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Driving mechanism of cancer

* Chromosomal rearrangements that gradually accumulate over time
and create a complex cancer karyotype.
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We consider 3 types of intra-chromosomal rearrangements:

* Deletion -/-/-/ -/-/
* Inversion -/-/-/ Eﬂl_ -/

* Tandem Duplication -/-/-/ -/-/ -/-/




* In addition to duplication, inversion and deletion we
also consider the inter-choromosomal variation of
translocation.
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Methods for inferring structural
variations (SV) in a cancer genome:

* CGH array — Detect Copy Number Variations (CNV),
resolution as low as 100 Kilo bases.

* Paired Ends Reads — Detect novel adjacencies in the
genome compared to the reference.



CGH Array
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Paired-end reads

Sample DNA sequence S is cut into small fragments (200-500 bp)

Each end of the fragment (36 bp) is then aligned against a reference
genome R.

Concordant reads — both ends aligned to the same distance
Discordant reads — ends are aligned to a different distance.
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Genome reconstruction

From the reads we derive:

* A sequence of intervals (segments) I = (I}, L, ...

Each Interval [; = [s;,¢;].

* From discordant reads: a set of adjacencies
(Breakpoints) 4 < {(I;, I,)lj, k € {£1,£2,..., £n}}

* From CGH array: CNV data- c¢:I - R
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Copy number and adjacency
genome reconstruction problem

Given an interval vector 1, a set A of cancer
adjacencies, and a copy number vector derived
from a cancer sample S, find the cancer
genomes that are most consistent with the
data.



Interval-adjacency graph
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Interval-adjacency graph
e Undirected graph G(V,E)

V — {Sl,t1J52,t2J "'JSTIJ' tn}
E — EI U ER U EV

* Interval edges E; ={e;(j) = (ijtj )}
o Reference Edges ER — {(tj; Sj+1)}
* Variant edges Ey = {(ti/si,s;/t)]

[i/-i,1j/-j] € A}






A block organization of the cancer genome
corresponds to a path along the graph that:

~

Starts at s, and ends at t,

2. Alternates between interval edges and non-
interval edges.

3. The number of times each interval edge is

traversed is equal to c;




Reconstruction pipeline
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Intersection of discovered BPs

Stephens et al.
230

Bignell et al.
59

Galante et al.
77

recall: 0.858
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Other methods for reconstruction

* nFuse (Sainhalp, McPherson et al. 2013)

e use a statistical model to determine the likelihood of
each breakpoint.

* Use the likelihood to define a CGR score (Complex
Genomic Rearrangements) on the graph.

* Find a path that maximize the CGR score.

 PREGO (Rephael, Oseper et al. 2012)
* Derive breakpoints and intervals from the data

e Use a maximum likelihood function to estimate the copy
number from the concordant reads.
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Our attempt

* Use available breakpoint and CNV data
* Construct a weighted breakpoint graph

* Consider multi ploidity — find the set of paths that
are closest to the observed data
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Malhorta et al (2013) data

e Data of 64 tumor and matched normal samples
taken from TCGA of different cancer types.

* Total of 6179 breakpoints identified using HYDRA
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CNV to BP agreement rate
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With a window of 3000 bases — 20% of breakpoints
and 11% of CNV agree.



Why is the support rate so low?

* Data is noisy

* Diploidity

* Not all breakpoints cause changes in CN

 Complex rearrangements (eg chromotripsis)



Some samples have higher agreement rate and are
non trivial.

Example: COAD_1, chr 3

Breakpoints:
mm-mmmm-mmm

0 60009834 60009999 3 60174480 60174642 4 + DEL
1 60067795 60067974 3 60076102 60076309 4 + - DEL
1| 60246396 60246538 3 60510688 60510817 4 + - DEL
1 60335087 60335302 3 60423401 60423651 7 + - DEL
1 60424798 60424924 3 60494986 60495132 6 + 2 DEL
1 60619732 60619892 3 60658637 60658840 4 + - DEL
CNV:
| Chromosome __ |stat | End | LeftSegment Copy Number | Right Segment Copy Number |
EL T 4406420 4416420 1.95265 2.49525

60004169 60014169 2.01003 1.65659

60180509 60190509 1.65659 1.96985

60240613 60250613 1.96985 1.23601

60330752 60340752 1.23601 0.467678

60489487 60499487 0.467678 1.21906

60618204 60628204 1.91301 1.225

60653678 60663678 1.225 1.94135
S 60904531 60914531 1.94135 1.47669
B 61198109 61208109 1.47669 2.04196

S 100439625 100449625 2.98631 2.01899
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COAD 1, Chr 3
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Formally

Let G=(V,E) be a directed graph constructed from the data as
follows:

e Each adjoining of two reference segments on the breakpoint
graph is represented by a node in V.

* E = E; UE,is the union of both interval (segments) and
variant (breakpoint) edges on the breakpoint graph.

Let f: E — R be a copy number function derived from the
data.
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We want to find a collection of k € {1,2,3} paths on G s.t. the
number of times we traverse each edge e is as close as
possible to f(e).

1. Pigi<k = (eg,€3...)
e; = (W, v)oe 1 = (v,w)

2. Minimize:

S <f<e) - Z cp<e)>2

e

The constraint can be formalized as a flow constraint on a
directed graph.

For the target function:
e Quadratic programming (no guaranteed feasible solution)
* Use absolute value (implemented in CPLEX)

* Linearize the target function using discretization and a
truth table.
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Since interval edges are longer than breakpoint
edges and differ in size, we would like to add a
constant weight function to act as a penalty for
“skipping” longer segments.

1. Pigi<k = (eg,€5 ..)
e; = (W, v)oe 1 = (V,w)

2. Minimize:

Y@= @
p

2
-w(e)

e




Future work:



Future work:

* The support score for breakpoint edges should
somehow be normalized together with the CN of
interval edges.



Future work:

* The support score for breakpoint edges should
somehow be normalized together with the CN of
interval edges.

e Statistical model for the weight function



Future work:

* The support score for breakpoint edges should
somehow be normalized together with the CN of
interval edges.

e Statistical model for the weight function

* Copy number for reference edges as well (nodes in
the graph)



