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Genome of a cancer tumor 

Comprised from the germline genome through a 
series of structural variations. 
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rearranged genome 

BCR-ABL fusion gene in 
chronic myeloid leukemia 



Greenman 2011 



Breast tumor HCC1954 
Galante 2011 



Paired-end read 

• Sample DNA sequence S is cut into small fragments (200-500 bp) 
• Each end of the fragment (36 bp) is then aligned against a reference 

genome R. 
• Concordant reads – both ends aligned to the same distance 
• Discordant reads – ends are aligned to  a different distance. 



Genome reconstruction 

From the reads we derive: 

• A sequence of intervals     . Each 
Interval        . 

• From discordant reads: a set of adjacencies 
 

• From concordant reads: a read depth vector 
         , where     is the number of reads 
that fall entirely within   . 
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from a cancer sample S, find the cancer 
genomes that are most consistent with the 
data. 



Copy number and adjacency genome 
reconstruction problem 

Given an interval vector I, a set A of cancer 
adjacencies, and a read depth vector r derived 
from a cancer sample S, find the cancer 
genomes that are most consistent with the 
data. 

•What is “consistent”? 
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Some considerations 

1. Measurements of A, I may be incomplete or 
inaccurate. 
 

2. Cancer genomes may be aneuploid. 
 

3. A tumor is not genetically homogenous.  



Single Chromosome copy number and 
adjacency genome reconstruction problem 

Given an interval vector I, a set A of cancer 
adjacencies, an interval count vector c, and the 
set R of reference adjacencies, find a cancer 
genome         satisfying:  
 
1. 
2. For =1,..,n, the total number of indices j with    

      



Interval-adjacency graph 

• Undirected graph G(V,E) 

 

 

 

• Interval edges  

• Reference Edges  

• Variant edges 

 





A block organization of the cancer genome corresponds to a 
path along the graph that: 

 
1. Starts at s1 and ends at tn 
2. Alternates between interval edges and non-interval 

edges. 
3. The number of times each interval edge is traversed is 

equal to cj 



• Assume that c is known and that A is 
accurate. 
• We need to find the copy number of the 
variant edges - .  
• This can be formulated as an ILP problem 
with the constraint: 
 
 
 
 

Perfect data 
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• Given the edge weights    , finding an 
alternating path corresponds to the 
problem of finding an alternating Eulerian 
Tour in the multigraph    . 
 
• In the case of multiple chromosomes we 
simply require multiple edge disjoint 
alternating paths.  
 

• When the data is perfect at least one such 
solution exists. 
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Imperfect data 

• A is not accurate and c is unknown. 

• Instead we have a read depth vector r. 
 

• Let L1, L2,… Ln be the lengths of I1, I2,… In . 

• Let     , be the length of the 
reference genome. 

• Let   , be the total number of 
concordant reads aligned within an interval. 
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Imperfect data cont. 

• We assume reads are distributed uniformly. 

• The expected number of reads that align to an 
interval Ij  in a non rearranged genome: 
 

 

• In a rearranged genome: 
 
 

• Where       is the expected number of copies of 

each interval.  



• To find the weights of the edges     , we define a 
(negative) likelihood function: 
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• Thus we have the following formulation: 
 
 

 

• Subject to: 
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Results – Ovarian cancer data 

• 5 Ovarian cancer from TCGA 

• Sequenced at 30x coverge using Illumina withr read length 36 
bp. 

• Removed discordant reads that appear in both tumor and 
matched normal (somatic changes). 

• Discordant reads must be: 
– >1Mb from the centromer 

– Pass a threshold of 5 or 10 

– Introduce intervals >8Kb 

• Analysis restricted to 22 autosomes 



Results – used variant edges 

Dataset ID #Var Edges Used % 

OV1 TCGA-13-0890 771 499 65% 

OV2 TCGA-13-0723 562 268 48% 

OV3 TCGA-24-0980 311 172 55% 

OV4 TCGA-24-1103 340 218 64% 

OV5 TCGA-13-1411 389 255 66% 







Reciprocal vs non-reciprocal variants 



Trivial reciprocal edges 

reciprocal edges are “trivial” if the multiplicities of 
the two variant edges are equal and for each pair 
of interval edges of the corresponding 
breakpoints , their multiplicity is equal as well. 

 

 

 

 

“Trivial” Non trivial 



Fishers exact test for variant edges 

Dataset variant Type 

Reciprocal, 

Trivial, 

Used 

Reciprocal, 

non Trivial, 

Used 

Reciprocal, 

Trivial, non 

Used 

Reciprocal, 

non Trivial, 

non Used 

non 

Reciprocal, 

non Trivial, 

Used 

non Reciprocal, 

non Trivial, non 

Used p_Val 

OV1 T 104 75 28 13 9 58 <1E-15 

OV1 I 30 16 8 12 2 29 3.46E-05 

OV1 TO 140 70 30 16 9 38 2.79E-12 

OV2 T 36 41 28 23 12 49 5.17E-07 

OV2 I 12 9 10 5 10 21 5.70E-02 

OV2 TO 50 46 46 18 15 44 2.63E-07 

OV3 T 42 19 10 3 6 30 2.11E-07 

OV3 I 14 5 8 5 2 13 7.50E-02 

OV3 TO 36 22 18 8 7 28 1.92E-05 

OV4 T 34 40 10 6 12 35 1.54E-09 

OV4 I 8 2 0 0 3 12 7.30E-02 

OV4 TO 26 22 12 10 12 26 3.60E-02 

OV5 T 64 29 12 7 8 37 2.30E-08 

OV5 I 10 2 8 0 6 13 1.30E-01 

OV5 TO 60 22 18 8 7 34 2.29E-06 



Fishers exact test for variant edges 

Dataset variant Type 

Reciprocal, 

Trivial, 

Used 

Reciprocal, 

non Trivial, 

Used 

Reciprocal, 

Trivial, non 

Used 

Reciprocal, 

non Trivial, 

non Used 

non 

Reciprocal, 

non Trivial, 

Used 

non Reciprocal, 

non Trivial, non 

Used p_Val 

OV1 T 104 75 28 13 9 58 <1E-15 

OV1 I 30 16 8 12 2 29 3.46E-05 

OV1 TO 140 70 30 16 9 38 2.79E-12 

OV2 T 36 41 28 23 12 49 5.17E-07 

OV2 I 12 9 10 5 10 21 5.70E-02 

OV2 TO 50 46 46 18 15 44 2.63E-07 

OV3 T 42 19 10 3 6 30 2.11E-07 

OV3 I 14 5 8 5 2 13 7.50E-02 

OV3 TO 36 22 18 8 7 28 1.92E-05 

OV4 T 34 40 10 6 12 35 1.54E-09 

OV4 I 8 2 0 0 3 12 7.30E-02 

OV4 TO 26 22 12 10 12 26 3.60E-02 

OV5 T 64 29 12 7 8 37 2.30E-08 

OV5 I 10 2 8 0 6 13 1.30E-01 

OV5 TO 60 22 18 8 7 34 2.29E-06 

Conclusion: it may be easier to satisfy the copy number 
balance conditions for vertices associated with reciprocal 
variant. 



Simulated Data 

• Simulate a cancer genome C . 

• Simulate pair-end reads on C . 

• Model a heterogeneous tumor by sampling 
percentage of the samples from a reference 
genome. 

• Add Gaussian  noise to each rj  drawn from  



Simulated Data - results 
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Shortcomings 

• Mapping discordant reads in repetitive areas 
can be difficult. 

• Read depth estimation as well. 

• Many paths may agree with the graph. 

• Estimated edge multiplicities may not be 
unique. 

• No allele-specific information. 

• A cancer sample is heterogeneous.  


