Journal talk - Annelyse Thevenin

Sorting by transposition is Difficult

Laurent Bulteau Guillaume Fertin Irena Rusu

LINA, University of Nantes, France

2010

1/ 41

Introduction

In comparative genomics, there exist several distances such that
the transposition distance. A transposition consists in swapping
two consecutive sequences.
G1: 042135
013425
Gy: 012345 (Id)

SORTING BY TRANSPOSITION (SBT) [Bafna and Pevzner, 1995]

Find the minimum number of transposition needed to transform a
genome into an another.

Prove that SBT is NP-hard |

Tool: Polynomial reductions

ST oty + AT

3/ 41

Study problems

Sorting by Transpositions Problem
3DT- collapsibility problem
SAT Problem

| - Three problems
1. Sorting by Transpositions

4/ 41

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

SBT - Context

@ Introduce by Bafna and Pevzner - 1995
@ There exist lot of approximation and heuristics

@ The best known fixed-ratio algorithm being a
1.375-approximation [Elias and Hartman - 2006]

@ Variants of this problem: prefix transposition or distance
between strings, etc.

Sorting a permutation by block-interchanges (i.e. exchanges of
non-necessarily consecutive sequences) is a polynomial problem
[Christie, 1996].

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

SBT - Definition

Given three integers 0 < / < j < k < n, the transposition 7; ;
over [0, n] is the following permutation:

@G =
ax”\ [I e

Let 7 be a permutation of [0; n]. The transposition distance
di(7) from 7 to Id,, is the minimum value k for which there exist k
transpositions 71, 7, ..., T, such that to7,0---0omom = Id,.

SORTING BY TRANSPOSITIONS problem

INPUT: A permutation 7, an integer k
QUESTION: Is d;(7) < k?

Study problems

Sorting by Transpositions Problem
3DT- collapsibility problem
SAT Problem

| - Three problems
2. 3D T-collapsibility

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

3DT-instance - definition

Let ¥ an alphabet of at most n elements.

A 3DT-instance / of span n is composed of :

@ A word composed by e and distinct letters from X, and

@ a set of ordered triples of elements of ¥, partitioning ¥:
Ty ={(ai, bi,ci) | 1 < i <|Tyl}.

Two examples with n=6:

| =a1 ¢ by by cg a» with T, = {(al, bl,Cl), (32, bg, C2)}
I"’—e by @ cp ® a with T = {(ag,bQ,CQ)}

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

Positions

The function W: X — [1; n] is an injection. V(o) is the position of
o in the word of /.

e g1 <0z if V(o1) < V(o2)

@ g1<opifor <opand Ax € X, 01 < x < 09.

@ The function succ;: for all (a, b, c) € Ty, V(a) — W(b),
V(b) — W(c), and V¥(c) — W(a).

| =a1 ¢ by by g ao with T, = {(al, bl,Cl), (32, bg, C2)}
I"'=eb, @ cp ® ap with T, = {(82, b27C2)}

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

Triplet well-ordered

Let / be a 3DT-instance, and (a, b, ¢) be a triple of T;. Write
i = min{W(a),V(b),V(c)}, j = succ/(i), and k = succy(j).

The triplet (a, b, ¢) € T, is well-ordered if we have i < j < k. In
such case, we write 7[a, b, ¢, V] the transposition 7; ; ..

| =a1 ¢ by by g a» with T, = {(al, bl,Cl), (32, bg, C2)}
I"'=eby @ cp ® ap with T = {(32, b2,C2)}

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

3D T-step

Definition: 3DT-step

Let / be a 3DT-instance with (a, b, c) € T; a well-ordered triple.

The 3DT-step of parameter (a, b, ¢) is the operation written

b
—>(a’) , transforming [into the 3DT-instance /” such that

Ty =T, — (a, b, c) and

| =a1 ¢ by by cg a» with T, = {(31, bl,Cl), (82, by, C2)}
"= by ¢ ¢ ® a» with T = {(ag, b2,C2)}

11/ 41

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

3D T-collapsibility

Definition: 3DT-collapsible

A 3DT-instance / is 3DT-collapsible if there exists a sequence of

3DT-instances I, Ix_1,...,lp such that I, = I, Iy = ¢, and

Vi € [L:k],3(a, b, c) € Ty, 1 L2

li_1.

| and I’ are 3DT-collaspible, since we have

| (a1,b1,c1) /' (a2,b2,c2) .

| =a1 ¢ by by cg ao with T, = {(al, bl,Cl), (32, b2, C2)}
I'!'=eby @ cp ® ap with T = {(82, b2,C2)}

Study problems

Sorting by Transpositions Problem
3DT- collapsibility problem
SAT Problem

3D T-collapsibility

Definition: 3DT-collapsible
A 3DT-instance / is 3DT-collapsible if there exists a sequence of
3DT-instances I, Ix_1,...,lp such that I, = I, Iy = ¢, and

Vi e [L: k], 3(a, b,c) € T, h; L2

3DT-COLLASPIBLITY problem

INPUT: A 3DT-instance /

QUESTION: Is I 3DT-collaspible?

Study problems

Sorting by Transpositions Problem
3DT- collapsibility problem
SAT Problem

| - Three problems
3. SAT

Study problems Sorting by Transpositions Problem

3DT- collapsibility problem
SAT Problem

Definition - SAT

SAT problem

INPUT: Formula in conjunctive normal form ¢
QUESTION: Is ¢ satisfiable?

¢:(X1\/X2\/X3)/\(X1\/)?2\/X4)

¢ has two clauses C; and C, (denoted by parentheses), four
boolean variables (x1, x2, x3, x4), and three literals per clause.

SAT was the first known example of a NP-complet problem.

14/ 41

Definitions
3DT-collapsibility is NP-hard to decide Proof: Construction

Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Il - 3D T-collapsibility is
NP-hard to decide

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

@ Define for any boolean formula ¢, a
corresponding 3D T-instance /.

@ Prove that /; is 3DT-collapsible iff ¢ is
satisfiable.

Definitions
3DT-collapsibility is NP-hard to decide Proof: Construction

Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Il - 3D T-collapsibility is
NP-hard to decide

1. Definitions

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Definition: /-block decomposition

I-block-decomposition B of a 3DT-instance / of span n is an
I-tuple (s1,...,s/) such that s =0, for all h € [1;/—1],
Sp < Spt1 and s; < n.

Example of a 3-block-decomposition of I:

| a1 ¢ | by by c1 | a2, s1 = ai1,5 = by, 53 = as.

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Definition: Variable - 1/2

A variable A of a 3DT-instance / is a pair of triples
A=(a,b,c),(x,y,z)] of T}.
It is valid in an /-block-decomposition B if:

(i) 3ho € [1: 1] such that blockr g(b) = blocky g(x) = blockr g(y) = ho
(i1) 3hy € [1:1]. hy # ho. such that blockr g(a) = blockr g(¢) = blockr g(z) = hy
(iii) if r <y, then we have r<b<y

(iv) a<z=<¢

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Definition: Variable - 2/2

N [<7 > o [N - = S |

FORN R o =™ R IR - | oUthuc
v | oy . | ... | .. wmEec .. | ...)

| oyeee—D L | ... | . aesEseC .. | ... R

The 3DT-step / M I" is called the activation of A (it requires
that (x, y, z) is well-ordered).

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Definition: Variable - 2/2

source target

|TCLUZVCW|

(T ¥

o |TaUDV eW| -

(a,b,c) (l (a,b,c)

(X7y’z)

The 3DT-step | —=— [is called the activation of A (it requires
that (x, y, z) is well-ordered).

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Definition: Basic block

They define 4 basic blocks:

@ The basic block var:
[Ar, Ag] = var(4) | =

dyyiradsys ey a eawy by fr ' 20 cag by fo

@ The basic block copy:

‘ [A1, As] = copy(A) ‘ = la yrezdysxy by cxo by f‘

@ The basic block or:
’ A =or(A;, As) ‘ = b ziasdyd xbfrcede ‘

@ The basic block and:
A:and(Al.Ag)‘ = |ajeziascy2adyco :17bj"

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

The basic block copy

The input variable: A = [(a, b, ¢), (x, Yy, 2)]
The output variables: Ay = [(a1, b1, c1)], (x1, 1, 21)] and
Ar = [(a2, b2,)], (%2, y2, 22)]

ayrezdyrxibicar by [|=—A
o)
- —
"
— (@)
A, = A,

Behavior graph of the block [A;, A5] = copy(A).

Az

Any of the two output variables can only be activated after the
input variable has been activated.

Definitions
3DT-collapsibility is NP-hard to decide Proof: Constructi
Proof: Let ¢ sfiable
Proof: Let /4 is 3DT-collapsible

Behavior graph of four basic blocks

| [A1. As] = copy(A4) | I A =and(A4;, 4y)

Il <A1/\442> ﬁfh/\ﬁlzﬂ /:11 /l\jl\:lzﬁ
/l\) T Coa Tty |4 /1\ 1
/Al 42\ | “ H4 “ L/{l Az\
\Ag A 7 “ N n | o4 7 \A2 . 7
N W N\
(=] B B

3DT-collapsibility is NP-hard to decide

Il - 3D T-collapsibility is
NP-hard to decide

2. Construction of a 3DT-instance

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Construction - step 1

Let ¢ be a boolean formula, over the boolean variables xi, ..., xmn,
given in conjunctive normal from: ¢ = G A G ... A C,.
The 3DT-instance I, is defined as an assembling of basic blocks.

1. Create a set of variables
@ The variables X;,Xf,)?,- and)EIJ representing all occurrences of
x; and of x;
@ The variable I'¢c representing the clause C¢
@ The variables A; and A’ representing the formula ¢.
@ The intermediate variables U, U, V, W and Y.

Definitions

Proof: Construction

Proof: Let ¢ atisfiable
Proof: Let /, DT-collapsible

3DT-collapsibility is NP-hard to decide

Construction - step 2

¢:(X1\/X2\/X3)/\(X1\/)?2\/X4)

2. Start with an empty 3DT-instance € and add blocks successively:

(*) Blocks var and copy defining the variables X,-,X,.j,)_(,- and)EIJ

[X;. X;] = var(4Y)
(X} U?] = copy(Xi)

[X2.U?] = copy(U?)

[X,{/z*?. ('/{11*1] _ copy((';"fg)
[‘\'1'11*1_ ‘\"{11} _ copy(['l{lﬁl) [‘\"1'71*2. (";71*1} _ Copy((";iﬁ‘l)

[(XEH X = copy(TF)

v

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Construction - step 2

¢:(X1\/X2\/X3)/\(X1\/)?2\/X4)

2. Start with an empty 3DT-instance € and add blocks successively:

(**) Blocks or defining I'¢

V2 =or(Ly. Lo)

C

V3 =or(V2 Ly)

c

VL — or(VF2 Liy)

c

I, =or(VF1 L)

v

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Construction - step 2

¢:(X1\/X2\/X3)/\(X1\/)?2\/X4)

2. Start with an empty 3DT-instance € and add blocks successively:

(***) Blocks and defining A,

Uv-_) = and(l,’l.l,’g)
W3 =and(W3.I's)

W,_1 =and(W,_o.1,_1)
Ay =and(W,_1.17)

Definitions

Proof: Construction

Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

3DT-collapsibility is NP-hard to decide

Construction - step 2

¢ = (X1VX2\/X3)/\(X1\/)?2\/X4)
2. Start with an empty 3DT-instance € and add blocks successively:

(****) Blocks copy defining A;) and Y.

[A}.Ys] = copy(Ay)
[A2. Y3] = copy(Y2)

[‘_1(,.'7)272')7’”_1} = Copy();ll—'_))
(A7 AT = copy (V1)

v

3DT-collapsibility is NP-hard to decide

II - 3D T-collapsibility is
NP-hard to decide

2. Proof: Let ¢ be satisfiable

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 1

Let ¢ be satisfiable. Let P be the set of indices i such that x; is
assigned to true.

Starting from /g, we can follow a path 3DT-steps that activates
all the variables of /4 in the specific order.

We need six steps to activate all the variables of /4.

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 2

6 steps to activate all the variables of I

1. If i € P, activate X; in block var in (*). Then, we can activate
some blocks copy in (*).
Otherwise, activate X; in block var in (*). Then, we can activate
some blocks copy in (*).

(X, X)) = var(AL)
(X}, U?] = copy(X,)

(X7, U] = copy(U7)

[X#72 U8 = copy(UFT2) :
~qi—1 y-qi rqi—1 F3i—2 rii—1 7ai—2
(X7 X = copy(U*) [XE72 U] = copy(UFT)

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 2

6 steps to activate all the variables of I

2. For each c, since Cc is true, at least one literal Ap, is true.
Using the block or in (**), we activate V2 and finally ['¢
(Lpy = Xj or Lp, = XJ’)

V2 =or(Ly. L)
V2 =or(V2 Ls)

c o

VL —or (V2 L)

[.=or(VF L L)

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 2

6 steps to activate all the variables of I

3. Since all variables I'c have been activated, we can activate W¢
and Ay using block and in (***).

IV_) = and(Fl.Fg)
U';; = and(U'-_).I‘;g)

W,_1= and(U}_g. I'y_1)
Ay =and(W,_1.17)

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 2

6 steps to activate all the variables of I

4. Using blocks copy in (****), we activate Y; and Aé, SPvALE

[AL,Y5] = copy(Ay)
[A7. Y3] = copy(Y2)

{‘_1(,;7)2_2')"'"_1] - COpy()r,,,_-_))
(A7 AT = copy(Vi—1)

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 2

6 steps to activate all the variables of I

5. Since the variables Afp has been activated, we activate the

remaining variable X; or X; and U{ or ljf in the block var in (*).

[Xi. X;] = var(4))
[X{. UF] = copy(X;) (X!, U] = copy(Xi)

(X7.U}] = copy(U7)

(X272 U8 = copy(UF2) »
[XEH X7 = copy(UfTY) (X772, 0771 = copy (U2

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 2

6 steps to activate all the variables of I

6. In (**), since all variables L, have been activated, we activate
the remaining intermediate variables V(’_-D.

V2 =or(Ly. L)

V3 = or(V2,

VL —or(VF2 L)

C

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Proof: Let ¢ be satisfiable - 3

Every variable has been activated
= the resulting instance is 3DT-collapsible.

If ¢ is satisfiable then I, is 3D T-collapsible.)

3DT-collapsibility is NP-hard to decide

Il - 3D T-collapsibility is
NP-hard to decide

3. Proof: Let /; is 3D T-collapsible

Definitions
3DT-collapsibility is NP-hard to decide Proof: Construction

Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Let I, be 3DT-collapsible. Let Q be the set of variables
activated before A, and P the set of indices i/ such that X; € Q.

3 steps to show that the true assignment defined by

(x; = true < | € P) satisfies the formula ¢.

1. AL cannot belong to Q (copy (****)). Hence
Xi € Q= X; ¢ Q (var in (*))
X/ € Q= X; € Q (copy in (*¥))

X € Q= X; € Q (copy in (¥))

Definitions
3DT-collapsibility is NP-hard to decide Proof: Construction

Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Let I, be 3DT-collapsible. Let Q be the set of variables
activated before A, and P the set of indices i/ such that X; € Q.

3 steps to show that the true assignment defined by

(x; = true < | € P) satisfies the formula ¢.

2. Since Ay is defined in a block Ay, = and(Wy_1,T)) in (***), we
necessarily have: Wh_1 € Q and Iy € Q.

Since W) _1 is defined by W)_1 = and(W)_»,Ix_1), we also have
Wy_o in@Q and Ny_1 € O.

Recursively: 'c € Q for each ¢ € [1; A].

32/ 41

Definitions
3DT-collapsibility is NP-hard to decide Proof: Construction

Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Let I, be 3DT-collapsible. Let Q be the set of variables
activated before A, and P the set of indices i/ such that X; € Q.

3 steps to show that the true assignment defined by

(x; = true < | € P) satisfies the formula ¢.

3. For each clause C., there exists some pg such that the variable
Lp, is activated before I'c: hence Ip, € Q.

If the corresponding literal Ap, is the j-th occurrence of Xx; (resp.
7x;), then L, = le (resp. XIJ) thus X; € Q (resp X; € Q) and
i€ P (resp. i ¢ P).

The literal Ap, is true in the truth assignment defined by (x; =
true < i € P).

32/ 41

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Theorem

So, if I, is 3DT-collapsible, they have found a truth assignment
such that at least one literal is true in each clause of the formula
¢, and thus ¢ is satisfiable.

Definitions

3DT-collapsibility is NP-hard to decide Proof: Construction
Proof: Let ¢ be satisfiable
Proof: Let /4 is 3DT-collapsible

Theorem

So, if I is 3DT-collapsible, they have found a truth assignment
such that at least one literal is true in each clause of the formula
¢, and thus ¢ is satisfiable.

| \

Theorem

3D T-collapsibility problem is NP-hard.

Proof: Let ¢ be a boolean formula, and /; the 3DT-instance
defined previously. The construction of /4 is polynomial in the size
of ¢, and ¢ is satisfiable iff /5 is 3DT-collapsible.]

33/ 41

SBT problem is NP-hard to decide

[11 - SBT is NP-hard to decide

1. Construction of a permutation

Construction
SBT problem is NP-hard to decide Proof

Build 7; from [/

Aim: Build in polynomial time a permutation 7; such that / ~ 7.

Let / be a 3DT-instance of span n with B an /-block-decomposition
such that (/, B) is an assembling of basic blocks.

Then there exists a permutation 7;, computable in polynomial
time in n, such that | ~ 7.

The permutation 7; defined by this theorem is in fact a
3-permutation, i.e. a permutation whose cycle graph contains only
3-cycles.

Construction

SBT problem is NP-hard to decide Proof

[1l - SBT is NP-hard to decide
2. Proof

Construction
SBT problem is NP-hard to decide Proof

@ Given any instance ¢ of SAT, create a 3DT-instance /;,
being an assembling of basic blocks, which is 3D T-collapsible
iff ¢ is satisfiable.

© Then create a 3-permutation 7, equivalent to /s (previous
theorem).

The above two steps can be done in polynomial time.

Construction
SBT problem is NP-hard to decide Proof

e
Finally, set kK = @ = 2. We then have:

¢ is satisfiable <« [is 3DT-collapsible
& di(m,) = k (because m;, ~ Iy)

& di(mg) < k (because dy(m) > @)

SORTING BY TRANSPOSITIONS problem is NP-hard.

Conclusions

Conclusion

Conclusion
Main theorem
SORTING BY TRANSPOSITIONS problem is NP-hard.
Corollary
The following two decision problems are NP-hard:
@ Given a permutation 7 of [0; n], is the equality d:(7) = d"gﬂ)
satisfied?
o Given a 3-permutation 7 of [0; n]}, is the equality d:(7) = 3
satisfied? |

Conclusion

Prospect

@ A polynomial-time approximation scheme?

@ Relevant parameters for which problem is fixed parameter
tractable?

41/ 41

