BreaKmer: detection of structural variation
in targeted massively parallel sequencing
data using kmers

Abo, MacConaill et al.



Genomic Structural Variations



Genomic Structural Variations

Changed chromosome 9
Normal
chromosome 9 Chromosomes break
Changed
| chromosome 22
Normal | (Philadeiphia
chromosome 22 . chromosome)

BCR-ABL fusion gene in
Chronic Myeloid Leukemia

§> ber-abl



Genomic Structural Variations

* SV’s are one of the driving mechanisms of cancer
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Genomic Structural Variations

* SV’s are one of the driving mechanisms of cancer

* InDels, Translocations, Rearrangements and genomic copy
losses/gains
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Genomic Structural Variations

* SV’s are one of the driving mechanisms of cancer

* InDels, Translocations, Rearrangements and genomic copy
losses/gains
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BreaKmer — A novel method for identifying SV’s

» Traditional clinical methods - slow, costly and challenging.

* WGS of tumors — optimal solution yet still very expensive and for now
still unfeasible in a clinical setting.

* BreaKmer
* Using WGS data but targeting specific regions — quicker
* Using all alignhment data available: unmatched pairs, mis-aligned reads and
discordant reads.
* Sequence assembly from reads using k-mers is the core.
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BreaKmer — General outline

SV Calling

* For each region, extract misaligned reads.

(Save discordant reads for later)

* Assemble contigs using kmers
* Align contigs to reference using BLAT
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BreaKmer — General outline

SV Calling

* For each region, extract misaligned reads.

(Save discordant reads for later)
* Assemble contigs using kmers
* Align contigs to reference using BLAT

e Report SV and BP
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Contig assembly

e Extract all misaligned reads for a region

* Enumerate all possible k-mers from
these samples
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Contig assembly
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Contig assembly

Extract all misaligned reads for a region

Enumerate all possible k-mers from
these samples

Enumerate all k-mers from the target
reference sequence and keep only those
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Contig assembly

Extract all misaligned reads for a region

Enumerate all possible k-mers from
these samples

Enumerate all k-mers from the target
reference sequence and keep only those
that are also found in the sample.

Start from a seed k-mer:
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Contig assembly

Extract all misaligned reads for a region

Enumerate all possible k-mers from
these samples

Enumerate all k-mers from the target
reference sequence and keep only those
that are also found in the sample.

Start from a seed k-mer:
e Retrieve all reads containing the k-mer
* Assemble the reads into a contig
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Contig assembly

Extract all misaligned reads for a region

Enumerate all possible k-mers from
these samples

Enumerate all k-mers from the target
reference sequence and keep only those
that are also found in the sample.

Start from a seed k-mer:
e Retrieve all reads containing the k-mer
* Assemble the reads into a contig

* Cache reads without an overlapping 90%
homologous sequence for potential
assembly later
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Contig assembly

Extract all misaligned reads for a region

Enumerate all possible k-mers from
these samples

Enumerate all k-mers from the target
reference sequence and keep only those
that are also found in the sample.

Start from a seed k-mer:

Retrieve all reads containing the k-mer
Assemble the reads into a contig

Cache reads without an overlapping 90%
homologous sequence for potential
assembly later

Expand the contig by repeating with other
k-mers within the retrieved reads
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SV Calling

For each contig:
* Align to the reference target area using BLAT

e Use the BLAT to determine if there was an : {
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* Filter results (min size, read depth, etc..)
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SV Calling

For each contig:
* Align to the reference target area using BLAT

Use the BLAT to determine if there was an : {
Indel

Filter results (min size, read depth, etc..)
Align again to the whole reference genome. l °

If it’s aligned —is it aligned to a different
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SV Calling 2l

For each contig:
* Align to the reference target area using BLAT

Use the BLAT to determine if there was an A { Yo | N
Indel

Filter results (min size, read depth, etc..)
Align again to the whole reference genome. -
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If it’s aligned —is it aligned to a different
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* Apply rearrangement (local) or translocation o
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Results

* 38 cancer samples were selected
* 12 were replicated to asses reproducibility
* 4 were replicated and diluted (to 50% and 20%) to asses sensitivity

* 80 normal samples were selected to use as positive controls
e 2 Target region lists were compiled
* Novel CV’s were validated using PCR

 Comparison to 4 other methods — CREST, Meerkat, BreakDancer,
Pindel
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Results

» 28/29 translocation positive samples
were called.

e 75/77 in translocations in non-diluted
replicates were called
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Results

» 28/29 translocation positive samples
were called.

e 75/77 in translocations in non-diluted
replicates were called

* 98.3% true positive calls amongst
replicates
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Results

» 28/29 translocation positive samples

were called.

e 75/77 in translocations in non-diluted
replicates were called

* 98.3% true positive calls amongst

replicates

* 9/10 translocations in the 20% diluted
replicates were identified.
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Results

* 28/29 translocation positive samples cecramalTIT HF T B r e
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e 21 unknown SV’s detected.

e 9/11 translocations were validated

* 8/9 indels were validated (1 sample
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Results

E

e 21 unknown SV’s detected.

e 9/11 translocations were validated

* 8/9 indels were validated (1 sample
didn’t have sufficient DNA)

» 77.3% predictive value

e 5SV’s detected in the 80 non-cancer
samples — 3 of them later validated.
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Comparison to other methods

Table 2. Counts for the number of true-positive results for all the replicates, listed by the known alterations and four SV detection methods

True-positive counts

Total replicates BreaKmer CREST Meerkat Break Dancer

Known alteration ND 50 D20 ND D50 D2 ND D350 D2 ND D50 D20 ND D50 D20
ABLI-BCR 24 3 3 24 3 3 2 3 3 22 3 3 2 3 3
ALK-EMI4 15 3 3 13 3 2 13 2 2 13 3 1 10 0 1
EGFR-intergenic - 3 3 9 3 3 7 2 U 8 3 3 9 3 1
BCIL2-IGH 11 ] 0] 11 i 0 1 0 0 10 ] U i} ] ]
PMI-RARA 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3
FLT3-ITD 8 ] 0 8 0 0 2 0 0 0 ] 0 ] 0 ]
EWSRI-FLII 2 0 0 2 0 0 2 0 U 2 ] 0 2 0 0
KMT2A-MLLTT 2 0 0 2 0 0 2 0 U 1 ] 0 1 0 0
KMT2A-MLLTIO 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
KEMT2A-MLLTY 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
EMT2A-MLLTE 1] ] 0 1 0 0 1 0 0 ] ] 0 1 0 0
ERG-EWSRI 1 0 0 1 0 0 1 0 U 1 ] 0 ] 0 ]
EWSRI-WTI 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ANKRDI3B- 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
FGFRI

FIFILI-FDGFRA 1 ] 0 1 0 0 1 0 0 ] ] 0 1 0 ]
ERG-FUS 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
IGH-MYC 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
KIT deletion 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
Total replicates 86 12 12 84 12 11 66 10 B 70 12 10 6 9 B
Total samples 33 4 4 37 4 4 30 4 3 27 4 4 26 3 4

MDD non-dilution rephcates; D30 dilution rephcates with 50% tumor punty; D20 dilution repheates with 20% tumor punty.
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e Other methods identified a strikingly large
number of previously unidentified SV’s compared
to BreaKmer.

e Very little overlap between the methods.

Method Total Calls BreakDancer Meerkat CREST
BreaKmer 494 17 9 11
CREST 26246 451 2237

Meerkat 15991 504

BreakDancer 15712

* 90% of additional calls were not identified in
more than a single replicate.
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Results

* Dilution expectedly affects
the SV evidence.

* Read support lowers as the
tumor content in the
sample grows smaller.

* (EGFR went through a big
somatic amplification
which also affected the
read depth).
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conclusion

e Targeting specific areas

* Using all read mapping data (discordant, unmatched and soft-clipped)
e Using k-mers for assembly

* Very high sensitivity, reproducibility and predictive results.

* Maybe too good?

* Designed with detecting known SV’s quickly and cheaply as the
primary goal.



