BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers

Abo, MacConaill et al.

• SV's are one of the driving mechanisms of cancer

- SV's are one of the driving mechanisms of cancer
- InDels, Translocations, Rearrangements and genomic copy losses/gains

- SV's are one of the driving mechanisms of cancer
- InDels, Translocations, Rearrangements and genomic copy losses/gains
- Detecting known SV's

- SV's are one of the driving mechanisms of cancer
- InDels, Translocations, Rearrangements and genomic copy losses/gains
- Detecting known SV's
- Identifying novel SV's

• Traditional clinical methods - slow, costly and challenging.

- Traditional clinical methods slow, costly and challenging.
- WGS of tumors optimal solution yet still very expensive and for now still unfeasible in a clinical setting.

- Traditional clinical methods slow, costly and challenging.
- WGS of tumors optimal solution yet still very expensive and for now still unfeasible in a clinical setting.
- BreaKmer

- Traditional clinical methods slow, costly and challenging.
- WGS of tumors optimal solution yet still very expensive and for now still unfeasible in a clinical setting.
- BreaKmer
 - Using WGS data but targeting specific regions quicker

- Traditional clinical methods slow, costly and challenging.
- WGS of tumors optimal solution yet still very expensive and for now still unfeasible in a clinical setting.
- BreaKmer
 - Using WGS data but targeting specific regions quicker
 - Using all alignment data available: unmatched pairs, mis-aligned reads and discordant reads.

- Traditional clinical methods slow, costly and challenging.
- WGS of tumors optimal solution yet still very expensive and for now still unfeasible in a clinical setting.
- BreaKmer
 - Using WGS data but targeting specific regions quicker
 - Using all alignment data available: unmatched pairs, mis-aligned reads and discordant reads.
 - Sequence assembly from reads using k-mers is the core.

Discordant reads:

Discordant reads:

Translocation

Discordant reads:

Translocation

Discordant reads:

Translocation

Discordant reads:

Misaligned reads:

Discordant reads:

Misaligned reads:

SV Calling

• For each region, extract misaligned reads. (Save discordant reads for later)

- For each region, extract misaligned reads. (Save discordant reads for later)
- Assemble contigs using kmers

- For each region, extract misaligned reads. (Save discordant reads for later)
- Assemble contigs using kmers
- Align contigs to reference using BLAT

- For each region, extract misaligned reads. (Save discordant reads for later)
- Assemble contigs using kmers
- Align contigs to reference using BLAT
- Report SV and BP

• Extract all misaligned reads for a region

sample misaligned reads

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples
- Enumerate all k-mers from the target reference sequence and keep only those that are also found in the sample.

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples
- Enumerate all k-mers from the target reference sequence and keep only those that are also found in the sample.
- Start from a seed k-mer:

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples
- Enumerate all k-mers from the target reference sequence and keep only those that are also found in the sample.
- Start from a seed k-mer:
 - Retrieve all reads containing the k-mer

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples
- Enumerate all k-mers from the target reference sequence and keep only those that are also found in the sample.
- Start from a seed k-mer:
 - Retrieve all reads containing the k-mer
 - Assemble the reads into a contig

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples
- Enumerate all k-mers from the target reference sequence and keep only those that are also found in the sample.
- Start from a seed k-mer:
 - Retrieve all reads containing the k-mer
 - Assemble the reads into a contig
 - Cache reads without an overlapping 90% homologous sequence for potential assembly later

- Extract all misaligned reads for a region
- Enumerate all possible k-mers from these samples
- Enumerate all k-mers from the target reference sequence and keep only those that are also found in the sample.
- Start from a seed k-mer:
 - Retrieve all reads containing the k-mer
 - Assemble the reads into a contig
 - Cache reads without an overlapping 90% homologous sequence for potential assembly later
 - Expand the contig by repeating with other k-mers within the retrieved reads

SV Calling For each contig:

For each contig:

• Align to the reference target area using BLAT

- Align to the reference target area using BLAT
- Use the BLAT to determine if there was an Indel

- Align to the reference target area using BLAT
- Use the BLAT to determine if there was an Indel
- Filter results (min size, read depth, etc..)

- Align to the reference target area using BLAT
- Use the BLAT to determine if there was an Indel
- Filter results (min size, read depth, etc..)
- Align again to the whole reference genome.

- Align to the reference target area using BLAT
- Use the BLAT to determine if there was an Indel
- Filter results (min size, read depth, etc..)
- Align again to the whole reference genome.
- If it's aligned is it aligned to a different region?

- Align to the reference target area using BLAT
- Use the BLAT to determine if there was an Indel
- Filter results (min size, read depth, etc..)
- Align again to the whole reference genome.
- If it's aligned is it aligned to a different region?
- Apply rearrangement (local) or translocation filters.

• 38 cancer samples were selected

- 38 cancer samples were selected
 - 12 were replicated to asses reproducibility

- 38 cancer samples were selected
 - 12 were replicated to asses reproducibility
 - 4 were replicated and diluted (to 50% and 20%) to asses sensitivity

- 38 cancer samples were selected
 - 12 were replicated to asses reproducibility
 - 4 were replicated and diluted (to 50% and 20%) to asses sensitivity
- 80 normal samples were selected to use as positive controls

- 38 cancer samples were selected
 - 12 were replicated to asses reproducibility
 - 4 were replicated and diluted (to 50% and 20%) to asses sensitivity
- 80 normal samples were selected to use as positive controls
- 2 Target region lists were compiled

- 38 cancer samples were selected
 - 12 were replicated to asses reproducibility
 - 4 were replicated and diluted (to 50% and 20%) to asses sensitivity
- 80 normal samples were selected to use as positive controls
- 2 Target region lists were compiled
- Novel CV's were validated using PCR

- 38 cancer samples were selected
 - 12 were replicated to asses reproducibility
 - 4 were replicated and diluted (to 50% and 20%) to asses sensitivity
- 80 normal samples were selected to use as positive controls
- 2 Target region lists were compiled
- Novel CV's were validated using PCR
- Comparison to 4 other methods CREST, Meerkat, BreakDancer, Pindel

• 28/29 translocation positive samples were called.

- 28/29 translocation positive samples were called.
- 75/77 in translocations in non-diluted replicates were called

- 28/29 translocation positive samples were called.
- 75/77 in translocations in non-diluted replicates were called
- 98.3% true positive calls amongst replicates

- 28/29 translocation positive samples were called.
- 75/77 in translocations in non-diluted replicates were called
- 98.3% true positive calls amongst replicates
- 9/10 translocations in the 20% diluted replicates were identified.

- 28/29 translocation positive samples were called.
- 75/77 in translocations in non-diluted replicates were called
- 98.3% true positive calls amongst replicates
- 9/10 translocations in the 20% diluted replicates were identified.
- Overall 97.4% sensitivity in detecting the 38 known events.

• 21 unknown SV's detected.

- 21 unknown SV's detected.
 - 9/11 translocations were validated

- 21 unknown SV's detected.
 - 9/11 translocations were validated
 - 8/9 indels were validated (1 sample didn't have sufficient DNA)

- 21 unknown SV's detected.
 - 9/11 translocations were validated
 - 8/9 indels were validated (1 sample didn't have sufficient DNA)
- 77.3% predictive value

- 21 unknown SV's detected.
 - 9/11 translocations were validated
 - 8/9 indels were validated (1 sample didn't have sufficient DNA)
- 77.3% predictive value
- 5 SV's detected in the 80 non-cancer samples 3 of them later validated.

Table 2. Counts for the number of true-positive results for all the replicates, listed by the known alterations and four SV detection methods

				True-positive counts											
	Total replicates			BreaKmer			CREST			Meerkat			BreakDancer		
Known alteration	ND	D50	D20	ND	D50	D20	ND	D50	D20	ND	D50	D20	ND	D50	D20
ABL1-BCR	24	3	3	24	3	3	24	3	3	22	3	3	24	3	3
ALK-EML4	15	3	3	13	3	2	13	2	2	13	3	1	10	0	1
EGFR-intergenic	9	3	3	9	3	3	7	2	0	8	3	3	9	3	1
BCL2-IGH	11	0	0	11	0	0	1	0	0	10	0	0	6	0	0
PML-RARA	5	3	3	5	3	3	5	3	3	5	3	3	5	3	3
FLT3-ITD	8	0	0	8	0	0	2	0	0	0	0	0	0	0	0
EWSR1-FL11	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0
KMT2A-MLLT3	2	0	0	2	0	0	2	0	0	1	0	0	1	0	0
KMT2A-MLLT10	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
KMT2A-MLLT4	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
KMT2A-MLLT6	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
ERG-EWSR1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0
EWSR1-WT1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
ANKRD13B-	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
FGFR1															
FIP1L1-PDGFRA	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
ERG-FUS	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
IGH-MYC	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0
KIT deletion	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
Total replicates	86	12	12	84	12	11	66	10	8	70	12	10	64	9	8
Total samples	38	4	4	37	4	4	30	4	3	27	4	4	26	3	4

ND: non-dilution replicates; D50: dilution replicates with 50% tumor purity; D20: dilution replicates with 20% tumor purity.

 Other methods identified a strikingly large number of previously unidentified SV's compared to Breakmer.

- Other methods identified a strikingly large number of previously unidentified SV's compared to Breakmer.
- Very little overlap between the methods.

Method	Total Calls	BreakDancer	Meerkat	CREST
BreaKmer	494	17	9	11
CREST	26246	451	2237	
Meerkat	15991	504		
BreakDancer	15712			

- Other methods identified a strikingly large number of previously unidentified SV's compared to BreaKmer.
- Very little overlap between the methods.

Method	Total Calls	BreakDancer	Meerkat	CREST
BreaKmer	494	17	9	11
CREST	26246	451	2237	
Meerkat	15991	504		
BreakDancer	15712			

• 90% of additional calls were not identified in more than a single replicate.

- Other methods identified a strikingly large number of previously unidentified SV's compared to BreaKmer.
- Very little overlap between the methods.

Method	Total Calls	BreakDancer	Meerkat	CREST
BreaKmer	494	17	9	11
CREST	26246	451	2237	
Meerkat	15991	504		
BreakDancer	15712			

• 90% of additional calls were not identified in more than a single replicate.

8 Dilution expectedly affects the SV evidence. log(RD) 6-• Read support lowers as the tumor content in the 4 sample grows smaller. 5 log(RS) 3 100% 50% 20% 100% 50% 20% 100% 50% 20% 100% 50% 20% ABL1-BCR ALK-EML4 EGFR-intergenic PML-RARA

 Dilution expectedly affects the SV evidence. log(RD) 6 • Read support lowers as the tumor content in the 4 sample grows smaller. 5 • (EGFR went through a big log(RS) 3 somatic amplification which also affected the read depth). 100% 50% 100% 50% 20% 20% 100% 50% 20%

• Targeting specific areas

- Targeting specific areas
- Using all read mapping data (discordant, unmatched and soft-clipped)

- Targeting specific areas
- Using all read mapping data (discordant, unmatched and soft-clipped)
- Using k-mers for assembly

- Targeting specific areas
- Using all read mapping data (discordant, unmatched and soft-clipped)
- Using k-mers for assembly
- Very high sensitivity, reproducibility and predictive results.

- Targeting specific areas
- Using all read mapping data (discordant, unmatched and soft-clipped)
- Using k-mers for assembly
- Very high sensitivity, reproducibility and predictive results.
- Maybe too good?

- Targeting specific areas
- Using all read mapping data (discordant, unmatched and soft-clipped)
- Using k-mers for assembly
- Very high sensitivity, reproducibility and predictive results.
- Maybe too good?
- Designed with detecting known SV's quickly and cheaply as the primary goal.