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Driving mechanism of cancer

• Over time the rearrangements accumulate and the cancer cell 
karyoptype differs more from its healthy counterpart

Inversion (2-3)

Tandem 
Duplication 
(-2-4)
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Methods for inferring structural 
variations (SV) in a cancer genome:

• Paired Ends Reads – Detect novel adjacencies in the genome compared to 
the reference.
• Sample DNA sequence S is cut into small fragments (200-500 bp)

• Each end of the fragment (36 bp) is then aligned against a reference genome R.

• Concordant reads – both ends aligned to the known expected distance and 
orientation.

• Discordant reads – are mapped to different locations on the reference genome 
or with an unexpected relative orientation

Concordant read Discordant read
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• We call the end points of a segment 𝐼 its tail and head. 𝐼
= 𝑡𝐼 , ℎ𝐼

• A bridge is a connection between two segment end points 
that are adjacent in the target genome but not in the 
reference.

Reference

Target

h1,t4 , h4,h4 , t3,t2 , h2,h1 .Bridges:
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Karyotype reconstruction

The input is:

• A sequence of intervals representing the reference genome 
ℐ = 𝐼1, … , 𝐼𝑛 .

• The copy number profile of the intervals, each Interval 𝐼𝑗 has 
CN𝑁𝑗.

• The set of bridges 𝑎𝑖 , 𝑏𝑖 𝑖=1
𝑚 and the support 𝜇𝑖 for each 

bridge. 
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• Transform all undirected edges to antiparallel directed edges.

• Add weights to bridges, representing support score.

• Denote 𝑆 ⊆ 𝑉 the telomere nodes that start or end each reference 
chromosome.



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node

• Alternates between interval and non-interval edges.



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node

• Alternates between interval and non-interval edges.



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node

• Alternates between interval and non-interval edges.

• Formally:



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node

• Alternates between interval and non-interval edges.

• Formally:
• denote 𝑓𝑝 𝑒𝑖 the number of times edge 𝑒𝑖 is traversed 

in either direction.



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node

• Alternates between interval and non-interval edges.

• Formally:
• denote 𝑓𝑝 𝑒𝑖 the number of times edge 𝑒𝑖 is traversed 

in either direction.

• 𝐸𝐼←(𝑣), 𝐸𝐼→(𝑣), 𝐸𝑅←(𝑣), 𝐸𝑅→(𝑣), 𝐸𝑉←(𝑣), 𝐸𝑉→(𝑣) - the 
set of interval, reference and variant edges that go in 
and out of 𝑣 respectively.



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a 

path through 𝐺 that:
• Start and ends on a telomeric node

• Alternates between interval and non-interval edges.

• Formally:
• denote 𝑓𝑝 𝑒𝑖 the number of times edge 𝑒𝑖 is traversed 

in either direction.

• 𝐸𝐼←(𝑣), 𝐸𝐼→(𝑣), 𝐸𝑅←(𝑣), 𝐸𝑅→(𝑣), 𝐸𝑉←(𝑣), 𝐸𝑉→(𝑣) - the 
set of interval, reference and variant edges that go in 
and out of 𝑣 respectively.

• 𝑓𝑃 𝐸𝐼→ 𝑣 = 𝑓𝑃 𝐸𝑅← 𝑣 + 𝑓𝑃 𝐸𝑉← 𝑣

∀𝑣∉𝑆



A valid path
• Given a bridge graph 𝐺 𝑉, 𝐸, 𝑤 , a valid path 𝑝 is a path 

through 𝐺 that:
• Start and ends on a telomeric node
• Alternates between interval and non-interval edges.

• Formally:
• denote 𝑓𝑝 𝑒𝑖 the number of times edge 𝑒𝑖 is traversed in 

either direction.
• 𝐸𝐼←(𝑣), 𝐸𝐼→(𝑣), 𝐸𝑅←(𝑣), 𝐸𝑅→(𝑣), 𝐸𝑉←(𝑣), 𝐸𝑉→(𝑣) - the set of 

interval, reference and variant edges that go in and out of 𝑣
respectively.

• 𝑓𝑃 𝐸𝐼→ 𝑣 = 𝑓𝑃 𝐸𝑅← 𝑣 + 𝑓𝑃 𝐸𝑉← 𝑣

∀𝑣∉𝑆

• 𝑓𝑃 𝐸𝐼← 𝑣 = 𝑓𝑃 𝐸𝑅→ 𝑣 + 𝑓𝑃 𝐸𝑉→ 𝑣

∀𝑣∉𝑆



A valid path
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Results - Simulations

• Simulate a rearranged karyotype .

• Apply noise
• For CN: Add 𝑥~𝑁(0, 𝜖)

• For support score: Draw from 𝐸𝑥𝑝 𝜆

• “Miss” bridges with a probability 𝑝 for each bridge.
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Simulations - Parameters

• 𝐶 - The number of chromosomes (default: 5).

• 𝑁 - The number of structural and numerical 
operations applied (default: 5).

• 𝜖 - The standard deviation of the noise in the CN 
profile data (default: 0.2)

• 𝑝 – The probability to completely miss a bridge 
(default: 0.05).
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Simulations – Correctness 
measures
Let 𝑇 be the simulated (true) karyotype, let 𝑇∗ be the 
simulated noisy karyotype, and let 𝑆 be the karyotype 
produced by the algorithm.
• Correct - 𝑆 and 𝑇 have the same CN profile and use the 

same bridges.
• Equal Copy Number (ECN) - 𝑆 and 𝑇 have the same CN 

profile.
• Equal or Better Score (EBS) - 𝑆 is closer to 𝑇∗ than to 𝑇.
• Equivalent for Observed Bridges (EOB) - 𝑆 is equivalent 

to 𝑇 if we ignore the missing bridges.
• CN score – The fraction of the intervals that have the 

correct copy number.
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Real data: Malhorta et al. (2013)
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