create one imaginary boy and one imaginary
girl of size 300bp.

2. Solve the assignment problem on the set of actual boys and girls augmented by the
imaginary boys and girls defined above.

3. Remove the imaginary girls from the assignment, and remove each imaginary boy that
is not matched to an actual girl.

In Appendix B we show that this process gives an optimal assignment satisfying the constraint.
It remains to specify the cost function. We define the cost of assigning a girl (computed

fragment) g of size s(g) to a boy (measurement) b of size s(b) to be ln(max(s(g),s(b))min(s(g),s(b)) ). This cost

function is an increasing function of the relative error max(s(g),s(b))min(s(g),s(b)) − 1, is always less than or
equal to the relative error, and is a close approximation to the relative error when the relative
error is small. The advantage of using this cost function is that the assignment problem can be
solved by linear-cost matching, by taking the position p(e) of boy or girl e to be ln(s(e)). With
this definition the cost of matching girl g with boy b is exactly |p(g)− p(e)|. Thus we can use
the extremely efficient linear-cost matching algorithm in computing an optimal assignment.

5 Computing an Optimal Gap Vector

Assume we are given a signed permutation π (specifying the order and orientation of the
contigs along the target), and a fixed assignment A. Since A is fixed, the contribution to the
cost by each computed fragment that has both ends in the same contig is constant. We focus
here on the contribution of the bridges, i.e., computed fragments that span a gap. A assigns
each bridge b to an observed length A(b). In this section we show how to compute the gap
vector g such as to minimize the deviation between the computed lengths and the measured
lengths of the bridges.
If only one restriction enzyme is used, we can trivially choose a gap vector such that

the computed length of all bridges would exactly match the corresponding measured length.
When more than one enzyme is used, each gap is contained in multiple bridges, and thus a
more complex optimization problem arises.
Let us call a bridge regular if it spans exactly one gap, and long if it spans at least two gaps

(and the entire contig between them). Note that a bridge is long only if the corresponding
restriction enzyme does not cut certain contigs even once. To allow us to optimize each gap
length independently of the others, and thus achieve a linear running time, we choose to
optimize the gap lengths only with respect to regular bridges. As most of the target sequence
is covered by contigs (typically more than 95%) we expect that only a small fraction of the
bridges will be long. Thus, optimal gap lengths with respect to only regular bridges will tend
to be near-optimal with respect to all of the bridges.
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Consider now a specific gap t that lies between two π-adjacent contigs u and v, and let x
denote the length of t. Let b1, . . . , bk be the regular bridges that span t and w.l.o.g. assume
that bi corresponds to enzyme i. Each such bridge contains a subfragment from u, the gap
t, and a subfragment from v. Let ai denote the the sum of the two subfragments for enzyme
i. Hence, bi = ai + x, for each 1 ≤ i ≤ k. Let mi denote the measured length to which bi is
assigned, i.e., mi = A(bi).
We define the cost of a bridge bi, denoted by c(bi), to be the square of the relative deviation

of the computed length of bi from its measured length:

c(bi) =

(
|bi −A(bi)|

A(bi)

)2
=

(
x+ ai
mi

− 1

)2

The rationale for this definition is twofold. First, we want to penalize big deviations
more than linearly, since large relative deviations occur much less frequently in experiments.
Second, squaring the deviation eliminates the absolute value function and thus simplifies the
optimization. The reason for dividing by mi is that the error range tends to scale linearly with
mi, rather than being constant.
We define the cost of the gap length x as the sum of the costs of the bridges that span it.

That is,

c(x) =

k∑
i=1

c(bi) =

k∑
i=1

(
x+ ai
mi

− 1

)2
.

By taking the derivative of this objective with respect to x and equating it to zero we
obtain:

x =

∑ mi−ai
m2i∑ 1
m2i

6 Experimental Results

To validate our method, we implemented the above algorithm in the programming language
C and evaluated its performance on simulated problem instances, for which the discrepancy
between computed and correct solutions could be assessed.
Briefly, we generated problem instances by simulating a shotgun sequencing process in

which reads are positioned independently and uniformly along the target sequence until a
predefined redundancy is achieved. Whenever two reads or contigs overlap sufficiently, the
overlap causes the corresponding sequences to be merged. For simplicity, we assumed a con-
servative read length of 500, but also that contigs were merged whenever their intervals on the
target sequence overlapped by any amount. This process results in a number of contigs whose
contiguration is known.
As target sequence we used a subsequence of 307862 bases from the human AML1-CBR

region on chromosome 21 (GenBank accession number AJ229043). In our simulated restric-
tion digests, we used the six restriction enzymes Sca I, BamH I, Sma I, Afl II, EcoR V, and
ApaL I. From the fragment sizes that a complete digest experiment would produce for each
enzyme, we obtained measured fragment sizes by adding a normally distributed relative error
with mean equal to the precise fragment length and a standard deviation of 3%.
We generated problem instances for a range of redundancies from 4.0 to 6.5. Using our

simulator, we found the average number of contigs for each redundancy. These ranged between
45 and 6. For simplicity, we restricted our experiments for each redundancy value to instances
that contained exactly its corresponding average number of contigs.
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Recall that our algorithm returns a ranked list of adjacencies for each problem instance.
The quality of such a ranking can be evaluated by an ROC curve [8]. An ROC curve represents
the different tradeoffs between false and true positive rates that are achieved by using the first
k = 1, 2, . . . adjacencies in the list as predictions for the adjacencies in the correct solution.
Specifically, for each k = 1, 2, . . . , the ROC curve contains a point (xk, yk), where xk is the
false positive rate (the average fraction of all non-adjacencies present in the prediction) and
yk is the corresponding true positive rate (the average fraction of all true adjacencies present
in the prediction). The ideal ROC curve contains a point (xk, yk) = (0, 1), i.e., it is possible
to choose k such that the first k (predicted) adjacencies correspond to the true solution.
Figure 3 represents, for each redundancy value, an average ROC curve; i.e., each point

represents average true and false positives over the first k adjacencies from 10 runs of our
program on each of the 10 distinct problem instances.

Recovery of simulated contig adjacencies
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Figure 3: Average predictive power of our algorithm on simulated problem instances for different
redundancies/numbers of contigs

Our experimental results support the usefulness of the new approach presented in this
paper. Here are a few specific observations:

• At redundancy of 5.5x (13 contigs), the first 8 edges are determined correctly in each of
the 10 problem instances. In fact, in 5 out of the 10 problem instances the best-scoring
solution is the fully correct permutation (data not shown here).

• If one considers the first 11 edges returned for each of the 10 instances, there are only 2
errors. The other 110 − 2 = 108 edges are correct.

• As expected, the result of our method generally improves with increasing redundancy/decreasing
number of contigs. At redundancy level 6.5x, all correct edges are predicted perfectly for
each of the 10 problem instances.

• Even with a large number of contigs, the program correctly identifies some adjacencies.
For example, with 20 contigs, the first 6–7 adjacencies tend to be correct.

• It is counterintuitive that the ROC curve for 10 contigs appears worse than the ROC
curve for 13 contigs. Our analysis (data not shown here) reveals that, in several of the
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10 problem instances with 10 contigs, competing and near-optimal permutations differ
in many adjacencies from the optimal solution. In contrast, in instances with 13 contigs,
the competing permutations contain almost the same adjacencies, which still contribute
to identifying correct adjacencies overall. We classify this effect as a stochastic one, since
we expect it to disappear with a larger number of problem instances. In other respects,
the 10-contig instances did appear easier than the dataset of 13-contig instances. For
example, if, out of the 10 reruns per problem instance, one only considers the solution
with the best score, the perfectly correct solution was found for 8 of the 10 10-contig
instances, but only for 5 of the 10 13-contig instances.

We also examined the effect of varying the number of restriction enzymes used in the
method. Keeping the number of contigs constant (13 contigs at a redundancy of 5.5x), we
varied the number of restriction enzymes between 2 and 10. Figure 4 shows the results. Clearly,
2 enzymes are not sufficient to guide the search algorithm toward the correct solutions. While
the difference between 4 and 6 enzymes is still significant, going much beyond 6 enzymes does
not appear to affect the quality of the solutions significantly. One possible explanation is that
the errors that remain with 6 to 10 enzymes are due to the uncertainty about the sizes of the
gaps between contigs, and the error in the (simulated) fragment length measurements.

Recovery of simulated contig adjacencies
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Figure 4: Average predictive power of our algorithm for different numbers of restriction en-
zymes/experiments. The redundancy is 5.5x (13 contigs).

Finally, we examined the effect of the error in the fragment length measurement on the
outcome of our method. While keeping the coverage at 5.5x (13 contigs) and the number of
restriction enzymes at 6, we varied the normally distributed relative error on the simulated
fragment length measurements between 1 and 5 percent. The corresponding ROC curves in
Figure 5 indicate robustness of our method against experimental error in this range. While
the trend in our simulations is as expected, i.e., lower error rate correlates with fewer false
positives, the differences between error rates of 1% and 3% lie within the range of stochastic
effects due to our limited sample size which, as can be seen in Figure 5, let an error rate of 2%
appear better than an error rate of 1%.
Note that all simulations were performed on a relatively large target (> 300kb). Most
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Figure 5: Average predictive power of our algorithm for different error rates in fragment length
measurements. The redundancy is 5.5x (13 contigs).

large-scale sequencing projects use BACs which are substantially shorter (100–150kb). For
such shorter targets, the number of restriction sites would be much smaller, and hence, better
performance of our method can be expected to provide the correct solutions.
Due to the efficiency of our algorithms for the two subproblems, we can afford to perform a

large number of steps (50,000 in our examples) in the outer loop of our algorithm in Figure 2.
We have empirical evidence that such a large number of steps is essential for finding good
solutions. The running time of our implementation for 50,000 iterations on a current Sun
workstation is on the order of 10 minutes.

7 Additional Considerations

In the practical application of our algorithms in large-scale sequencing projects, a few other
considerations are in order. If many BACs are to be sequenced, the restriction enzymes
probably have to be chosen in advance. However, when applying the approach to a specific
BAC, a judicious choice of enzymes, based on prior knowledge of the contig sequences and the
recognition sequences of the enzymes, is helpful. Intuitively, enzymes that cut the contigs too
frequently, or cut too rarely, or leave symmetric end fragments in a contig, are less helpful.
By scanning a list of available enzymes one can rank those that appear most helpful given the
contig sequences. In our study of data from some real BAC projects, the ranking of enzymes
based on those heuristic considerations made a significant difference. It may be interesting to
explore the scoring of enzymes and to evaluate its effect more rigorously.
In large-scale projects, we may also have to address the problem of restriction sites in gaps.

Earlier we argued that, given an already high coverage of the target, and correspondingly small
gap sizes, the probability of a restriction site in any given gap is sufficiently small. With a high
number of gaps in large-scale projects, however, this situation can be expected to arise with
some low frequency. To address this issue, our methodology presented here can be extended
as follows. Briefly, the case of a restriction site in a gap can be emulated by incorporating
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abstract empty contigs into the input. These contigs are assumed to have a length of only a
few basepairs, and to contain a single restriction site. With this extension, our method can
be expected to be guided towards the correct solutions. As the number of restriction sites in
gaps is generally unknown, but needs to be specified in the input of our procedure, multiple
runs with varying numbers will need to be combined into a single output. A related issue
that will also have to be addressed in future work arises in low-coverage scenarios, in which
subsequences at ends of assembled contigs can remain undetermined.
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Appendix A: NP-Hardness of the RSP Problem

Theorem 1 RSP is NP-hard, even if only one enzyme is used, no gaps are allowed and
fragment multiplicity is known.

Proof. Reduction from Partition: Given integers a1, . . . , an with
∑
i ai = 2T , we need to

determine if there is a subset S ⊂ {1, . . . , n} such that
∑
i∈S ai = T . We construct RSP data

for one enzyme with measured fragments T, T . There are n contigs of sizes a1, . . . , an with no
enzyme cut sites in them. Clearly, the reduction is polynomial.
Suppose there is a partition into equal sets. Then putting the fragments of S first, in any

order (and orientation), followed by the remaining fragments, and having the cut site at T we
get a contiguration with score zero.
Conversely, if there is a contiguration with score zero then there is a set S of contigs whose

sum is T , so S solves the partition problem.

A similar, strongly polynomial reduction can be made from 3-Partition, showing that the
problem is in fact strongly NP-hard. Note that the proof can be modified to avoid a cut site
in a (zero size) gap by a slight modification of the data: Pick a sufficiently small ε > 0, add
an artificial contig of size 2ε whose computed fragments are (ε, ε), and modify the measured
fragments to {T + ε, T + ε}. An alternative modification is to add just one cut site at the
very end of one arbitrary contig. Contigs without cut sites can also be avoided by adding a
second enzyme and introducing artificial sites at distance δ (for sufficiently small δ > 0) from
each contig endpoint, adding n− 1 artificial contigs of size 2δ, and having measured fragments
{ai − 2δ|i = 1, . . . , n} ∪ {bi = 2δ|i = 1, . . . , n− 1} for the second enzyme.

Appendix B: Reducing RSP matching to linear-cost

matching

Formally, for each problem instance P of the RSP matching problem (that allows an optional
extra boy at 300bp, and optional inclusion of girls < 300 bp), let us create a problem instance
P ′ of the linear-cost matching problem (without the above extra options), as can be solved by
the linear-time algorithm.

• For each girl g, add to P an extra girl/boy pair (b′(g), g′(g)) < 300 bp - for simplicity we
will call persons < 300 bp “small”),

• Add to P an extra girl/boy pair (b′0, g
′
0) of size 300 bp.

For simplicity, we will call the added girls and boys “imaginary”, and the others “real”. The
following Lemma establishes a correspondence between optimal solutions for P and optimal
solutions for P ′.

Lemma 1 Any optimal solution M of P can be converted to an optimal solution M ′ of P ′,
of the same cost, and vice versa.

Proof. LetM be an optimal solution of P . From M we construct the problem instance P ′, as
described above. We obtain a solution to P ′ by adding an edge b′(g)−g′(g) for each imaginary
girl/boy pair (b′, g′), as well as an edge b′(g)− g for each small real girl g that is not included
in M . It is easy to verify that M ′ is a solution to P ′. Since each added edge has a cost of 0,
M ′ has the same cost as M .
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Conversely, let M ′ be an optimal solution of P ′. If there is a real boy b who has an edge
to an imaginary girl g′, we can modify P ′ by the following augmentation step. We construct
a path that starts with the edge b− g′.
Now append g′’s imaginary counterpart boy b′(g′), and continue with one of b′’s girl partners

g′′. Note that g′′ cannot be greater than g′, since otherwise the edges b−g′ and b′−g′′ could be
rearranged to the cheaper pair b− g′′ and b′− g′, which would contradict the optimality ofM ′.
If g′′ is real, stop. Otherwise, iterate the above step with g′′. The procedure produces a finite
decreasing sequence (b, g′, b′(g′), g′′, ...) is that must eventually terminate with a real girl g. Now
replace the edges b− g′, b′− g′′, ... in M ′ with the edges b′− g′, b′′− g′′, ..., b− g. Observe that
the new edge set is still a valid solution of P ′. Since the sequence (b, g′, b′(g′), g′′, b′(g′′)..., g) is
decreasing, the replacement does not change the cost of the solution. Furthermore, the number
of edges between real boys and imaginary girls was decreased by one.
We use the above augmentation step iteratively to eliminate all edges between real boys

and imaginary girls without changing the cost of the solution. Finally, we convert the resulting
solution of P ∗ to a solution M of P by the following two steps:
(1) Replace any edge between a large real girl g and a small imaginary boy b′ by an edge

between g and the imaginary boy b′0 at 300 bp.
(2) Delete all imaginary boys and girls, except for the imaginary boy b0, if there is an edge

between that boy and one or more large girls.
The resulting graph contains no imaginary persons, with the possible exception of the

imaginary boy b0, and represents the desired solution M of P . Since steps (1) and (2) cannot
increase the cost of the edge set, the cost of M is at most as high as the cost of M ′.
Finally, observe that neither translation between M and M ′ has increased the cost, and

thus, optimality is preserved in both directions.

Appendix C: An Example of the Linear-Cost Match-

ing Algorithm

We illustrate the linear-cost matching algorithm with an example. Figure 6 shows a set of
boys and girls on the line, together with their levels.

g g b b b g b b g g g g b g

0 -1 -1 0 1 1 1 2 2 1 0 -1 -1-1

Figure 6: A set of boys and girls on the line, with levels

Figure 7 shows the boys and girls separated by level.

level -1

g b g b g

level 0

g b g

level 1

b g b g

level 2

b g

Figure 7: Boys and girls separated by level
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level -1

g b g b g

----- ---

level 0

g b g

------------------

level 1

b g b g

------ --------------------

level 2

b g

-------

Figure 8: Optimal matching in each level

Figure 8 shows the optimal matching in each level.
Figure 9 shows an optimal overall matching. It is the unique order-preserving matching

between the set of boys and the set of girls that are included in the level-by-level matchings.

g g b b b g b b g g b g

------------ ------ --------------- ---

---------- -----------

Figure 9: Optimal overall matching

Finally, Fig. 10 shows an optimal assignment after the completion of Stage 2.

g g b b b g b b g g g g b g

------------ ------ --------------- ---

---------- ----------- -----

---------------

Figure 10: Optimal assignment after completion of Stage 2
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