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Driving mechanism of cancer

• Chromosomal rearrangements that gradually accumulate over time 
and create a complex cancer karyotype.
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We consider 3 types of intra-chromosomal rearrangements:

• Deletion

• Inversion

• Tandem Duplication



• In addition to duplication, inversion and deletion we 
also consider the inter-choromosomal variation of 
translocation.
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Methods for inferring structural 
variations (SV) in a cancer genome:

• CGH array – Detect Copy Number Variations (CNV), 
resolution as low as 100 Kilo bases. 

• Paired Ends Reads – Detect novel adjacencies in the 
genome compared to the reference.



CGH Array



Paired-end reads
• Sample DNA sequence S is cut into small fragments (200-500 bp)

• Each end of the fragment (36 bp) is then aligned against a reference 
genome R.

• Concordant reads – both ends aligned to the same distance

• Discordant reads – ends are aligned to  a different distance.
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Breast tumor HCC1954
Galante 2011
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Genome reconstruction

From the reads we derive:

• A sequence of intervals (segments) 
Each Interval .

• From discordant reads: a set of adjacencies 
(Breakpoints)

• From CGH array:   CNV data -



Copy number and adjacency 
genome reconstruction problem

Given an interval vector I, a set A of cancer 
adjacencies, and a copy number vector derived 
from a cancer sample S, find the cancer 
genomes that are most consistent with the 
data.
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• Undirected graph G(V,E)

• Interval edges 

• Reference Edges 

• Variant edges



A block organization of the cancer genome 
corresponds to a path along the graph that:

1. Starts at s1 and ends at tn

2. Alternates between interval edges and non-
interval edges.

3. The number of times each interval edge is 
traversed is equal to cj



A block organization of the cancer genome 
corresponds to a path along the graph that:

1. Starts at s1 and ends at tn

2. Alternates between interval edges and non-
interval edges.

3. The number of times each interval edge is 
traversed is equal to cj



Reconstruction pipeline



Intersection of discovered BPs
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Other methods for reconstruction

• nFuse (Sainhalp, McPherson et al. 2013)
• use a statistical model to determine the likelihood of 

each breakpoint.

• Use the likelihood to define a CGR score (Complex 
Genomic Rearrangements) on the graph.

• Find a path that maximize the CGR score.

• PREGO (Rephael, Oseper et al. 2012)
• Derive breakpoints and intervals from the data

• Use a maximum likelihood function to estimate the copy 
number from the concordant reads.
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Our attempt

• Use available breakpoint and CNV data

• Construct a weighted breakpoint graph

• Consider multi ploidity – find the set of paths that 
are closest to the observed data
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With a window of 3000 bases – 20% of breakpoints 
and 11% of CNV agree.



Why is the support rate so low?

• Data is noisy

• Diploidity

• Not all breakpoints cause changes in CN

• Complex rearrangements (eg chromotripsis)



Some samples have higher agreement rate and are 
non trivial.

Example: COAD_1, chr 3

chrom pos1 pos2 chrom2 pos3 pos4 support strand1 strand2 variantClass

3 60009834 60009999 3 60174480 60174642 4 + - DEL

3 60067795 60067974 3 60076102 60076309 4 + - DEL

3 60246396 60246538 3 60510688 60510817 4 + - DEL

3 60335087 60335302 3 60423401 60423651 7 + - DEL

3 60424798 60424924 3 60494986 60495132 6 + - DEL

3 60619732 60619892 3 60658637 60658840 4 + - DEL

Breakpoints:

Chromosome Start End Left Segment Copy Number Right Segment Copy Number

3 4406420 4416420 1.95265 2.49525

3 60004169 60014169 2.01003 1.65659

3 60180509 60190509 1.65659 1.96985

3 60240613 60250613 1.96985 1.23601

3 60330752 60340752 1.23601 0.467678

3 60489487 60499487 0.467678 1.21906

3 60618204 60628204 1.91301 1.225

3 60653678 60663678 1.225 1.94135

3 60904531 60914531 1.94135 1.47669

3 61198109 61208109 1.47669 2.04196

3 100439625 100449625 2.98631 2.01899

CNV:
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• This can be represented by the following 
directed graph:
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Formally

Let G=(V,E) be a directed graph constructed from the data as 
follows:

• Each adjoining of two reference segments on the breakpoint 
graph is represented by a node in V.

• 𝐸 = 𝐸𝐼 ∪ 𝐸𝑣 is the union of both interval (segments) and 
variant (breakpoint) edges on the breakpoint graph.

Let 𝑓: 𝐸 → 𝑅 be a copy number function derived from the 
data. 
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The constraint can be formalized as a flow constraint on a 
directed graph.

For the target function:

• Quadratic programming (no guaranteed feasible solution)

• Use absolute value (implemented in CPLEX)

• Linearize the target function using discretization and a 
truth table.
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Since interval edges are longer than breakpoint 
edges and differ in size, we would like to add a 
constant weight function to act as a penalty for 
“skipping” longer segments.

1. 𝑃1≤𝑖≤𝑘 = 𝑒1, 𝑒2…
𝑒𝑖 = 𝑢, 𝑣  𝑒𝑖+1 = (𝑣,𝑤)

2. Minimize:
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∙ 𝑤(𝑒)
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Future work:

• The support score for breakpoint edges should 
somehow be normalized together with the CN of 
interval edges.

• Statistical model for the weight function

• Copy number for reference edges as well (nodes in 
the graph)


