## Journal talk - Annelyse Thevenin

## Sorting by transposition is Difficult

Laurent Bulteau Guillaume Fertin Irena Rusu

LINA, University of Nantes, France
2010

## Introduction

In comparative genomics, there exist several distances such that the transposition distance. A transposition consists in swapping two consecutive sequences.

$$
\begin{aligned}
G_{1}: & 042 \underline{13} 5 \\
& 01 \underline{3425} \\
G_{2}: & 012345 \text { (ld) }
\end{aligned}
$$

## SORTING BY TRANSPOSITION (SBT) [Bafna and Pevzner, 1995]

Find the minimum number of transposition needed to transform a genome into an another.

## Aim

## Prove that SBT is NP-hard

Tool: Polynomial reductions

## SBT

## 3DTcollapsibility SAT

## I - Three problems <br> 1. Sorting by Transpositions

## SBT - Context

- Introduce by Bafna and Pevzner - 1995
- There exist lot of approximation and heuristics
- The best known fixed-ratio algorithm being a 1.375-approximation [Elias and Hartman - 2006]
- Variants of this problem: prefix transposition or distance between strings, etc.

Sorting a permutation by block-interchanges (i.e. exchanges of non-necessarily consecutive sequences) is a polynomial problem [Christie, 1996].

## SBT - Definition

Given three integers $0<i<j<k \leq n$, the transposition $\tau_{i, j, k}$ over $\llbracket 0, n \rrbracket$ is the following permutation:
$\mathcal{T}_{i, j, k}=\left(\begin{array}{ccccccccc}0 \ldots i-1 & i & i+1 \ldots \ldots j & \ldots & j & j+1 \ldots & \ldots & k-1 & k \\ k+1 \ldots n \\ 0 \ldots i-1 & j & j+1 \ldots & \ldots & \ldots-1 & i & i+1 \ldots \ldots j & \ldots & k \\ k+1 \ldots n\end{array}\right)$
Let $\pi$ be a permutation of $[0 ; n]$. The transposition distance $\mathbf{d}_{\mathbf{t}}(\pi)$ from $\pi$ to $I d_{n}$ is the minimum value $k$ for which there exist $k$ transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ such that $\pi \circ \tau_{k} \circ \cdots \circ \tau_{2} \circ \tau_{1}=l d_{n}$.

Sorting by Transpositions problem
INPUT: A permutation $\pi$, an integer $k$
QUESTION: Is $d_{t}(\pi) \leq k$ ?

# I - Three problems <br> 2. 3DT-collapsibility 

## 3DT-instance - definition

Let $\Sigma$ an alphabet of at most $n$ elements.
A 3DT-instance $/$ of span $n$ is composed of :

- A word composed by $\bullet$ and distinct letters from $\Sigma$, and
- a set of ordered triples of elements of $\Sigma$, partitioning $\Sigma$ : $T_{I}=\left\{\left(a_{i}, b_{i}, c_{i}\right)\left|1 \leq i \leq\left|T_{I}\right|\right\}\right.$.

Two examples with $\mathrm{n}=6$ :
$I=a_{1} c_{2} b_{1} b_{2} c_{1} a_{2} \quad$ with $\quad T_{I}=\left\{\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c 2\right)\right\}$
$I^{\prime}=\bullet b_{2} \bullet c_{2} \bullet a_{2} \quad$ with $\quad T_{\prime^{\prime}}=\left\{\left(a_{2}, b_{2}, c 2\right)\right\}$

## Positions

The function $\Psi: \Sigma \rightarrow[1 ; n]$ is an injection. $\Psi(\sigma)$ is the position of $\sigma$ in the word of $I$.

- $\sigma_{1} \prec \sigma_{2}$ if $\Psi\left(\sigma_{1}\right)<\Psi\left(\sigma_{2}\right)$
- $\sigma_{1} \triangleleft \sigma_{2}$ if $\sigma_{1} \prec \sigma_{2}$ and $\nexists x \in \Sigma, \sigma_{1} \prec x \prec \sigma_{2}$.
- The function succl: for all $(a, b, c) \in T_{1}, \Psi(a) \mapsto \Psi(b)$, $\Psi(b) \mapsto \Psi(c)$, and $\Psi(c) \mapsto \Psi(a)$.

$$
\begin{array}{lllllll}
I=a_{1} & c_{2} & b_{1} & b_{2} & c_{1} & a_{2} & \text { with } \\
I_{I}=\left\{\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c 2\right)\right\} \\
\prime & \bullet & b_{2} & \bullet & c_{2} & \bullet & a_{2}
\end{array} \text { with } T_{I^{\prime}}=\left\{\left(a_{2}, b_{2}, c 2\right)\right\},
$$

## Triplet well-ordered

Let $I$ be a 3DT-instance, and $(a, b, c)$ be a triple of $T_{l}$. Write $i=\min \{\Psi(a), \Psi(b), \Psi(c)\}, j=\operatorname{succ}_{l}(i)$, and $k=\operatorname{succ}_{l}(j)$.

The triplet $(a, b, c) \in T_{l}$ is well-ordered if we have $i<j<k$. In such case, we write $\tau[a, b, c, \Psi]$ the transposition $\tau_{i, j, k}$.

$$
\begin{array}{llllllll}
I=a_{1} & c_{2} & b_{1} & b_{2} & c_{1} & a_{2} & \text { with } & T_{I}=\left\{\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c 2\right)\right\} \\
I^{\prime}=\bullet & b_{2} & \bullet & c_{2} & \bullet a_{2} & \text { with } & T_{I^{\prime}}=\left\{\left(a_{2}, b_{2}, c 2\right)\right\}
\end{array}
$$

## 3DT-step

## Definition: 3DT-step

Let $/$ be a 3DT-instance with $(a, b, c) \in T_{/}$a well-ordered triple. The 3DT-step of parameter $(a, b, c)$ is the operation written $\xrightarrow{(a, b, c)}$, transforming $/$ into the 3DT-instance $I^{\prime}$ such that

$$
\begin{gathered}
T_{l^{\prime}}=T_{l}-(a, b, c) \text { and } \\
\Psi(\sigma)=\tau^{-1}(\Psi(\sigma))
\end{gathered}
$$

$I=a_{1} c_{2} b_{1} b_{2} c_{1} a_{2}$ with $T_{I}=\left\{\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c 2\right)\right\}$
$I^{\prime}=\bullet b_{2} \bullet c_{2} \bullet a_{2}$ with $T_{I^{\prime}}=\left\{\left(a_{2}, b_{2}, c 2\right)\right\}$

## 3DT-collapsibility

## Definition: 3DT-collapsible

A 3DT-instance $/$ is 3DT-collapsible if there exists a sequence of 3DT-instances $I_{k}, I_{k-1}, \ldots, I_{0}$ such that $I_{k}=I, I_{0}=\epsilon$, and $\forall i \in[1 ; k], \exists(a, b, c) \in T_{l}, I_{i} \xrightarrow{(a, b, c)} I_{i-1}$.
$I$ and $I^{\prime}$ are 3DT-collaspible, since we have

$$
I \xrightarrow{\left(a_{1}, b_{1}, c_{1}\right)} I^{\prime} \xrightarrow{\left(a_{2}, b_{2}, c_{2}\right)} \epsilon
$$

$I=a_{1} c_{2} b_{1} b_{2} c_{1} a_{2} \quad$ with $\quad T_{I}=\left\{\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c 2\right)\right\}$
$I^{\prime}=\bullet b_{2} \bullet c_{2} \bullet a_{2}$ with $T_{I^{\prime}}=\left\{\left(a_{2}, b_{2}, c 2\right)\right\}$

## 3DT-collapsibility

## Definition: 3DT-collapsible

A 3DT-instance $/$ is 3DT-collapsible if there exists a sequence of 3DT-instances $I_{k}, I_{k-1}, \ldots, I_{0}$ such that $I_{k}=I, I_{0}=\epsilon$, and $\forall i \in[1 ; k], \exists(a, b, c) \in T_{l}, I_{i} \xrightarrow{(a, b, c)} I_{i-1}$.

## 3DT-COLLASPIBLITY problem

INPUT: A 3DT-instance I
QUESTION: Is / 3DT-collaspible?

# I - Three problems 3. SAT 

## Definition - SAT

## SAT problem

INPUT: Formula in conjunctive normal form $\phi$
QUESTION: Is $\phi$ satisfiable?

$$
\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)
$$

$\phi$ has two clauses $C_{1}$ and $C_{2}$ (denoted by parentheses), four boolean variables ( $x_{1}, x_{2}, x_{3}, x_{4}$ ), and three literals per clause.

SAT was the first known example of a NP-complet problem.

## II - 3DT-collapsibility is NP-hard to decide

## Aim

(1) Define for any boolean formula $\phi$, a corresponding 3DT-instance $I_{\phi}$.
(2) Prove that $I_{\phi}$ is 3DT-collapsible iff $\phi$ is satisfiable.

## II - 3DT-collapsibility is NP-hard to decide <br> 1. Definitions

## Definition: /-block decomposition

I-block-decomposition $\mathcal{B}$ of a 3DT-instance $/$ of span $n$ is an I-tuple $\left(s_{1}, \ldots, s_{l}\right)$ such that $s_{1}=0$, for all $h \in \llbracket 1 ; I-1 \rrbracket$, $s_{h}<s_{h+1}$ and $s_{l}<n$.

Example of a 3-block-decomposition of I:

$$
\left|a_{1} c_{2}\right| b_{1} b_{2} c_{1} \mid a_{2}, \quad s_{1}=a_{1}, s_{2}=b_{1}, s_{3}=a_{2}
$$

## Definition: Variable - $1 / 2$

A variable $A$ of a 3DT-instance $I$ is a pair of triples
$A=[(a, b, c),(x, y, z)]$ of $T_{1}$.
It is valid in an l-block-decomposition $\mathcal{B}$ if:
(i) $\exists h_{0} \in \llbracket 1 ; l \rrbracket$ such that block $_{I, \mathcal{B}}(b)=$ block $_{I, \mathcal{B}}(x)=$ block $_{I, \mathcal{B}}(y)=h_{0}$
(ii) $\exists h_{1} \in \llbracket 1 ; l \rrbracket, h_{1} \neq h_{0}$, such that block $_{I, \mathcal{B}}(a)=$ block $_{I, \mathcal{B}}(c)=\operatorname{block}_{I, \mathcal{B}}(z)=h_{1}$
(iii) if $x \prec y$, then we have $x \triangleleft b \triangleleft y$
(iv) $a \prec z \prec c$

## Definition: Variable - 2/2

$$
\begin{aligned}
& \text {... |.. xyb .. | ... | .. a .. z .. c .. | .. } \\
& \ldots \text {... b .. y .. x .. |... |.. a .. z .. c .. | ... } \\
& \text {... |.. y .. b .. x .. |...| .. a .. z .. c ..| ... } \\
& \ldots \text { |.. y .. x.. b .. |... |.. a .. z .. c .. |... }
\end{aligned}
$$

## output

input

The 3DT-step $I \xrightarrow{(x, y, z)} I^{\prime}$ is called the activation of $A$ (it requires that $(x, y, z)$ is well-ordered).

## Definition: Variable - $2 / 2$



The 3DT-step $I \xrightarrow{(x, y, z)} I^{\prime}$ is called the activation of $A$ (it requires that $(x, y, z)$ is well-ordered).

## Definition: Basic block

They define 4 basic blocks:

- The basic block var:

$$
\left[A_{1}, A_{2}\right]=\operatorname{var}(A)=d_{1} y_{1} a d_{2} y_{2} e_{1} a^{\prime} e_{2} x_{1} b_{1} f_{1} c^{\prime} z b^{\prime} c x_{2} b_{2} f_{2}
$$

- The basic block copy:

$$
\left[A_{1}, A_{2}\right]=\operatorname{copy}(A)=a y_{1} e z d y_{2} x_{1} b_{1} c x_{2} b_{2} f
$$

- The basic block or:

$$
A=\operatorname{or}\left(A_{1}, A_{2}\right)=a_{1} b^{\prime} z_{1} a_{2} d y a^{\prime} x b f z_{2} c_{1} e c^{\prime} c_{2}
$$

- The basic block and:

$$
A=\operatorname{and}\left(A_{1}, A_{2}\right)=a_{1} e z_{1} a_{2} c_{1} z_{2} d y c_{2} x b f
$$

## The basic block copy

The input variable: $A=[(a, b, c),(x, y, z)]$
The output variables: $\left.A_{1}=\left[\left(a_{1}, b_{1}, c_{1}\right)\right],\left(x_{1}, y_{1}, z_{1}\right)\right]$ and $\left.A_{2}=\left[\left(a_{2}, b_{2}, c_{2}\right)\right],\left(x_{2}, y_{2}, z_{2}\right)\right]$


Behavior graph of the block $\left[A_{1}, A_{2}\right]=\operatorname{copy}(A)$.

Any of the two output variables can only be activated after the input variable has been activated.

## Behavior graph of four basic blocks




# II - 3DT-collapsibility is NP-hard to decide 

2. Construction of a 3DT-instance

## Construction - step 1

Let $\phi$ be a boolean formula, over the boolean variables $x_{1}, \ldots, x_{m}$, given in conjunctive normal from: $\phi=C_{1} \wedge C_{2} \ldots \wedge C_{\gamma}$.
The 3DT-instance $I_{\phi}$ is defined as an assembling of basic blocks.

## 1. Create a set of variables

- The variables $X_{i}, X_{i}^{j}, \bar{X}_{i}$ and $\bar{X}_{i}^{j}$ representing all occurrences of $x_{i}$ and of $\bar{x}_{i}$
- The variable $\Gamma_{C}$ representing the clause $C_{C}$
- The variables $A_{\phi}$ and $A_{\phi}^{i}$, representing the formula $\phi$.
- The intermediate variables $U, \bar{U}, V, W$ and $Y$.


## Construction - step 2

$$
\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)
$$

2. Start with an empty 3DT-instance $\epsilon$ and add blocks successively:
$\left(^{*}\right)$ Blocks var and copy defining the variables $X_{i}, X_{i}^{j}, \bar{X}_{i}$ and $\bar{X}_{i}^{j}$

$$
\begin{array}{rlrl}
{\left[X_{i}, \bar{X}_{i}\right]=\operatorname{var}\left(A_{\phi}^{i}\right)} & \\
{\left[X_{i}^{1}, U_{i}^{2}\right]} & =\operatorname{copy}\left(X_{i}\right) & {\left[\bar{X}_{i}^{1}, \bar{U}_{i}^{2}\right]} & =\operatorname{copy}\left(\bar{X}_{i}\right) \\
{\left[X_{i}^{2}, U_{i}^{3}\right]} & =\operatorname{copy}\left(U_{i}^{2}\right) & {\left[\bar{X}_{i}^{2}, \bar{U}_{i}^{3}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{2}\right) \\
\vdots & \vdots \\
{\left[X_{i}^{q_{i}-2}, U_{i}^{q_{i}-1}\right]} & =\operatorname{copy}\left(U_{i}^{q_{i}-2}\right) & \vdots \\
{\left[X_{i}^{q_{i}-1}, X_{i}^{q_{i}}\right]} & =\operatorname{copy}\left(U_{i}^{q_{i}-1}\right) & {\left[\bar{X}_{i}^{\bar{q}_{i}-2}, \bar{U}_{i}^{\bar{q}_{i}-1}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{\bar{q}_{i}-2}\right) \\
& {\left[\bar{X}_{i}^{\bar{q}_{i}-1}, \bar{X}_{i}^{q_{i}}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{q_{i}-1}\right)
\end{array}
$$

## Construction - step 2

$$
\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)
$$

2. Start with an empty 3DT-instance $\epsilon$ and add blocks successively:
(**) Blocks or defining $\Gamma_{C}$

$$
\begin{aligned}
V_{c}^{2} & =\operatorname{or}\left(L_{1}, L_{2}\right) \\
V_{c}^{3} & =\operatorname{or}\left(V_{c}^{2}, L_{3}\right) \\
& \vdots \\
V_{c}^{k-1} & =\operatorname{or}\left(V_{c}^{k-2}, L_{k-1}\right) \\
\Gamma_{c} & =\operatorname{or}\left(V_{c}^{k-1}, L_{k}\right)
\end{aligned}
$$

## Construction - step 2

$$
\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)
$$

2. Start with an empty 3DT-instance $\epsilon$ and add blocks successively:
$\left(^{* * *}\right)$ Blocks and defining $A_{\phi}$

$$
\begin{aligned}
W_{2} & =\operatorname{and}\left(\Gamma_{1}, \Gamma_{2}\right) \\
W_{3} & =\operatorname{and}\left(W_{2}, \Gamma_{3}\right) \\
& \vdots \\
W_{\gamma-1} & =\operatorname{and}\left(W_{\gamma-2}, \Gamma_{\gamma-1}\right) \\
A_{\phi} & =\operatorname{and}\left(W_{\gamma-1}, \Gamma_{l}\right)
\end{aligned}
$$

## Construction - step 2

$$
\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)
$$

2. Start with an empty 3DT-instance $\epsilon$ and add blocks successively:
(****) Blocks copy defining $A_{\phi}^{i}$ and $Y$.

$$
\begin{aligned}
{\left[A_{\phi}^{1}, Y_{2}\right] } & =\operatorname{copy}\left(A_{\phi}\right) \\
{\left[A_{\phi}^{2}, Y_{3}\right] } & =\operatorname{copy}\left(Y_{2}\right) \\
& \vdots \\
{\left[A_{\phi}^{m-2}, Y_{m-1}\right] } & =\operatorname{copy}\left(Y_{m-2}\right) \\
{\left[A_{\phi}^{m-1}, A_{\phi}^{m}\right] } & =\operatorname{copy}\left(Y_{m-1}\right)
\end{aligned}
$$

# II - 3DT-collapsibility is NP-hard to decide 

## 2. Proof: Let $\phi$ be satisfiable

## Proof: Let $\phi$ be satisfiable - 1

Let $\phi$ be satisfiable. Let $P$ be the set of indices $i$ such that $x_{i}$ is assigned to true.

Starting from $I_{\phi}$, we can follow a path 3DT-steps that activates all the variables of $I_{\phi}$ in the specific order.

We need six steps to activate all the variables of $I_{\phi}$.

## Proof: Let $\phi$ be satisfiable - 2

## 6 steps to activate all the variables of $I_{\phi}$

1. If $i \in P$, activate $X_{i}$ in block var in (*). Then, we can activate some blocks copy in (*).
Otherwise, activate $\bar{X}_{i}$ in block var in $\left(^{*}\right)$. Then, we can activate some blocks copy in (*).

$$
\left.\begin{array}{rlrl}
{\left[X_{i}, \bar{X}_{i}\right]=\operatorname{var}\left(A_{\phi}^{i}\right)} & & {\left[\bar{X}_{i}^{1}, \bar{U}_{i}^{2}\right]} & =\operatorname{copy}\left(\bar{X}_{i}\right) \\
{\left[X_{i}^{1}, U_{i}^{2}\right]} & =\operatorname{copy}\left(X_{i}\right) & {\left[\bar{X}_{i}^{2}, \bar{U}_{i}^{3}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{2}\right) \\
{\left[X_{i}^{2}, U_{i}^{3}\right]=} & & \vdots \\
\vdots & & \vdots \\
{\left[X_{i}^{q_{i}-2}, U_{i}^{q_{i}-1}\right]} & =\operatorname{copy}\left(U_{i}^{2}\right) & \left(U_{i}^{q_{i}-2}\right) & {\left[\bar{X}_{i}^{\bar{q}_{i}-2}, \bar{U}_{i}^{\bar{q}_{i}-1}\right]}
\end{array}\right)=\operatorname{copy}\left(\bar{U}_{i}^{\bar{q}_{i}-2}\right),
$$

## Proof: Let $\phi$ be satisfiable - 2

## 6 steps to activate all the variables of $I_{\phi}$

2. For each $c$, since $C_{C}$ is true, at least one literal $\lambda_{p_{0}}$ is true. Using the block or in $\left({ }^{* *}\right)$, we activate $V_{c}^{p}$ and finally $\Gamma_{C}$ $\left(L_{p_{0}}=X_{j}^{i}\right.$ or $\left.L_{p_{0}}=\bar{X}_{j}^{i}\right)$.

$$
\begin{aligned}
V_{c}^{2} & =\operatorname{or}\left(L_{1}, L_{2}\right) \\
V_{c}^{3} & =\operatorname{or}\left(V_{c}^{2}, L_{3}\right) \\
& \vdots \\
V_{c}^{k-1} & =\operatorname{or}\left(V_{c}^{k-2}, L_{k-1}\right) \\
\Gamma_{c} & =\operatorname{or}\left(V_{c}^{k-1}, L_{k}\right)
\end{aligned}
$$

## Proof: Let $\phi$ be satisfiable - 2

## 6 steps to activate all the variables of $I_{\phi}$

3. Since all variables $\Gamma_{C}$ have been activated, we can activate $W_{C}$ and $A_{\phi}$ using block and in (***).

$$
\begin{aligned}
W_{2} & =\operatorname{and}\left(\Gamma_{1}, \Gamma_{2}\right) \\
W_{3} & =\operatorname{and}\left(W_{2}, \Gamma_{3}\right) \\
& \vdots \\
W_{\gamma-1} & =\operatorname{and}\left(W_{\gamma-2}, \Gamma_{\gamma-1}\right) \\
A_{\phi} & =\operatorname{and}\left(W_{\gamma-1}, \Gamma_{l}\right)
\end{aligned}
$$

## Proof: Let $\phi$ be satisfiable - 2

## 6 steps to activate all the variables of $I_{\phi}$

4. Using blocks copy in $\left({ }^{* * * *}\right)$, we activate $Y_{i}$ and $A_{\phi}^{1}, \ldots, A_{\phi}^{m}$.

$$
\begin{aligned}
{\left[A_{\phi}^{1}, Y_{2}\right] } & =\operatorname{copy}\left(A_{\phi}\right) \\
{\left[A_{\phi}^{2}, Y_{3}\right] } & =\operatorname{copy}\left(Y_{2}\right) \\
& \vdots \\
{\left[A_{\phi}^{m-2}, Y_{m-1}\right] } & =\operatorname{copy}\left(Y_{m-2}\right) \\
{\left[A_{\phi}^{m-1}, A_{\phi}^{m}\right] } & =\operatorname{copy}\left(Y_{m-1}\right)
\end{aligned}
$$

## Proof: Let $\phi$ be satisfiable - 2

## 6 steps to activate all the variables of $I_{\phi}$

5. Since the variables $A_{\phi}^{i}$ has been activated, we activate the remaining variable $X_{i}$ or $\bar{X}_{i}$ and $U_{i}^{j}$ or $\bar{U}_{i}^{j}$ in the block var in (*).

$$
\begin{array}{rlrl}
{\left[X_{i}, \bar{X}_{i}\right]=\operatorname{var}\left(A_{\phi}^{i}\right)} & & \\
{\left[X_{i}^{1}, U_{i}^{2}\right]} & =\operatorname{copy}\left(X_{i}^{1}, \bar{U}_{i}^{2}\right] & =\operatorname{copy}\left(\bar{X}_{i}\right) \\
{\left[X_{i}^{2}, U_{i}^{3}\right]} & =\operatorname{copy}\left(U_{i}^{2}\right) & {\left[\bar{X}_{i}^{2}, \bar{U}_{i}^{3}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{2}\right) \\
\vdots & & \vdots \\
{\left[X_{i}^{q_{i}-2}, U_{i}^{q_{i}-1}\right]} & =\operatorname{copy}\left(U_{i}^{q_{i}-2}\right) & \vdots \\
{\left[X_{i}^{q_{i}-1}, X_{i}^{q_{i}}\right]} & =\operatorname{copy}\left(U_{i}^{q_{i}-1}\right) & {\left[\bar{X}_{i}^{\bar{q}_{i}-2}, \bar{U}_{i}^{\bar{q}_{i}-1}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{\bar{q}_{i}-2}\right) \\
& {\left[\bar{X}_{i}^{\bar{q}_{i}-1}, \bar{X}_{i}^{q_{i}}\right]} & =\operatorname{copy}\left(\bar{U}_{i}^{\bar{q}_{i}-1}\right)
\end{array}
$$

## Proof: Let $\phi$ be satisfiable - 2

## 6 steps to activate all the variables of $I_{\phi}$

6. In $\left({ }^{* *}\right)$, since all variables $L_{p}$ have been activated, we activate the remaining intermediate variables $V_{C}^{P}$.

$$
\begin{aligned}
V_{c}^{2} & =\operatorname{or}\left(L_{1}, L_{2}\right) \\
V_{c}^{3} & =\operatorname{or}\left(V_{c}^{2}, L_{3}\right) \\
& \vdots \\
V_{c}^{k-1} & =\operatorname{or}\left(V_{c}^{k-2}, L_{k-1}\right) \\
\Gamma_{c} & =\operatorname{or}\left(V_{c}^{k-1}, L_{k}\right)
\end{aligned}
$$

## Proof: Let $\phi$ be satisfiable - 3

Every variable has been activated
$\Rightarrow$ the resulting instance is 3DT-collapsible.

## If $\phi$ is satisfiable then $I_{\phi}$ is 3DT-collapsible.

## II - 3DT-collapsibility is NP-hard to decide <br> 3. Proof: Let $I_{\phi}$ is 3DT-collapsible

Let $I_{\phi}$ be 3DT-collapsible. Let $\mathcal{Q}$ be the set of variables activated before $\mathbf{A}_{\phi}$ and $P$ the set of indices $i$ such that $X_{i} \in Q$.

3 steps to show that the true assignment defined by
( $x_{i}=$ true $\Leftrightarrow i \in P$ ) satisfies the formula $\phi$.

1. $A_{C}^{i}$ cannot belong to $\mathcal{Q}\left(\boldsymbol{c o p y}\left({ }^{* * * *}\right)\right)$. Hence

$$
\begin{gathered}
\bar{X}_{i} \in \mathcal{Q} \Rightarrow X_{i} \notin \mathcal{Q}\left(\operatorname{var} \operatorname{in}\left({ }^{*}\right)\right) \\
X_{i}^{j} \in \mathcal{Q} \Rightarrow X_{i} \in \mathcal{Q}\left(\operatorname{copy} \operatorname{in}\left({ }^{*}\right)\right) \\
\overline{X_{i}^{j}} \in \mathcal{Q} \Rightarrow \bar{X}_{i} \in \mathcal{Q}\left(\operatorname{copy} \operatorname{in}\left({ }^{*}\right)\right)
\end{gathered}
$$

Let $I_{\phi}$ be 3DT-collapsible. Let $\mathcal{Q}$ be the set of variables activated before $\mathbf{A}_{\phi}$ and $P$ the set of indices $i$ such that $X_{i} \in Q$.

3 steps to show that the true assignment defined by ( $x_{i}=$ true $\Leftrightarrow i \in P$ ) satisfies the formula $\phi$.
2. Since $A_{\phi}$ is defined in a block $A_{\phi}=$ and $\left(W_{\lambda-1}, \Gamma_{\lambda}\right)$ in $\left({ }^{* * *}\right)$, we necessarily have: $W_{\lambda-1} \in \mathcal{Q}$ and $\Gamma_{\lambda} \in \mathcal{Q}$.

Since $W_{\lambda-1}$ is defined by $W_{\lambda-1}=$ and $\left(W_{\lambda-2}, \Gamma_{\lambda-1}\right)$, we also have $W_{\lambda-2}$ in $\mathcal{Q}$ and $\Gamma_{\lambda-1} \in \mathcal{Q}$.

Recursively: $\Gamma_{c} \in \mathcal{Q}$ for each $c \in \llbracket 1 ; \lambda \rrbracket$.

Let $I_{\phi}$ be 3DT-collapsible. Let $\mathcal{Q}$ be the set of variables activated before $\mathbf{A}_{\phi}$ and $P$ the set of indices $i$ such that $X_{i} \in Q$.

3 steps to show that the true assignment defined by ( $x_{i}=$ true $\Leftrightarrow i \in P$ ) satisfies the formula $\phi$.
3. For each clause $C_{c}$, there exists some $p_{0}$ such that the variable $L_{p_{0}}$ is activated before $\Gamma_{c}$ : hence $I_{P_{0}} \in \mathcal{Q}$.

If the corresponding literal $\lambda_{\underline{p}_{0}}$ is the $j$-th occurrence of $x_{i}$ (resp. $\left.{ }^{\urcorner} x_{i}\right)$, then $L_{p_{0}}=X_{i}^{j}\left(\right.$ resp. $\left.\bar{X}_{i}^{j}\right)$ thus $X_{i} \in \mathcal{Q}\left(\right.$ resp $\left.\bar{X}_{i} \in \mathcal{Q}\right)$ and $i \in P($ resp. $i \notin P)$.

The literal $\lambda_{p_{0}}$ is true in the truth assignment defined by $\left(x_{i}=\right.$ true $\Leftrightarrow i \in P$ ).

## Theorem

So, if $I_{\phi}$ is 3DT-collapsible, they have found a truth assignment such that at least one literal is true in each clause of the formula $\phi$, and thus $\phi$ is satisfiable.

## Theorem

So, if $I_{\phi}$ is 3DT-collapsible, they have found a truth assignment such that at least one literal is true in each clause of the formula $\phi$, and thus $\phi$ is satisfiable.

## Theorem

## 3DT-collapsibility problem is NP-hard.

Proof: Let $\phi$ be a boolean formula, and $I_{\phi}$ the 3DT-instance defined previously. The construction of $I_{\phi}$ is polynomial in the size of $\phi$, and $\phi$ is satisfiable iff $I_{\phi}$ is 3DT-collapsible. $\square$

## III - SBT is NP-hard to decide

1. Construction of a permutation $\pi_{/}$

## Build $\pi_{\text {/ }}$ from /

Aim: Build in polynomial time a permutation $\pi_{l}$ such that $I \sim \pi_{l}$.

## Theorem

Let $I$ be a 3DT-instance of span $n$ with $\mathcal{B}$ an $l$-block-decomposition such that $(I, \mathcal{B})$ is an assembling of basic blocks.

Then there exists a permutation $\pi_{1}$, computable in polynomial time in $n$, such that $I \sim \pi_{I}$.

The permutation $\pi_{l}$ defined by this theorem is in fact a 3-permutation, i.e. a permutation whose cycle graph contains only 3 -cycles.

## III - SBT is NP-hard to decide <br> 2. Proof

## Proof

(1) Given any instance $\phi$ of SAT, create a 3DT-instance $I_{\phi}$, being an assembling of basic blocks, which is 3DT-collapsible iff $\phi$ is satisfiable.
(2) Then create a 3-permutation $\pi_{I_{\phi}}$ equivalent to $I_{\phi}$ (previous theorem).
The above two steps can be done in polynomial time.

## Proof

Finally, set $k=\frac{d_{b}\left(\pi I_{\phi}\right)}{3}=\frac{n}{3}$. We then have:
$\phi$ is satisfiable $\Leftrightarrow I_{\phi}$ is 3DT-collapsible

$$
\begin{array}{ll}
\Leftrightarrow & d_{t}\left(\pi_{I_{\phi}}\right)=k\left(\text { because } \pi_{I_{\phi}} \sim I_{\phi}\right) \\
\Leftrightarrow & d_{t}\left(\pi_{I \phi}\right) \leq k\left(\text { because } d_{t}(\pi) \geq \frac{d_{b}(\pi)}{3}\right)
\end{array}
$$

## Theorem

Sorting by Transpositions problem is NP-hard.

## Conclusions

## Conclusion

## Main theorem

Sorting By Transpositions problem is NP-hard.

## Corollary

The following two decision problems are NP-hard:

- Given a permutation $\pi$ of $\llbracket 0 ; n \rrbracket$, is the equality $d_{t}(\pi)=\frac{d_{b}(\pi)}{3}$ satisfied?
- Given a 3-permutation $\pi$ of $\llbracket 0 ; n \rrbracket$, is the equality $d_{t}(\pi)=\frac{n}{3}$ satisfied?


## Prospect

- A polynomial-time approximation scheme?
- Relevant parameters for which problem is fixed parameter tractable?

