Journal talk - Annelyse Thevenin

Sorting by transposition is Difficult

Laurent Bulteau Guillaume Fertin Irena Rusu

LINA, University of Nantes, France

2010
Introduction

In comparative genomics, there exist several distances such that the transposition distance. A transposition consists in swapping two consecutive sequences.

\[
G_1 : 0 4 2 1 3 5 \\
0 1 3 4 2 5 \\
G_2 : 0 1 2 3 4 5 \text{ (Id)}
\]

SORTING BY TRANSPOSITION (SBT) [Bafna and Pevzner, 1995]
Find the minimum number of transposition needed to transform a genome into another.
Aim

Prove that SBT is NP-hard

Tool: Polynomial reductions

SBT \[\rightarrow\] 3DT-collapsibility \[\rightarrow\] SAT
I - Three problems

1. Sorting by Transpositions
SBT - Context

- **Introduce** by Bafna and Pevzner - 1995
- There exist lot of **approximation** and **heuristics**
- The best known fixed-ratio algorithm being a **1.375-approximation** [Elias and Hartman - 2006]
- **Variants** of this problem: prefix transposition or distance between strings, etc.

Sorting a permutation by block-interchanges (i.e. exchanges of non-necessarily consecutive sequences) is a polynomial problem [Christie, 1996].
Study problems
3DT-collapsibility is NP-hard to decide
SBT problem is NP-hard to decide
Conclusion

Sorting by Transpositions Problem
3DT- collapsibility problem
SAT Problem

SBT - Definition

Given three integers $0 < i < j < k \leq n$, the **transposition** $\tau_{i,j,k}$ over $[0, n]$ is the following permutation:

$$
\begin{pmatrix}
0 \ldots i-1 & i \ i+1 \ldots \ j-1 & j \ j+1 \ldots & \ldots & k-1 & k \ k+1 \ldots \ n \\
0 \ldots i-1 & j \ j+1 \ldots & \ldots & k-1 & i \ i+1 \ldots \ j-1 & k \ k+1 \ldots \ n
\end{pmatrix}
$$

Let π be a **permutation** of $[0; n]$. The **transposition distance** $d_t(\pi)$ from π to Id_n is the minimum value k for which there exist k transpositions $\tau_1, \tau_2, \ldots, \tau_k$ such that $\pi \circ \tau_k \circ \cdots \circ \tau_2 \circ \tau_1 = \text{Id}_n$.

Sorting by Transpositions problem

INPUT: A permutation π, an integer k

QUESTION: Is $d_t(\pi) \leq k$?
I - Three problems

2. 3DT-collapsibility
3DT-instance - definition

Let Σ an alphabet of at most n elements.

A 3DT-instance I of span n is composed of:
- A word composed by \bullet and distinct letters from Σ, and
- a set of ordered triples of elements of Σ, partitioning Σ:
 \[T_I = \{(a_i, b_i, c_i) \mid 1 \leq i \leq |T_I|\}. \]

Two examples with $n=6$:

\[
I = a_1 \ c_2 \ b_1 \ b_2 \ c_1 \ a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}
\]
\[
I' = \bullet \ b_2 \ \bullet \ c_2 \ \bullet \ a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}
\]
The function $\Psi: \Sigma \rightarrow [1; n]$ is an injection. $\Psi(\sigma)$ is the position of σ in the word of I.

- $\sigma_1 \prec \sigma_2$ if $\Psi(\sigma_1) < \Psi(\sigma_2)$
- $\sigma_1 \prec \sigma_2$ if $\sigma_1 \prec \sigma_2$ and $\not\exists x \in \Sigma$, $\sigma_1 \prec x \prec \sigma_2$.
- The function succ_I: for all $(a, b, c) \in T_I$, $\Psi(a) \mapsto \Psi(b)$, $\Psi(b) \mapsto \Psi(c)$, and $\Psi(c) \mapsto \Psi(a)$.

\[
I = a_1 \ c_2 \ b_1 \ b_2 \ c_1 \ a_2 \
I' = \bullet \ b_2 \ \bullet \ c_2 \ \bullet \ a_2 \\
\text{with } T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}
\text{with } T_{I'} = \{(a_2, b_2, c_2)\}\]
Let I be a 3DT-instance, and (a, b, c) be a triple of T_I. Write $i = \min\{\psi(a), \psi(b), \psi(c)\}$, $j = \text{succ}_I(i)$, and $k = \text{succ}_I(j)$.

The triplet $(a, b, c) \in T_I$ is well-ordered if we have $i < j < k$. In such case, we write $\tau[a, b, c, \psi]$ the transposition $\tau_{i,j,k}$.

\[I = a_1 \ c_2 \ b_1 \ b_2 \ c_1 \ a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\} \]
\[I' = \bullet \ b_2 \ \bullet \ c_2 \ \bullet \ a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\} \]
3DT-step

Definition: 3DT-step

Let \(I \) be a 3DT-instance with \((a, b, c) \in T_I\) a well-ordered triple. The \textbf{3DT-step} of parameter \((a, b, c)\) is the operation written \(\stackrel{(a,b,c)}{\longrightarrow}\), transforming \(I \) into the 3DT-instance \(I' \) such that

\[
T_{I'} = T_I - (a, b, c) \quad \text{and} \quad \Psi(\sigma) = \tau^{-1}(\Psi(\sigma)).
\]

\[
I = a_1 \ c_2 \ b_1 \ b_2 \ c_1 \ a_2 \quad \text{with} \quad T_I = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}
\]

\[
I' = \bullet \ b_2 \ \bullet \ c_2 \ \bullet \ a_2 \quad \text{with} \quad T_{I'} = \{(a_2, b_2, c_2)\}\]
3DT-collapsibility

Definition: 3DT-collapsible

A 3DT-instance l is **3DT-collapsible** if there exists a sequence of 3DT-instances $l_k, l_{k-1}, \ldots, l_0$ such that $l_k = l$, $l_0 = \epsilon$, and

$$\forall i \in [1; k], \exists (a, b, c) \in T_l, l_i \xrightarrow{(a,b,c)} l_{i-1}.$$

I and I' are 3DT-collapsible, since we have

$$I \xrightarrow{(a_1,b_1,c_1)} I' \xrightarrow{(a_2,b_2,c_2)} \epsilon.$$

$I = a_1 \ c_2 \ b_1 \ b_2 \ c_1 \ a_2$ with $T_l = \{(a_1, b_1, c_1), (a_2, b_2, c_2)\}$

$I' = \bullet \ b_2 \ \bullet \ c_2 \ \bullet \ a_2$ with $T_{l'} = \{(a_2, b_2, c_2)\}$
3DT-collapsibility

Definition: 3DT-collapsible

A 3DT-instance I is **3DT-collapsible** if there exists a sequence of 3DT-instances $I_k, I_{k-1}, \ldots, I_0$ such that $I_k = I$, $I_0 = \epsilon$, and

$$\forall i \in [1; k], \exists (a, b, c) \in T_I, I_i \xrightarrow{(a,b,c)} I_{i-1}.$$

3DT-Collapsibility problem

INPUT: A 3DT-instance I

QUESTION: Is I 3DT-collapsible?
I - Three problems

3. SAT
Definition - SAT

SAT problem

INPUT: Formula in conjunctive normal form ϕ

QUESTION: Is ϕ satisfiable?

$$\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_4)$$

ϕ has two clauses C_1 and C_2 (denoted by parentheses), four boolean variables (x_1, x_2, x_3, x_4), and three literals per clause.

SAT was the first known example of a NP-compleat problem.
II - 3DT-collapsibility is NP-hard to decide
1. **Define** for any boolean formula ϕ, a corresponding 3DT-instance I_ϕ.

2. **Prove** that I_ϕ is 3DT-collapsible iff ϕ is satisfiable.
II - 3DT-collapsibility is NP-hard to decide

1. Definitions
Definition: l-block decomposition

$/-\text{block-decomposition}$ \mathcal{B} of a 3DT-instance I of span n is an l-tuple (s_1, \ldots, s_l) such that $s_1 = 0$, for all $h \in [1; l - 1]$, $s_h < s_{h+1}$ and $s_l < n$.

Example of a 3-block-decomposition of I:

\[
\begin{array}{ccc|ccc|c}
& a_1 & c_2 & b_1 & b_2 & c_1 & a_2, \\
\hline
\end{array}
\]

$s_1 = a_1, s_2 = b_1, s_3 = a_2$.
Definition: Variable - 1/2

A **variable** A of a 3DT-instance I is a pair of triples $A = [(a, b, c), (x, y, z)]$ of T_I. It is **valid** in an l-block-decomposition B if:

(i) $\exists h_0 \in [1; l]$ such that $block_{I,B}(b) = block_{I,B}(x) = block_{I,B}(y) = h_0$

(ii) $\exists h_1 \in [1; l], h_1 \neq h_0$, such that $block_{I,B}(a) = block_{I,B}(c) = block_{I,B}(z) = h_1$

(iii) if $x < y$, then we have $x < b < y$

(iv) $a < z < c$
The 3DT-step $I \xrightarrow{(x,y,z)} I'$ is called the activation of A (it requires that (x, y, z) is well-ordered).
The 3DT-step $I \xrightarrow{(x,y,z)} I'$ is called the **activation** of A (it requires that (x, y, z) is well-ordered).
Definition: Basic block

They define 4 basic blocks:

- **The basic block var**: \([A_1, A_2] = \text{var}(A)\)
 \[
 \begin{align*}
 [A_1, A_2] &= \text{var}(A) \\
 &= d_1 y_1 a d_2 y_2 e_1 a' e_2 x_1 b_1 f_1 c' z b' c x_2 b_2 f_2
 \end{align*}
 \]

- **The basic block copy**: \([A_1, A_2] = \text{copy}(A)\)
 \[
 \begin{align*}
 [A_1, A_2] &= \text{copy}(A) \\
 &= a y_1 e z d y_2 x_1 b_1 c x_2 b_2 f
 \end{align*}
 \]

- **The basic block or**: \(A = \text{or}(A_1, A_2)\)
 \[
 A = \text{or}(A_1, A_2) = a_1 b' z_1 a_2 d y a' x b f z_2 c_1 e c' c_2
 \]

- **The basic block and**: \(A = \text{and}(A_1, A_2)\)
 \[
 A = \text{and}(A_1, A_2) = a_1 e z_1 a_2 c_1 z_2 d y c_2 x b f
 \]
The basic block **copy**

The **input** variable: \(A = [(a, b, c), (x, y, z)] \)

The **output** variables: \(A_1 = [(a_1, b_1, c_1)], (x_1, y_1, z_1) \) and \(A_2 = [(a_2, b_2, c_2)], (x_2, y_2, z_2) \)

Any of the two output variables can only be activated after the input variable has been activated.
Behavior graph of four basic blocks

1. $[A_1, A_2] = \text{copy}(A)$
2. $A = \text{and}(A_1, A_2)$
3. $A = \text{or}(A_1, A_2)$
4. $[A_1, A_2] = \text{var}(A)$
II - 3DT-collapsibility is NP-hard to decide

2. Construction of a 3DT-instance
Construction - step 1

Let ϕ be a boolean formula, over the boolean variables x_1, \ldots, x_m, given in conjunctive normal form: $\phi = C_1 \land C_2 \ldots \land C_\gamma$.
The 3DT-instance I_ϕ is defined as an assembling of basic blocks.

1. Create a set of variables

- The variables X_i, X_i^j, \bar{X}_i and \bar{X}_i^j representing all occurrences of x_i and of \bar{x}_i.
- The variable Γ_C representing the clause C_C.
- The variables A_ϕ and A_ϕ^i, representing the formula ϕ.
- The intermediate variables U, \bar{U}, V, W and Y.

Construction - step 2

\[\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_4) \]

2. Start with an empty 3DT-instance \(\epsilon \) and add blocks successively:

(*) Blocks \textbf{var} and \textbf{copy} defining the variables \(X_i, X_i^j, \overline{X}_i \) and \(\overline{X}_i^j \)

\[
\begin{align*}
[X_i, \overline{X}_i] &= \text{var}(A_{\phi}^i) \\
[X_i^1, U_i^2] &= \text{copy}(X_i) \\
[X_i^2, U_i^3] &= \text{copy}(U_i^2) \\
&\vdots \\
[X_i^{q_i-2}, U_i^{q_i-1}] &= \text{copy}(U_i^{q_i-2}) \\
[X_i^{q_i-1}, X_i^q] &= \text{copy}(U_i^{q_i-1}) \\
[\overline{X}_i^1, \overline{U}_i^2] &= \text{copy}(\overline{X}_i) \\
[\overline{X}_i^2, \overline{U}_i^3] &= \text{copy}(\overline{U}_i^2) \\
&\vdots \\
[\overline{X}_i^{q_i-2}, \overline{U}_i^{q_i-1}] &= \text{copy}(\overline{U}_i^{q_i-2}) \\
[\overline{X}_i^{q_i-1}, \overline{X}_i^q] &= \text{copy}(\overline{U}_i^{q_i-1})
\end{align*}
\]
Construction - step 2

\[\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_4) \]

2. Start with an empty 3DT-instance \(\epsilon \) and add blocks successively:

(**) Blocks or defining \(\Gamma_c \)

\[
\begin{align*}
V_c^2 &= \text{or}(L_1, L_2) \\
V_c^3 &= \text{or}(V_c^2, L_3) \\
& \vdots \\
V_c^{k-1} &= \text{or}(V_c^{k-2}, L_{k-1}) \\
\Gamma_c &= \text{or}(V_c^{k-1}, L_k)
\end{align*}
\]
Construction - step 2

\[\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_4) \]

2. Start with an empty 3DT-instance \(\epsilon \) and add blocks successively:

(*** Blocks and defining \(A_\phi \))

\[
\begin{align*}
W_2 &= \text{and}(\Gamma_1, \Gamma_2) \\
W_3 &= \text{and}(W_2, \Gamma_3) \\
&\vdots \\
W_{\gamma-1} &= \text{and}(W_{\gamma-2}, \Gamma_{\gamma-1}) \\
A_\phi &= \text{and}(W_{\gamma-1}, \Gamma_l)
\end{align*}
\]
Construction - step 2

\[\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_4) \]

2. Start with an empty 3DT-instance \(\epsilon \) and add blocks successively:

(****) Blocks \textbf{copy} defining \(A^i_\phi \) and \(Y \).

\[
\begin{align*}
[A^1_\phi, Y_2] &= \text{copy}(A_\phi) \\
[A^2_\phi, Y_3] &= \text{copy}(Y_2) \\
&\vdots \\
[A^{m-2}_\phi, Y_{m-1}] &= \text{copy}(Y_{m-2}) \\
[A^{m-1}_\phi, A^m_\phi] &= \text{copy}(Y_{m-1})
\end{align*}
\]
II - 3DT-collapsibility is NP-hard to decide

2. Proof: Let \(\phi \) be satisfiable
Proof: Let ϕ be satisfiable - 1

Let ϕ be **satisfiable**. Let P be the set of indices i such that x_i is assigned to true.

Starting from I_ϕ, we can follow a path **3DT-steps** that activates all the variables of I_ϕ in the specific order.

We need six steps to activate all the variables of I_ϕ.
Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_ϕ

1. If $i \in P$, activate X_i in block var in (*). Then, we can activate some blocks copy in (*).

Otherwise, activate \bar{X}_i in block var in (*). Then, we can activate some blocks copy in (*).

\[
[X_i, \bar{X}_i] = \text{var}(A_i^\phi)
\]

\[
[X_i^1, U_i^2] = \text{copy}(X_i)
\]

\[
[X_i^2, U_i^3] = \text{copy}(U_i^2)
\]

\[
\vdots
\]

\[
[X_i^{q_i-2}, U_i^{q_i-1}] = \text{copy}(U_i^{q_i-2})
\]

\[
[X_i^{q_i-1}, X_i^{q_i}] = \text{copy}(U_i^{q_i-1})
\]

\[
[\bar{X}_i^{q_i-2}, \bar{U}_i^{q_i-1}] = \text{copy}(\bar{U}_i^{q_i-2})
\]

\[
[\bar{X}_i^{q_i-1}, \bar{X}_i^{q_i}] = \text{copy}(\bar{U}_i^{q_i-1})
\]

Proof: Let ϕ be satisfiable - 1

Proof: Let I_ϕ be 3DT-collapsible
Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_ϕ

2. For each c, since C_c is true, at least one literal λ_{p_0} is true. Using the block or in (**), we activate V_c^p and finally Γ_c ($L_{p_0} = X_j^i$ or $L_{p_0} = \overline{X}_j^i$).

\[
\begin{align*}
V_c^2 &= \text{or}(L_1, L_2) \\
V_c^3 &= \text{or}(V_c^2, L_3) \\
&\vdots \\
V_c^{k-1} &= \text{or}(V_c^{k-2}, L_{k-1}) \\
\Gamma_c &= \text{or}(V_c^{k-1}, L_k)
\end{align*}
\]
Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_ϕ

3. Since all variables Γ_C have been activated, we can activate W_C and A_ϕ using block and in (***)

\[
\begin{align*}
W_2 &= \text{and}(\Gamma_1, \Gamma_2) \\
W_3 &= \text{and}(W_2, \Gamma_3) \\
&\vdots \\
W_{\gamma-1} &= \text{and}(W_{\gamma-2}, \Gamma_{\gamma-1}) \\
A_\phi &= \text{and}(W_{\gamma-1}, \Gamma_l)
\end{align*}
\]
Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_ϕ

4. Using blocks **copy** in (****), we activate Y_i and $A^1_\phi, \ldots, A^m_\phi$.

\[
\begin{align*}
[A^1_\phi, Y_2] &= \text{copy}(A_\phi) \\
[A^2_\phi, Y_3] &= \text{copy}(Y_2) \\
&\vdots \\
[A^{m-2}_\phi, Y_{m-1}] &= \text{copy}(Y_{m-2}) \\
[A^{m-1}_\phi, A^m_\phi] &= \text{copy}(Y_{m-1})
\end{align*}
\]
Proof: Let ϕ be satisfiable - 2

6 steps to activate all the variables of I_{ϕ}

5. Since the variables A_i^ϕ has been activated, we activate the remaining variable X_i or \bar{X}_i and U_i^j or \bar{U}_i^j in the block var in (*)

\[
\begin{align*}
[X_i, \bar{X}_i] &= \text{var}(A_i^\phi) \\
[X_i^1, U_i^2] &= \text{copy}(X_i) \\
[X_i^2, U_i^3] &= \text{copy}(U_i^2) \\
&\vdots \\
[X_i^{q_i-2}, U_i^{q_i-1}] &= \text{copy}(U_i^{q_i-2}) \\
[X_i^{q_i-1}, X_i^q] &= \text{copy}(U_i^{q_i-1}) \\
[\bar{X}_i^1, \bar{U}_i^2] &= \text{copy}(\bar{X}_i) \\
[\bar{X}_i^2, \bar{U}_i^3] &= \text{copy}(\bar{U}_i^2) \\
&\vdots \\
[\bar{X}_i^{q_i-2}, \bar{U}_i^{q_i-1}] &= \text{copy}(\bar{U}_i^{q_i-2}) \\
[\bar{X}_i^{q_i-1}, \bar{X}_i^q] &= \text{copy}(\bar{U}_i^{q_i-1})
\end{align*}
\]
Proof: Let \(\phi \) be satisfiable - 2

6 steps to activate all the variables of \(I_\phi \)

6. In (**), since all variables \(L_p \) have been activated, we activate the remaining intermediate variables \(V_C^P \).

\[
\begin{align*}
V_C^2 & = \text{or}(L_1, L_2) \\
V_C^3 & = \text{or}(V_C^2, L_3) \\
& \quad \vdots \\
V_C^{k-1} & = \text{or}(V_C^{k-2}, L_{k-1}) \\
V_C & = \text{or}(V_C^{k-1}, L_k)
\end{align*}
\]
Proof: Let ϕ be satisfiable - 3

Every variable has been activated
\Rightarrow the resulting instance is 3DT-collapsible.

If ϕ is satisfiable then I_ϕ is 3DT-collapsible.
II - 3DT-collapsibility is NP-hard to decide

3. Proof: Let I_ϕ is 3DT-collapsible
Let I_ϕ be **3DT-collapsible**. Let Q be the set of **variables** activated before A_ϕ and P the **set of indices** i such that $X_i \in Q$.

3 steps to show that the true assignment defined by $(x_i = \text{true} \iff i \in P)$ satisfies the formula ϕ.

1. A^i_C cannot belong to Q (**copy (****))). Hence

 \[\bar{X}_i \in Q \Rightarrow X_i \not\in Q \text{ (**var in (**))} \]

 \[X^i_j \in Q \Rightarrow X_i \in Q \text{ (**copy in (**))} \]

 \[\bar{X}^i_j \in Q \Rightarrow \bar{X}_i \in Q \text{ (**copy in (**))} \]
Let I_ϕ be 3DT-collapsible. Let Q be the set of variables activated before A_ϕ and P the set of indices i such that $X_i \in Q$.

3 steps to show that the true assignment defined by $(x_i = \text{true} \iff i \in P)$ satisfies the formula ϕ.

2. Since A_ϕ is defined in a block $A_\phi = \text{and}(W_{\lambda-1}, \Gamma_\lambda)$ in (***) , we necessarily have: $W_{\lambda-1} \in Q$ and $\Gamma_\lambda \in Q$.

Since $W_{\lambda-1}$ is defined by $W_{\lambda-1} = \text{and}(W_{\lambda-2}, \Gamma_{\lambda-1})$, we also have $W_{\lambda-2} \in Q$ and $\Gamma_{\lambda-1} \in Q$.

Recursively: $\Gamma_c \in Q$ for each $c \in [1; \lambda]$.
Let I_ϕ be \textbf{3DT-collapsible}. Let Q be the set of variables activated before A_ϕ and P the set of indices i such that $X_i \in Q$.

3 steps to show that the true assignment defined by $(x_i = \text{true} \iff i \in P)$ satisfies the formula ϕ.

3. For each clause C_c, there exists some p_0 such that the variable L_{p_0} is activated before Γ_c: hence $l_{p_0} \in Q$.

If the corresponding literal λ_{p_0} is the j-th occurrence of x_i (resp. $\neg x_i$), then $L_{p_0} = X_i^j$ (resp. X_i^j) thus $X_i \in Q$ (resp $\bar{X}_i \in Q$) and $i \in P$ (resp. $i \notin P$).

The literal λ_{p_0} is true in the truth assignment defined by $(x_i = \text{true} \iff i \in P)$.
So, if \(I_\phi \) is 3DT-collapsible, they have found a truth assignment such that at least one literal is true in each clause of the formula \(\phi \), and thus \(\phi \) is satisfiable.
So, if I_ϕ is 3DT-collapsible, they have found a truth assignment such that at least one literal is true in each clause of the formula ϕ, and thus ϕ is satisfiable.

Theorem

3DT-collapsibility problem is NP-hard.

Proof: Let ϕ be a boolean formula, and I_ϕ the 3DT-instance defined previously. The construction of I_ϕ is polynomial in the size of ϕ, and ϕ is satisfiable iff I_ϕ is 3DT-collapsible. □
III - SBT is NP-hard to decide

1. Construction of a permutation π_I
Build π_I from I

Aim: Build in polynomial time a permutation π_I such that $I \sim \pi_I$.

Theorem

Let I be a 3DT-instance of span n with \mathcal{B} an l-block-decomposition such that (I, \mathcal{B}) is an assembling of basic blocks.

Then there exists a permutation π_I, computable in polynomial time in n, such that $I \sim \pi_I$.

The permutation π_I defined by this theorem is in fact a 3-permutation, i.e. a permutation whose cycle graph contains only 3-cycles.
III - SBT is NP-hard to decide

2. Proof
Proof

1. Given any instance ϕ of \textbf{SAT}, create a \textbf{3DT-instance} I_ϕ, being an assembling of basic blocks, which is 3DT-collapsible iff ϕ is satisfiable.

2. Then create a \textbf{3-permutation} π_{I_ϕ} equivalent to I_ϕ (previous theorem).

The above two steps can be done in \textbf{polynomial} time.
Proof

Finally, set \(k = \frac{d_b(\pi I_\phi)}{3} = \frac{n}{3} \). We then have:

\[
\phi \text{ is satisfiable } \iff I_\phi \text{ is 3DT-collapsible} \\
\iff d_t(\pi I_\phi) = k \text{ (because } \pi I_\phi \sim I_\phi) \\
\iff d_t(\pi I_\phi) \leq k \text{ (because } d_t(\pi) \geq \frac{d_b(\pi)}{3})
\]

Theorem

Sorting by Transpositions problem is NP-hard.
Conclusions
Conclusion

Main theorem

Sorting by Transpositions problem is NP-hard.

Corollary

The following two decision problems are NP-hard:

- Given a permutation π of $\{0; n\}$, is the equality $d_t(\pi) = \frac{d_b(\pi)}{3}$ satisfied?
- Given a 3-permutation π of $\{0; n\}$, is the equality $d_t(\pi) = \frac{n}{3}$ satisfied?
Prospect

- A polynomial-time **approximation** scheme?

- Relevant **parameters** for which problem is fixed parameter tractable?