Journal talk - Annelyse Thevenin

Sorting by transposition is Difficult

Laurent Bulteau Guillaume Fertin Irena Rusu

LINA, University of Nantes, France

2010

Introduction

In comparative genomics, there exist several distances such that the **transposition distance**. A **transposition** consists in swapping two consecutive sequences.

 $G_1 : 0 \underline{4 \ 2 \ 1 \ 3} 5$ $0 \ 1 \ \underline{3 \ 4} \ \underline{2} \ 5$ $G_2 : 0 \ 1 \ 2 \ 3 \ 4 \ 5 (Id)$

SORTING BY TRANSPOSITION (SBT) [Bafna and Pevzner, 1995]

Find the minimum number of transposition needed to transform a genome into an another.

Prove that SBT is NP-hard

Tool: Polynomial reductions

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

I - Three problems 1. Sorting by Transpositions

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion

SBT - Context

Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

- Introduce by Bafna and Pevzner 1995
- There exist lot of approximation and heuristics
- The best known fixed-ratio algorithm being a **1.375-approximation** [Elias and Hartman 2006]
- **Variants** of this problem: prefix transposition or distance between strings, etc.

Sorting a permutation by block-interchanges (i.e. exchanges of non-necessarily consecutive sequences) is a polynomial problem [Christie, 1996].

Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

SBT - Definition

Given three integers $0 < i < j < k \le n$, the **transposition** $\tau_{i,j,k}$ over $[\![0, n]\!]$ is the following permutation:

Let π be a **permutation** of [0; n]. The **transposition distance** $\mathbf{d}_{\mathbf{t}}(\pi)$ from π to Id_n is the minimum value k for which there exist k transpositions $\tau_1, \tau_2, \ldots, \tau_k$ such that $\pi \circ \tau_k \circ \cdots \circ \tau_2 \circ \tau_1 = Id_n$.

Sorting by Transpositions problem

INPUT: A permutation π , an integer k QUESTION: Is $d_t(\pi) \leq k$?

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

I - Three problems 2. 3DT-collapsibility

Sorting by Transpositions Problem **3DT- collapsibility problem** SAT Problem

3DT-instance - definition

Let Σ an alphabet of at most *n* elements.

A **3DT-instance** *I* of span *n* is composed of :

 \bullet A word composed by \bullet and distinct letters from $\Sigma,$ and

a set of ordered triples of elements of Σ, partitioning Σ:
 T_I = {(a_i, b_i, c_i) | 1 ≤ i ≤ |T_I|}.

Two examples with n=6:

$$I = a_1 c_2 b_1 b_2 c_1 a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}$$
$$I' = \bullet b_2 \bullet c_2 \bullet a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}$$

Sorting by Transpositions Problem **3DT- collapsibility problem** SAT Problem

Positions

The function $\Psi: \Sigma \to [1; n]$ is an *injection*. $\Psi(\sigma)$ is the position of σ in the word of *I*.

- $\sigma_1 \prec \sigma_2$ if $\Psi(\sigma_1) < \Psi(\sigma_2)$
- $\sigma_1 \triangleleft \sigma_2$ if $\sigma_1 \prec \sigma_2$ and $\nexists x \in \Sigma$, $\sigma_1 \prec x \prec \sigma_2$.
- The function *succ_I*: for all $(a, b, c) \in T_I$, $\Psi(a) \mapsto \Psi(b)$, $\Psi(b) \mapsto \Psi(c)$, and $\Psi(c) \mapsto \Psi(a)$.

$$I = a_1 c_2 b_1 b_2 c_1 a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}$$
$$I' = \bullet b_2 \bullet c_2 \bullet a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}$$

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

Triplet well-ordered

Let I be a 3DT-instance, and (a, b, c) be a triple of T_I . Write $i = min\{\Psi(a), \Psi(b), \Psi(c)\}, j = succ_I(i)$, and $k = succ_I(j)$.

The triplet $(a, b, c) \in T_I$ is well-ordered if we have i < j < k. In such case, we write $\tau[a, b, c, \Psi]$ the transposition $\tau_{i,j,k}$.

$$I = a_1 c_2 b_1 b_2 c_1 a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}$$
$$I' = \bullet b_2 \bullet c_2 \bullet a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}$$

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem **3DT- collapsibility problem** SAT Problem

3DT-step

Definition: 3DT-step

Let *I* be a 3DT-instance with $(a, b, c) \in T_I$ a well-ordered triple. The **3DT-step** of parameter (a, b, c) is the operation written $\xrightarrow{(a,b,c)}$, transforming *I* into the 3DT-instance *I'* such that

$$\mathcal{T}_{I'}=\mathcal{T}_I-(a,b,c)$$
 and $\Psi(\sigma)= au^{-1}(\Psi(\sigma)).$

$$I = a_1 c_2 b_1 b_2 c_1 a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}$$
$$I' = \bullet b_2 \bullet c_2 \bullet a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}$$

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem **3DT- collapsibility problem** SAT Problem

3DT-collapsibility

Definition: 3DT-collapsible

A 3DT-instance *I* is **3DT-collapsible** if there exists a sequence of 3DT-instances $I_k, I_{k-1}, \ldots, I_0$ such that $I_k = I$, $I_0 = \epsilon$, and $\forall i \in [1; k], \exists (a, b, c) \in T_I, I_i \xrightarrow{(a, b, c)} I_{i-1}$.

I and I' are 3DT-collaspible, since we have

$$I \xrightarrow{(a_1,b_1,c_1)} I' \xrightarrow{(a_2,b_2,c_2)} \epsilon.$$

$$I = a_1 c_2 b_1 b_2 c_1 a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}$$
$$I' = \bullet b_2 \bullet c_2 \bullet a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}$$

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

3DT-collapsibility

Definition: 3DT-collapsible

A 3DT-instance *I* is **3DT-collapsible** if there exists a sequence of 3DT-instances $I_k, I_{k-1}, \ldots, I_0$ such that $I_k = I$, $I_0 = \epsilon$, and $\forall i \in [1; k], \exists (a, b, c) \in T_I, I_i \xrightarrow{(a, b, c)} I_{i-1}$.

3DT-COLLASPIBLITY problem

INPUT: A 3DT-instance / QUESTION: Is / 3DT-collaspible?

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

I - Three problems 3. SAT

3DT-collapsibility is NP-hard to decide SBT problem is NP-hard to decide Conclusion

Definition - SAT

Sorting by Transpositions Problem 3DT- collapsibility problem SAT Problem

SAT problem

INPUT: Formula in conjunctive normal form ϕ QUESTION: Is ϕ satisfiable?

$$\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_4)$$

 ϕ has two **clauses** C_1 and C_2 (denoted by parentheses), four **boolean variables** (x_1, x_2, x_3, x_4), and three **literals** per clause.

SAT was the first known example of a NP-complet problem.

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

II - 3DT-collapsibility is NP-hard to decide

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Define for any boolean formula φ, a corresponding 3DT-instance I_φ.

Prove that I_{ϕ} is 3DT-collapsible iff ϕ is satisfiable.

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

II - 3DT-collapsibility is NP-hard to decide 1. Definitions

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Definition: I-block decomposition

I-block-decomposition \mathcal{B} of a 3DT-instance I of span n is an *I*-tuple (s_1, \ldots, s_l) such that $s_1 = 0$, for all $h \in [\![1; I - 1]\!]$, $s_h < s_{h+1}$ and $s_l < n$.

Example of a 3-block-decomposition of I:

 $|a_1 c_2 | b_1 b_2 c_1 | a_2, \qquad s_1 = a_1, s_2 = b_1, s_3 = a_2.$

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Definition: Variable - 1/2

A variable A of a 3DT-instance I is a pair of triples A = [(a, b, c), (x, y, z)] of T_I . It is valid in an *I*-block-decomposition B if:

(i) $\exists h_0 \in \llbracket 1; l \rrbracket$ such that $block_{I,\mathcal{B}}(b) = block_{I,\mathcal{B}}(x) = block_{I,\mathcal{B}}(y) = h_0$

(ii) $\exists h_1 \in \llbracket 1; l \rrbracket, h_1 \neq h_0$, such that $block_{I,\mathcal{B}}(a) = block_{I,\mathcal{B}}(c) = block_{I,\mathcal{B}}(z) = h_1$

(iii) if $x \prec y$, then we have $x \triangleleft b \triangleleft y$

(iv) $a \prec z \prec c$

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Definition: Variable - 2/2

The 3DT-step $I \xrightarrow{(x,y,z)} I'$ is called the **activation** of A (it requires that (x, y, z) is well-ordered).

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Definition: Variable - 2/2

The 3DT-step $I \xrightarrow{(x,y,z)} I'$ is called the **activation** of A (it requires that (x, y, z) is well-ordered).

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Definition: Basic block

They define 4 basic blocks:

• The basic block var: $\begin{bmatrix}
[A_1, A_2] = \operatorname{var}(A) \\
= \\
\begin{bmatrix}
d_1 \ y_1 \ a \ d_2 \ y_2 \ e_1 \ a' \ e_2 \ x_1 \ b_1 \ f_1 \ c' \ z \ b' \ c \ x_2 \ b_2 \ f_2
\end{bmatrix}$

• The basic block **copy**:

$$[A_1, A_2] = \operatorname{copy}(A) = a y_1 e$$

$$a y_1 e z d y_2 x_1 b_1 c x_2 b_2 f$$

- The basic block or: $A = or(A_1, A_2) = a_1 b' z_1 a_2 d y a' x b f z_2 c_1 e c' c_2$
- The basic block and:

$$A = \mathsf{and}(A_1, A_2) = a_1 \ e \ z_1 \ a_2 \ c_1 \ z_2 \ d \ y \ c_2 \ x \ b \ f$$

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

The basic block **copy**

The **input** variable: A = [(a, b, c), (x, y, z)]The **output** variables: $A_1 = [(a_1, b_1, c_1)], (x_1, y_1, z_1)]$ and $A_2 = [(a_2, b_2, c_2)], (x_2, y_2, z_2)]$

Any of the two output variables can only be activated after the input variable has been activated.

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Behavior graph of four basic blocks

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

II - 3DT-collapsibility is NP-hard to decide

2. Construction of a 3DT-instance

Definitions **Proof: Construction** Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Construction - step 1

Let ϕ be a boolean formula, over the boolean variables x_1, \ldots, x_m , given in conjunctive normal from: $\phi = C_1 \wedge C_2 \ldots \wedge C_{\gamma}$. The 3DT-instance I_{ϕ} is defined as an assembling of basic blocks.

1. Create a set of variables

- The variables X_i, X_i^j, \bar{X}_i and X_i^j representing all occurrences of x_i and of \bar{x}_i
- The variable Γ_C representing the clause C_C
- The variables A_{ϕ} and A_{ϕ}^{i} , representing the formula ϕ .
- The intermediate variables U, \overline{U} , V, W and Y.

Definitions **Proof: Construction** Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Construction - step 2

4

$$\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_4)$$

2. Start with an empty 3DT-instance ϵ and add blocks successively:

(*) Blocks **var** and **copy** defining the variables X_i, X_i^j, \bar{X}_i and X_i^j

$$\begin{split} [X_i,\bar{X}_i] &= \mathsf{var}(A_\phi^i) \\ [X_i^1,U_i^2] &= \mathsf{copy}(X_i) & [\bar{X}_i^1,\bar{U}_i^2] &= \mathsf{copy}(\bar{X}_i) \\ [X_i^2,U_i^3] &= \mathsf{copy}(U_i^2) & [\bar{X}_i^2,\bar{U}_i^3] &= \mathsf{copy}(\bar{U}_i^2) \\ \vdots & \vdots & \vdots \\ [X_i^{q_i-2},U_i^{q_i-1}] &= \mathsf{copy}(U_i^{q_i-2}) & \vdots \\ [X_i^{q_i-1},X_i^{q_i}] &= \mathsf{copy}(U_i^{q_i-1}) & [\bar{X}_i^{\bar{q}_i-2},\bar{U}_i^{\bar{q}_i-1}] &= \mathsf{copy}(\bar{U}_i^{\bar{q}_i-2}) \\ && [\bar{X}_i^{\bar{q}_i-1},\bar{X}_i^{\bar{q}_i}] &= \mathsf{copy}(\bar{U}_i^{\bar{q}_i-1}) \end{split}$$

Definitions **Proof: Construction** Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Construction - step 2

$$\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_4)$$

2. Start with an empty 3DT-instance ϵ and add blocks successively:

(**) Blocks **or** defining Γ_C

$$V_{c}^{2} = \operatorname{or}(L_{1}, L_{2})$$

$$V_{c}^{3} = \operatorname{or}(V_{c}^{2}, L_{3})$$

$$\vdots$$

$$V_{c}^{k-1} = \operatorname{or}(V_{c}^{k-2}, L_{k-1})$$

$$\Gamma_{c} = \operatorname{or}(V_{c}^{k-1}, L_{k})$$

Definitions **Proof: Construction** Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Construction - step 2

$$\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_4)$$

2. Start with an empty 3DT-instance ϵ and add blocks successively:

(***) Blocks and defining A_{ϕ}

$$W_{2} = \operatorname{and}(\Gamma_{1}, \Gamma_{2})$$

$$W_{3} = \operatorname{and}(W_{2}, \Gamma_{3})$$

$$\vdots$$

$$W_{\gamma-1} = \operatorname{and}(W_{\gamma-2}, \Gamma_{\gamma-1})$$

$$A_{\phi} = \operatorname{and}(W_{\gamma-1}, \Gamma_{l})$$

Definitions **Proof: Construction** Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Construction - step 2

$$\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_4)$$

2. Start with an empty 3DT-instance ϵ and add blocks successively:

(****) Blocks **copy** defining A^i_{ϕ} and Y.

$$\begin{split} [A_{\phi}^{1}, Y_{2}] &= \operatorname{copy}(A_{\phi}) \\ [A_{\phi}^{2}, Y_{3}] &= \operatorname{copy}(Y_{2}) \\ &\vdots \\ [A_{\phi}^{m-2}, Y_{m-1}] &= \operatorname{copy}(Y_{m-2}) \\ [A_{\phi}^{m-1}, A_{\phi}^{m}] &= \operatorname{copy}(Y_{m-1}) \end{split}$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

II - 3DT-collapsibility is NP-hard to decide 2. Proof: Let φ be satisfiable

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 1

Let ϕ be **satisfiable**. Let *P* be the **set of indices** *i* such that x_i is assigned to true.

Starting from I_{ϕ} , we can follow a path **3DT-steps** that activates all the variables of I_{ϕ} in the specific order.

We need six steps to activate all the variables of I_{ϕ} .

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

1. If $i \in P$, activate X_i in block **var** in (*). Then, we can activate some blocks **copy** in (*). Otherwise, activate \bar{X}_i in block **var** in (*). Then, we can activate some blocks **copy** in (*).

$$\begin{split} [X_i,\bar{X}_i] &= \mathsf{var}(A_\phi^i) \\ [X_i^1,U_i^2] &= \mathsf{copy}(X_i) \\ [X_i^2,U_i^3] &= \mathsf{copy}(U_i^2) \\ \vdots \\ [X_i^{q_i-2},U_i^{q_i-1}] &= \mathsf{copy}(U_i^{q_i-2}) \\ [X_i^{q_i-1},X_i^{q_i}] &= \mathsf{copy}(U_i^{q_i-1}) \\ [X_i^{\bar{q}_i-1},\bar{X}_i^{\bar{q}_i}] &= \mathsf{copy}(U_i^{q_i-1}) \\ [\bar{X}_i^{\bar{q}_i-1},\bar{X}_i^{\bar{q}_i}] &= \mathsf{copy}(\bar{U}_i^{\bar{q}_i-1}) \\ \end{split}$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

2. For each *c*, since C_C is true, at least one literal λ_{p_0} is true. Using the block **or** in (**), we activate V_c^p and finally Γ_C $(L_{p_0} = X_j^i \text{ or } L_{p_0} = \bar{X}_j^i)$.

$$V_{c}^{2} = \operatorname{or}(L_{1}, L_{2})$$

$$V_{c}^{3} = \operatorname{or}(V_{c}^{2}, L_{3})$$

$$\vdots$$

$$V_{c}^{k-1} = \operatorname{or}(V_{c}^{k-2}, L_{k-1})$$

$$\Gamma_{c} = \operatorname{or}(V_{c}^{k-1}, L_{k})$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

3. Since all variables Γ_C have been activated, we can activate W_C and A_{ϕ} using block **and** in (***).

$$\begin{split} W_2 &= \mathsf{and}(\Gamma_1, \Gamma_2) \\ W_3 &= \mathsf{and}(W_2, \Gamma_3) \\ &\vdots \\ W_{\gamma-1} &= \mathsf{and}(W_{\gamma-2}, \Gamma_{\gamma-1}) \\ A_\phi &= \mathsf{and}(W_{\gamma-1}, \Gamma_l) \end{split}$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

4. Using blocks **copy** in (****), we activate Y_i and $A_{\phi}^1, \ldots, A_{\phi}^m$.

$$\begin{split} [A_{\phi}^{1},Y_{2}] &= \operatorname{copy}(A_{\phi}) \\ [A_{\phi}^{2},Y_{3}] &= \operatorname{copy}(Y_{2}) \\ &\vdots \\ [A_{\phi}^{m-2},Y_{m-1}] &= \operatorname{copy}(Y_{m-2}) \\ [A_{\phi}^{m-1},A_{\phi}^{m}] &= \operatorname{copy}(Y_{m-1}) \end{split}$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

5. Since the variables A_{ϕ}^{i} has been activated, we activate the remaining variable X_{i} or \bar{X}_{i} and U_{i}^{j} or \bar{U}_{i}^{j} in the block **var** in (*).

$$\begin{split} [X_i,\bar{X}_i] = \mathsf{var}(A_\phi^i) \\ [X_i^1,U_i^2] = \mathsf{copy}(X_i) & [\bar{X}_i^1,\bar{U}_i^2] = \mathsf{copy}(\bar{X}_i) \\ [X_i^2,U_i^3] = \mathsf{copy}(U_i^2) & [\bar{X}_i^2,\bar{U}_i^3] = \mathsf{copy}(\bar{U}_i^2) \\ \vdots & \vdots \\ X_i^{q_i-2},U_i^{q_i-1}] = \mathsf{copy}(U_i^{q_i-2}) & \vdots \\ [X_i^{q_i-1},X_i^{q_i}] = \mathsf{copy}(U_i^{q_i-1}) & [\bar{X}_i^{\bar{q}_i-2},\bar{U}_i^{\bar{q}_i-1}] = \mathsf{copy}(\bar{U}_i^{\bar{q}_i-2},\bar{U}_i^{\bar{q}_i-1}] \\ [\bar{X}_i^{\bar{q}_i-1},\bar{X}_i^{\bar{q}_i}] = \mathsf{copy}(\bar{U}_i^{\bar{q}_i-2},\bar{U}_i^{\bar{q}_i-1}] = \mathsf{copy}(\bar{U}_i^{\bar{q}_i-2},\bar{U}_i^{\bar{q}_i-1}) \\ \end{split}$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

6. In (**), since all variables L_p have been activated, we activate the remaining intermediate variables V_C^P .

$$\begin{split} V_c^2 &= \mathrm{or}(L_1, L_2) \\ V_c^3 &= \mathrm{or}(V_c^2, L_3) \\ &\vdots \\ V_c^{k-1} &= \mathrm{or}(V_c^{k-2}, L_{k-1}) \\ \Gamma_c &= \mathrm{or}(V_c^{k-1}, L_k) \end{split}$$

Definitions Proof: Construction **Proof: Let** ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

Proof: Let ϕ be satisfiable - 3

Every variable has been activated

 \Rightarrow the resulting instance is 3DT-collapsible.

If ϕ is satisfiable then I_{ϕ} is 3DT-collapsible.

Definitions Proof: Construction Proof: Let ϕ be satisfiable Proof: Let I_{ϕ} is 3DT-collapsible

II - 3DT-collapsibility is NP-hard to decide 3. Proof: Let I_o is 3DT-collapsible

 Study problems
 Definitions

 3DT-collapsibility is NP-hard to decide Proof: Construction

 SBT problem is NP-hard to decide
 Proof: Let ϕ be satisfiable

 Conclusion
 Proof: Let I_{di} is **3DT-collapsible**

Let I_{ϕ} be **3DT-collapsible**. Let Q be the set of variables activated before A_{ϕ} and P the set of indices i such that $X_i \in Q$.

3 steps to show that the true assignment defined by $(x_i = true \Leftrightarrow i \in P)$ satisfies the formula ϕ .

1. A_C^i cannot belong to \mathcal{Q} (copy (****)). Hence

$$ar{X}_i \in \mathcal{Q} \Rightarrow X_i \notin \mathcal{Q} ext{ (var in (*))}$$

 $X_i^j \in \mathcal{Q} \Rightarrow X_i \in \mathcal{Q} ext{ (copy in (*))}$
 $ar{X}_i^j \in \mathcal{Q} \Rightarrow ar{X}_i \in \mathcal{Q} ext{ (copy in (*))}$

 Study problems
 Definitions

 3DT-collapsibility is NP-hard to decide
 Proof: Construction

 SBT problem is NP-hard to decide
 Proof: Let ϕ be satisfiable

 Conclusion
 Proof: Let I_{ϕ} is 3DT-collapsible

Let I_{ϕ} be **3DT-collapsible**. Let Q be the set of **variables** activated before A_{ϕ} and P the set of indices i such that $X_i \in Q$.

3 steps to show that the true assignment defined by $(x_i = true \Leftrightarrow i \in P)$ satisfies the formula ϕ .

2. Since A_{ϕ} is defined in a block $A_{\phi} = and(W_{\lambda-1}, \Gamma_{\lambda})$ in (***), we necessarily have: $W_{\lambda-1} \in Q$ and $\Gamma_{\lambda} \in Q$.

Since $W_{\lambda-1}$ is defined by $W_{\lambda-1} = and(W_{\lambda-2}, \Gamma_{\lambda-1})$, we also have $W_{\lambda-2}$ in Q and $\Gamma_{\lambda-1} \in Q$.

Recursively: $\Gamma_C \in \mathcal{Q}$ for each $c \in [[1; \lambda]]$.

 Study problems
 Definitions

 3DT-collapsibility is NP-hard to decide Proof: Construction

 SBT problem is NP-hard to decide
 Proof: Let ϕ be satisfiable

 Conclusion
 Proof: Let t_A is **3DT-collapsible**

Let I_{ϕ} be **3DT-collapsible**. Let Q be the set of **variables** activated before A_{ϕ} and P the set of indices i such that $X_i \in Q$.

3 steps to show that the true assignment defined by $(x_i = true \Leftrightarrow i \in P)$ satisfies the formula ϕ .

3. For each clause C_c , there exists some p_0 such that the variable L_{p_0} is activated before Γ_c : hence $I_{P_0} \in Q$.

If the corresponding literal $\lambda_{\underline{p_0}}$ is the *j*-th occurrence of x_i (resp. $\neg x_i$), then $L_{p_0} = X_i^j$ (resp. $\overline{X_i^j}$) thus $X_i \in \mathcal{Q}$ (resp $\overline{X_i} \in \mathcal{Q}$) and $i \in P$ (resp. $i \notin P$).

The literal λ_{p_0} is true in the truth assignment defined by $(x_i = true \Leftrightarrow i \in P)$.

Definitions Proof: Construction Proof: Let ϕ be satisfiable **Proof: Let** I_{ϕ} is 3DT-collapsible

Theorem

So, if I_{ϕ} is 3DT-collapsible, they have found a truth assignment such that at least one literal is true in each clause of the formula ϕ , and thus ϕ is satisfiable.

Definitions Proof: Construction Proof: Let ϕ be satisfiable **Proof: Let I_{\phi} is 3DT-collapsible**

Theorem

So, if I_{ϕ} is 3DT-collapsible, they have found a truth assignment such that at least one literal is true in each clause of the formula ϕ , and thus ϕ is satisfiable.

Theorem

3DT-collapsibility problem is NP-hard.

Proof: Let ϕ be a boolean formula, and I_{ϕ} the 3DT-instance defined previously. The construction of I_{ϕ} is polynomial in the size of ϕ , and ϕ is satisfiable iff I_{ϕ} is 3DT-collapsible.

Construction Proof

III - SBT is NP-hard to decide 1. Construction of a permutation π_1

Construction Proof

Build π_I from I_I

Aim: Build in polynomial time a permutation π_I such that $I \sim \pi_I$.

Theorem

Let I be a 3DT-instance of span n with \mathcal{B} an I-block-decomposition such that (I, \mathcal{B}) is an assembling of basic blocks.

Then there exists a permutation π_I , computable in polynomial time in *n*, such that $I \sim \pi_I$.

The permutation π_1 defined by this theorem is in fact a 3-permutation, i.e. a permutation whose cycle graph contains only 3-cycles.

Construction Proof

III - SBT is NP-hard to decide 2. Proof

Construction Proof

Proof

- Given any instance ϕ of **SAT**, create a **3DT-instance** I_{ϕ} , being an assembling of basic blocks, which is 3DT-collapsible iff ϕ is satisfiable.
- **2** Then create a **3-permutation** $\pi_{I_{\phi}}$ equivalent to I_{ϕ} (previous theorem).

The above two steps can be done in **polynomial** time.

Construction Proof

Proof

Finally, set
$$k = \frac{d_b(\pi_{l_\phi})}{3} = \frac{n}{3}$$
. We then have:

 ϕ is satisfiable \Leftrightarrow I_{ϕ} is 3DT-collapsible

$$\Rightarrow \hspace{0.1in} d_t(\pi_{I_{\phi}}) = k \hspace{0.1in} (ext{because} \hspace{0.1in} \pi_{I_{\phi}} \sim I_{\phi})$$

$$\Leftrightarrow \quad d_t(\pi_{I\phi}) \leq k \; (ext{because} \; d_t(\pi) \geq rac{d_b(\pi)}{3})$$

Theorem

SORTING BY TRANSPOSITIONS problem is NP-hard.

Conclusions

Conclusion

Main theorem

SORTING BY TRANSPOSITIONS problem is NP-hard.

Corollary

The following two decision problems are NP-hard:

- Given a permutation π of [0; n], is the equality $d_t(\pi) = \frac{d_b(\pi)}{3}$ satisfied?
- Given a 3-permutation π of [0; n], is the equality $d_t(\pi) = \frac{n}{3}$ satisfied?

Prospect

- A polynomial-time approximation scheme?
- Relevant **parameters** for which problem is fixed parameter tractable?