# Learning Gaussian Mixture Parameters for the MATISSE algorithm 

Igor Ulitsky Ron Shamir

December 7, 2006

We describe here how the Gaussian mixture parameters $\Theta=\left(\mu_{m}, \sigma_{m}, \mu_{n}, \sigma_{n}, p_{m}\right)$ can be learned using the EM algorithm in our probabilistic model, given the values of $P\left(R_{i}\right)$ for every gene. The EM procedure closely resembles the standard mixture-density parameter estimation problem addressed in detail in [?]. Thus we shall address only the differences between the standard procedure with two component densities optimization and our problem, introduced by the use of $P\left(R_{i}\right)$ priors.

Define:

$$
\begin{gathered}
\alpha_{1 i j}=p_{m} P\left(R_{i}\right) P\left(R_{j}\right) \\
\alpha_{2 i j}=\left(1-p_{m} P\left(R_{i}\right) P\left(R_{j}\right)\right) \\
\mu_{1}=\mu_{m} \\
\sigma_{1}=\sigma_{m} \\
\mu_{2}=\mu_{n} \\
\sigma_{2}=\sigma_{n}
\end{gathered}
$$

We will denote by $P_{N}\left(S_{i j}, \mu_{\ell}, \sigma_{\ell}\right)$ the density of $S_{i j}$ in the normal distribution $N\left(\mu_{\ell}, \sigma_{\ell}\right)$ :

$$
P_{N}\left(S_{i j}, \mu_{\ell}, \sigma_{\ell}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{\ell}} \exp \left(\frac{-\left(S_{i j}-\mu_{\ell}\right)^{2}}{2 \sigma_{\ell}{ }^{2}}\right)
$$

For every pair of genes $(i, j)$, the probability of observing the similarity $S_{i j}$ is given by:

$$
P\left(S_{i j} \mid \Theta\right)=\sum_{\ell=1}^{2} \alpha_{\ell i j} P_{N}\left(S_{i j}, \mu_{\ell}, \sigma_{\ell}\right)
$$

Define $x_{i j}$ as the indicator of the pair $(i, j)$ being mates. Given the unobserved data items $X=\left\{x_{i j}\right\}_{(i, j) \in N \times N}$, the complete-data log-likelihood is:

$$
\log (L(\Theta \mid S, X))=\log (P(S, X \mid \Theta))=\sum_{i=1}^{N} \sum_{j=1}^{N} \log \left(P\left(S_{i j} \mid x_{i j}\right) P\left(x_{i j}\right)\right)
$$

The algorithm starts with some initial parameter guess $\Theta^{g}=\left(\mu_{m}^{g}, \sigma_{m}^{g}, \mu_{n}^{g}, \sigma_{n}^{g}, p_{m}^{g}\right)$. The mixing parameters $\alpha_{\ell i j}$ can be thought of as prior probabilities of each mixture components, distinct for every pair $(i, j)$. Therefore, Using Bayes's rule we can compute:

$$
P\left(x_{i j}=\ell \mid S_{i j}, \Theta^{g}\right)=\frac{\alpha_{\ell i j} P_{N}\left(S_{i j}, \mu_{\ell}^{g}, \sigma_{\ell}^{g}\right)}{P\left(S_{i j} \mid \Theta^{g}\right)}
$$

and

$$
P\left(X \mid S, \Theta^{g}\right)=\prod_{i=1}^{N} P\left(x_{i j}, \Theta^{g}\right)
$$

Following the same equation manipulations as in [?] we can write the following term for $Q\left(\Theta, \Theta^{g}\right)$ :

$$
Q\left(\Theta, \Theta^{g}\right)=\sum_{\ell=1}^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \log \left(\alpha_{\ell i j}\right) p\left(\ell \mid S_{i j}, \Theta^{g}\right)+\log \left(P_{N}\left(S_{i j}, \mu_{\ell}^{g}, \sigma_{\ell}^{g}\right)\right)
$$

This expression can be maximized by maximizing the term containing $\alpha_{\ell i j}$ and the term containing $\mu_{\ell}$ and $\sigma_{\ell}$ independently, as they are not related.

As in [?], we introcude the Lagrange multiplier with the constraint that $\sum_{i} \sum_{j} \sum_{\ell} \alpha_{\ell i j}=1$, and solve the following:

$$
\frac{\partial}{\partial \alpha_{\ell i j}}\left[\sum_{\ell} \sum_{i} \sum_{j} \log \left(\alpha_{\ell i j}\right) p\left(\ell \mid S_{i j}, \Theta^{g}\right)+\lambda\left(\sum_{i} \sum_{j} \sum_{\ell} \alpha_{\ell i j}=1\right)\right]=0
$$

Summing both sides over $\ell$, we get that $\lambda=-\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(R_{i}\right) P\left(R_{j}\right)$ and find an update formula for $p_{m}$ :

$$
p_{m}=\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(\ell \mid S_{i j}, \Theta^{g}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(R_{i}\right) P\left(R_{j}\right)}
$$

The equations for update of the $\mu$ and $\sigma$ parameters are the same as in [?]:

$$
\begin{gathered}
\mu_{\ell}^{\text {new }}=\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} S_{i j} P\left(\ell \mid S_{i j}, \Theta^{g}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(\ell \mid S_{i j}, \Theta^{g}\right)} \\
\sigma_{\ell}^{\text {new }}=\frac{\sum_{i=1}^{N} \sum_{j=1}^{N}\left(S_{i j}-\mu_{\ell}^{\text {new }}\right)^{2} P\left(\ell \mid S_{i j}, \Theta^{g}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(\ell \mid S_{i j}, \Theta^{g}\right)}
\end{gathered}
$$

