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Genomic Structural Variations

• SV’s are one of the driving mechanisms of cancer

• InDels, Translocations, Rearrangements and genomic copy 
losses/gains

• Detecting known SV’s 

• Identifying novel SV’s

BCR-ABL fusion gene in 
Chronic Myeloid Leukemia
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• Traditional clinical methods  - slow, costly and challenging.

• WGS of tumors – optimal solution yet still very expensive and for now 
still unfeasible in a clinical setting.

• BreaKmer
• Using WGS data but targeting specific regions – quicker

• Using all alignment data available: unmatched pairs, mis-aligned reads and 
discordant reads.

• Sequence assembly from reads using k-mers is the core.
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SV Calling
• For each region, extract misaligned reads.

(Save discordant reads for later)

• Assemble contigs using kmers

• Align contigs to reference using BLAT

• Report SV and BP
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Contig assembly
• Extract all misaligned reads for a region

• Enumerate all possible k-mers from 
these samples

• Enumerate all k-mers from the target 
reference sequence and keep only those 
that are also found in the sample.

• Start from a seed k-mer:
• Retrieve all reads containing the k-mer

• Assemble the reads into a contig

• Cache reads without an overlapping 90% 
homologous sequence for potential 
assembly later

• Expand the contig by repeating with other 
k-mers within the retrieved reads
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SV Calling
For each contig:

• Align to the reference target area using BLAT

• Use the BLAT to determine if there was an 
Indel

• Filter results (min size, read depth, etc..)

• Align again to the whole reference genome.

• If it’s aligned – is it aligned to a different 
region?

• Apply rearrangement (local) or translocation 
filters.
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Results

• 38 cancer samples were selected
• 12 were replicated to asses reproducibility

• 4 were replicated and diluted (to 50% and 20%) to asses sensitivity

• 80 normal samples were selected to use as positive controls

• 2 Target region lists were compiled 

• Novel CV’s were validated using PCR

• Comparison to 4 other methods – CREST, Meerkat, BreakDancer, 
Pindel



Results



Results



Results

• 28/29 translocation positive samples 
were called.



Results

• 28/29 translocation positive samples 
were called.

• 75/77 in translocations in non-diluted 
replicates were called



Results

• 28/29 translocation positive samples 
were called.

• 75/77 in translocations in non-diluted 
replicates were called

• 98.3% true positive calls amongst 
replicates



Results

• 28/29 translocation positive samples 
were called.

• 75/77 in translocations in non-diluted 
replicates were called

• 98.3% true positive calls amongst 
replicates

• 9/10 translocations in the 20% diluted 
replicates were identified.



Results

• 28/29 translocation positive samples 
were called.

• 75/77 in translocations in non-diluted 
replicates were called

• 98.3% true positive calls amongst 
replicates

• 9/10 translocations in the 20% diluted 
replicates were identified.

• Overall 97.4% sensitivity in detecting 
the 38 known events.
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Results
Known 

translocations

Novel translocations identified 
by BreaKmer

• 21 unknown SV’s detected.
• 9/11 translocations were validated

• 8/9 indels were validated (1 sample 
didn’t have sufficient DNA)

• 77.3% predictive value

• 5 SV’s detected in the 80 non-cancer 
samples – 3 of them later validated.
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Results

• Dilution expectedly affects 
the SV evidence.

• Read support lowers as the 
tumor content in the 
sample grows smaller.

• (EGFR went through a big 
somatic amplification 
which also affected the 
read depth).
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conclusion

• Targeting specific areas

• Using all read mapping data (discordant, unmatched and soft-clipped)

• Using k-mers for assembly

• Very high sensitivity, reproducibility and predictive results.

• Maybe too good?

• Designed with detecting known SV’s quickly and cheaply as the 
primary goal.


