

Reconstructing Cancer Karyotypes

Rami Eitan, Tel-Aviv University

13/8/14

Driving mechanism of cancer

• Chromosomal rearrangements that gradually accumulate over time and create a complex cancer karyotype.

We consider 3 types of intra-chromosomal rearrangements:

• Deletion

We consider 3 types of intra-chromosomal rearrangements:

• Deletion

Inversion

We consider 3 types of intra-chromosomal rearrangements:

• In addition to duplication, inversion and deletion we also consider the inter-choromosomal variation of translocation.

Methods for inferring structural variations (SV) in a cancer genome:

Methods for inferring structural variations (SV) in a cancer genome:

• CGH array – Detect Copy Number Variations (CNV), resolution as low as 100 Kilo bases.

Methods for inferring structural variations (SV) in a cancer genome:

- CGH array Detect Copy Number Variations (CNV), resolution as low as 100 Kilo bases.
- Paired Ends Reads Detect novel adjacencies in the genome compared to the reference.

CGH Array

Paired-end reads

- Sample DNA sequence *S* is cut into small fragments (200-500 bp)
- Each end of the fragment (36 bp) is then aligned against a reference genome *R*.
- Concordant reads both ends aligned to the same distance
- Discordant reads ends are aligned to a different distance.

Orientations of breakpoints determine the rearrangement

Orientations of breakpoints determine the rearrangement

Orientation	Rearrangement
head-to-tail	Deletion

Orientations of breakpoints determine the rearrangement

Orientation	Rearrangement
head-to-tail	Deletion
tail-to-head	Duplication

Orientations of breakpoints determine the rearrangement

Orientation	Rearrangement
head-to-tail	Deletion
tail-to-head	Duplication
tail-to-tail	Inversion
head-to-head	Inversion

Breast tumor HCC1954

From the reads we derive:

From the reads we derive:

• A sequence of intervals (segments) $I = (I_1, I_2, ..., I_n)$ Each Interval $I_j = [s_j, t_j]$.

From the reads we derive:

- A sequence of intervals (segments) $I = (l_1, l_2, ..., l_n)$ Each Interval $I_j = [s_j, t_j]$.
- From discordant reads: a set of adjacencies (Breakpoints) $A \subseteq \{(I_j, I_k) | j, k \in \{\pm 1, \pm 2, ..., \pm n\}\}$

From the reads we derive:

- A sequence of intervals (segments) $I = (I_1, I_2, ..., I_n)$ Each Interval $I_j = [s_j, t_j]$.
- From discordant reads: a set of adjacencies (Breakpoints) $A \subseteq \{(I_j, I_k) | j, k \in \{\pm 1, \pm 2, ..., \pm n\}\}$
- From CGH array: CNV data $c: I \rightarrow R$

Copy number and adjacency genome reconstruction problem

Given an interval vector I, a set A of cancer adjacencies, and a copy number vector derived from a cancer sample S, find the cancer genomes that are most consistent with the data.

Reference Genome:

$$V = \{s_1, t_1, s_2, t_2, \dots, s_n, t_n\}$$

$$V = \{s_1, t_1, s_2, t_2, \dots, s_n, t_n\}$$
$$E = E_I \cup E_R \cup E_V$$

Undirected graph G(V,E)

$$V = \{s_1, t_1, s_2, t_2, \dots, s_n, t_n\}$$
$$E = E_I \cup E_R \cup E_V$$

• Interval edges $E_I = \{e_I(j) = (s_j, t_j)\}$

$$V = \{s_1, t_1, s_2, t_2, \dots, s_n, t_n\}$$
$$E = E_I \cup E_R \cup E_V$$

- Interval edges
- Reference Edges

$$E_I = \{e_I(j) = (s_j, t_j)\}$$
$$E_R = \{(t_j, s_{j+1})\}$$

$$V = \{s_1, t_1, s_2, t_2, \dots, s_n, t_n\}$$
$$E = E_I \cup E_R \cup E_V$$

- Interval edges
- Reference Edges
- Variant edges

$$E_{I} = \{e_{I}(j) = (s_{j}, t_{j})\}$$

$$E_{R} = \{(t_{j}, s_{j+1})\}$$

$$E_{V} = \{(t_{i}/s_{i}, s_{j}/t_{j})|$$

$$[I_{i/-i}, I_{j/-j}] \in A\}$$

A block organization of the cancer genome corresponds to a path along the graph that:

- 1. Starts at s_1 and ends at t_n
- 2. Alternates between interval edges and noninterval edges.
- 3. The number of times each interval edge is traversed is equal to c_i

A block organization of the cancer genome corresponds to a path along the graph that:

- 1. Starts at s_1 and ends at t_n
- 2. Alternates between interval edges and noninterval edges.
- 3. The number of times each interval edge is traversed is equal to c_i

Reconstruction pipeline

Intersection of discovered BPs

Other methods for reconstruction
• nFuse (Sainhalp, McPherson et al. 2013)

- nFuse (Sainhalp, McPherson et al. 2013)
 - use a statistical model to determine the likelihood of each breakpoint.

- nFuse (Sainhalp, McPherson et al. 2013)
 - use a statistical model to determine the likelihood of each breakpoint.
 - Use the likelihood to define a CGR score (*Complex Genomic Rearrangements*) on the graph.

- nFuse (Sainhalp, McPherson et al. 2013)
 - use a statistical model to determine the likelihood of each breakpoint.
 - Use the likelihood to define a CGR score (*Complex Genomic Rearrangements*) on the graph.
 - Find a path that maximize the CGR score.

- nFuse (Sainhalp, McPherson et al. 2013)
 - use a statistical model to determine the likelihood of each breakpoint.
 - Use the likelihood to define a CGR score (*Complex Genomic Rearrangements*) on the graph.
 - Find a path that maximize the CGR score.
- PREGO (Rephael, Oseper et al. 2012)

- nFuse (Sainhalp, McPherson et al. 2013)
 - use a statistical model to determine the likelihood of each breakpoint.
 - Use the likelihood to define a CGR score (*Complex Genomic Rearrangements*) on the graph.
 - Find a path that maximize the CGR score.
- PREGO (Rephael, Oseper et al. 2012)
 - Derive breakpoints and intervals from the data

- nFuse (Sainhalp, McPherson et al. 2013)
 - use a statistical model to determine the likelihood of each breakpoint.
 - Use the likelihood to define a CGR score (*Complex Genomic Rearrangements*) on the graph.
 - Find a path that maximize the CGR score.
- PREGO (Rephael, Oseper et al. 2012)
 - Derive breakpoints and intervals from the data
 - Use a maximum likelihood function to estimate the copy number from the concordant reads.

• Use available breakpoint and CNV data

- Use available breakpoint and CNV data
- Construct a weighted breakpoint graph

- Use available breakpoint and CNV data
- Construct a weighted breakpoint graph
- Consider multi ploidity find the set of paths that are closest to the observed data

• Data of 64 tumor and matched normal samples taken from TCGA of different cancer types.

- Data of 64 tumor and matched normal samples taken from TCGA of different cancer types.
- Total of 6179 breakpoints identified using HYDRA

- Data of 64 tumor and matched normal samples taken from TCGA of different cancer types.
- Total of 6179 breakpoints identified using HYDRA
- 22321 CNV's from CGH array data

- Data of 64 tumor and matched normal samples taken from TCGA of different cancer types.
- Total of 6179 breakpoints identified using HYDRA
- 22321 CNV's from CGH array data

CNV to BP agreement rate

CNV to BP agreement rate

With a window of 3000 bases – 20% of breakpoints and 11% of CNV agree.

Why is the support rate so low?

- Data is noisy
- Diploidity
- Not all breakpoints cause changes in CN
- Complex rearrangements (eg chromotripsis)

Some samples have higher agreement rate and are non trivial.

Example: COAD_1, chr 3

Breakpoints:

chrom	pos1	pos2	chrom2	pos3	pos4	support	strand1	strand2	variantClass
3	60009834	60009999	3	60174480	60174642	4	+	-	DEL
3	60067795	60067974	3	60076102	60076309	4	+	-	DEL
3	60246396	60246538	3	60510688	60510817	4	+	-	DEL
3	60335087	60335302	3	60423401	60423651	7	+	-	DEL
3	60424798	60424924	3	60494986	60495132	6	+	-	DEL
3	60619732	60619892	3	60658637	60658840	4	+	-	DEL

CNV:

Chromosome	Start	End	Left Segment Copy Number	Right Segment Copy Number
3	4406420	4416420	1.95265	2.49525
	60004169	60014169	2.01003	1.65659
	60180509	60190509	1.65659	1.96985
	60240613	60250613	1.96985	1.23601
	60330752	60340752	1.23601	0.467678
	60489487	60499487	0.467678	1.21906
	60618204	60628204	1.91301	1.225
	60653678	60663678	1.225	1.94135
3	60904531	60914531	1.94135	1.47669
3	61198109	61208109	1.47669	2.04196
3	100439625	100449625	2.98631	2.01899

COAD_1, Chr 3

COAD_1, Chr 3

• This can be represented by the following directed graph:

• This can be represented by the following directed graph:

Formally

Let G=(V,E) be a directed graph constructed from the data as follows:

- Each adjoining of two reference segments on the breakpoint graph is represented by a node in V.
- $E = E_I \cup E_v$ is the union of both interval (segments) and variant (breakpoint) edges on the breakpoint graph.

Let $f: E \rightarrow R$ be a copy number function derived from the data.

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

2. Minimize:

$$\sum_{e} \left(f(e) - \sum_{p} C_{p}(e) \right)^{2}$$

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

$$\sum_{e} \left(f(e) - \sum_{p} C_{p}(e) \right)^{2}$$

The constraint can be formalized as a flow constraint on a directed graph.

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

$$\sum_{e} \left(f(e) - \sum_{p} C_{p}(e) \right)^{2}$$

The constraint can be formalized as a flow constraint on a directed graph.

For the target function:

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

$$\sum_{e} \left(f(e) - \sum_{p} C_{p}(e) \right)^{2}$$

The constraint can be formalized as a flow constraint on a directed graph.

For the target function:

• Quadratic programming (no guaranteed feasible solution)

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

$$\sum_{e} \left(f(e) - \sum_{p} C_{p}(e) \right)^{2}$$

The constraint can be formalized as a flow constraint on a directed graph.

For the target function:

- Quadratic programming (no guaranteed feasible solution)
- Use absolute value (implemented in CPLEX)

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$
$$e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$$

$$\sum_{e} \left(f(e) - \sum_{p} C_{p}(e) \right)^{2}$$

The constraint can be formalized as a flow constraint on a directed graph.

For the target function:

- Quadratic programming (no guaranteed feasible solution)
- Use absolute value (implemented in CPLEX)
- Linearize the target function using discretization and a truth table.

Since interval edges are longer than breakpoint edges and differ in size, we would like to add a constant weight function to act as a penalty for "skipping" longer segments. Since interval edges are longer than breakpoint edges and differ in size, we would like to add a constant weight function to act as a penalty for "skipping" longer segments.

1.
$$P_{1 \le i \le k} = (e_1, e_2 \dots)$$

 $e_i = (u, v) \Leftrightarrow e_{i+1} = (v, w)$

2. Minimize:

$$\sum_{e} \left| f(e) - \sum_{p} C_{p}(e) \right|^{2} \cdot w(e)$$
• The support score for breakpoint edges should somehow be normalized together with the CN of interval edges.

- The support score for breakpoint edges should somehow be normalized together with the CN of interval edges.
- Statistical model for the weight function

- The support score for breakpoint edges should somehow be normalized together with the CN of interval edges.
- Statistical model for the weight function
- Copy number for reference edges as well (nodes in the graph)