The infinite sites model of genome evolution

Jian Ma*, Aakrosh Ratan†, Brian J. Raney*, Bernard B. Suh*, Webb Miller†, and David Haussler*

2008 - PNAS

- * Center for Biomolecular Science and Engineering, University of California
- † Center for Comparative Genomics and Bioinformatics, Pennsylvania State University

The problem

Recovering the evolutionary history of a set of genomes that are related to an unseen common ancestor genome

Operations: speciation, rearrangements, deletion, insertion, duplication.

Genomes: linear and circular

=> Polynomial-time algorithm to find the most **parsimonious** evolutionary history in a specific model.

Model

Infinity sites model: No breakpoint is used twice.

Evolutionary distance: The substitution rate is the same for all sites in a species, but is allowed to vary between species.

Parsimonious: Number of rearrangements, speciation and duplication

Some operations

Operations

Duplications:

Operations

- Duplications
- Rearrangements:
 - 2-breakpoints (inversion, fusion, reciprocal translocation, ...)

Operations

- Duplications
- Rearrangements
 - 2-breakpoints (inversion, fusion, reciprocal translocation, ...)
 - 3-breakpoints (transposition, transposition with inversion, ...)
 With duplication: tandem segmental duplication and duplicative transposition.
- Insertion/Deletion:

Polynomial-time Algorithm

Example: **3 genomes** with only one linear chromosome

Genome F TGGCTACTGTAGCCTAGGTATCTATGTT...

GCATGCCATTGTAGCCGATCGATATGC...

Genome E AGTGCGGAGTGCGCGAGTTGAAGTGT...

Creation of the dot plot

Aim: Decompose genomes in atoms Technique: Local alignment

Creation of the dot plot

Aim: Decompose genomes in atoms Technique: Local alignment

Genome = sequence of atoms

Creation of atom trees

Aim: Represent information specific of each atom **Technique**: Neighbor Joining [Saitou and Nai - 1987], distance D of local alignments.

 $h_3[4_2]$ el4 h|4 Genome F 0 1 2 3 3 4 5 -10 -9 -8 1 2 3 3 4 5 -10 -6 11 f[4₄] g[44] $f[4_2]$ Genome G 01-8123345-10-611 Atom tree T4 Genome E 17 0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5

Creation of species tree

Aim: Represent the relation between species **Technique**: Neighbor Joining, distance = min(D(x,y))**Hypothesis**: The substitution rate is the same for all sites in a species.

Creation of the duplication tree

Aim: Add duplications in the species tree.
Technique: Reconcile the atom trees with the species tree with a personal algorithm.
Hypothesis: The substitution rate is the same for all sites in a

species.

Creation of the duplication tree

Aim: Add duplications in the species tree. **Technique**: Reconcile the atom trees with the species tree with a personal algorithm.

Hypothesis: The substitution rate is the same for all sites in a species.

22

Creation of the master breakpoint graph

Aim: Define rearrangement Hypothesis: No breakpoint is used twice.

Genome F 0 1 2 3 3 4 5 -10 -9 -8 1 2 3 3 4 5 -10 -6 11

Genome G 0 1 -8 1 2 3 3 4 5 -10 -6 11

Genome E 0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5

25

Decomposition

Each component correspond to a rearrangement.

Decomposition

Each component correspond to a rearrangement.

Creation of the adjacencies graph

Aim: Find the possible places for each rearrangement **Technique**: Use master breakpoint graph and atom

trees

Genome E

0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5

Adjacencies graph for 1 rearrangement with iso-adjacencies subtrees and 30 tethers.

Creation of the switchpoint zone

Aim: Find the possible places for each rearrangement **Technique**: The switchpoint zone is the intersection of tethers.

Switchpoint zone for the 2-breakpoints rearrangement

Creation of the adjacencies tree

Aim: Place each rearrangement **Technique**: Random choice with the respect of each switchpoint zone.

Aim: Deduce the sequence of ancestral genomes **Technique**: Use a sibling graph

A sibling graph Atom ends

Aim: Deduce the sequence of ancestral genomes **Technique**: Use a sibling graph

A sibling graph Atom ends Child adjacency edges

Aim: Deduce the sequence of ancestral genomes **Technique**: Use a sibling graph

> A sibling graph Atom ends Child adjacency edges Artificial sibling nodes

Aim: Deduce the sequence of ancestral genomes **Technique**: Use a sibling graph

A sibling graph

Atom ends Child adjacency edges Artificial sibling nodes **Sibling edges**

Aim: Deduce the sequence of ancestral genomes **Technique**: Use a sibling graph

A sibling graph

Atom ends Child adjacency edges Artificial sibling nodes Sibling edges Parent adjacency edges

The evolutionary tree

r = 01234567891011speciation hn= 012345 678910 11 e1= 01234 567891011 da . inversion d12 inversion h₅= 012345-10-9-8-7-611 e = 01234-11-10-9-8-7-6-5 d₃ duplication $h_4 = 0_1 1_1 2_1 3_1 | 4_1 5_1 - 10_1 - 9_1 - 8_1 - 7_1 - 6_1 11_1$, $0_2 1_2 2_2 | 3_2 4_2 5_2 - 10_2 - 9_2 - 8_2 - 7_2 - 6_2 11_2$ d4 reciprocal translocation (non-homol. recomb.) $h_3 = 0_1 1_1 2_1 3_1 3_2 4_2 5_2 - 10_2 - 9_2 - 8_2 - 7_2 - 6_2 11_2$, $0_2 1_2 2_2 4_1 5_1 - 10_1 - 9_1 - 8_1 - 7_1 - 6_1 11_1$ ds duplication $\eta_2 = 0_1 1_1 2_1 3_1 3_2 4_2 5_2 -10_2 -9_2 -8_2 -7_2 -6_2 11_2$, $0_3 1_3 2_3 3_3 3_4 4_4 5_4 -10_4 -9_4 -8_4 -7_4 -6_4 11_4$ d_E reciprocal translocation (non-homol. recomb.) $h_1 = \ 0_1 \ 1_1 \ 2_1 \ 3_1 \ 3_2 \ 4_2 \ 5_2 \ -10_2 \ -9_2 \ -8_2 \ 1_3 \ 2_3 \ 3_3 \ 3_4 \ 4_4 \ 5_4 \ -10_4 \ -9_4 \ -8_4 \ -7_4 \ -6_4 \ 11_4 \ , \ 0_3 \ -9_4 \ -8_4 \ -7_4 \ -6_4 \$ -72-62112 da deletion $h = 0_1 1_1 2_1 3_1 3_2 4_2 5_2 -10_2 -9_2 -8_2 1_3 2_3 3_3 3_4 4_4 5_4 -10_4 -6_4 11_4 , -9_4 -8_4 -7_4$ speciation $f = 0_1 1_1 2_1 3_1 3_2 4_2 5_2 - 10_2 - 9_2 - 8_2 1_3 2_3 3_3 3_4 4_4 5_4 - 10_4 - 6_4 11_4 \quad g_1 = 0_1 1_1 | 2_1 3_1 3_2 4_2 5_2 - 10_2 - 9_2 | -8_2 1_3 2_3 3_3 3_4 4_4 5_4 - 10_4 - 6_4 11_4$ dia deletion $g = 0_1 \ 1_1 \ -8_2 \ 1_3 \ 2_3 \ 3_3 \ 3_4 \ 4_4 \ 5_4 \ -10_4 \ -6_4 \ 11_4 \ , \qquad 2_1 \ 3_1 \ 3_2 \ 4_2 \ 5_2 \ -10_2 \ -9_2$

Experimentation

• Real genomes:

- 5 chromosomes X (human, chimp, rhesus, mouse, rat).
- Difficulties to assess.
- Simulated genomes (100 experiments):

	simulated data	real data
reuse ratio r	1.38	1.38
atoms	2008.10	1917
engineered atoms	33.97	15
reused adj [%]	19.55	15.02
reused adj (once) [%]	13.74	11.53
reused adj (twice) [%]	4.18	3.00
reused adj (3 times) [%]	1.18	0.39
reused adj (4 times) [%]	0.31	0.13
operations	1667.55	1660
2-bp operations	1470.94	1462
3-bp operations	196.61	198
deletions	695.58	747
insertions	232.39	289
atoms in human	1483.47	1343
atoms in chimp	1442.12	1229
atoms in macaque	1457.33	1211
atoms in mouse	1050.76	896
atoms in rat	1046.58	784
atoms in dog	974.41	727

Results

- **Complexity**: Polynomial in the number of chromosomes and local alignments.

- Computation **time**: Unknown.

- Unambiguous atoms and adjacencies: Find correctly.

- Ambiguous and new atoms and adjacencies: Very bad results.

- When reuse breakpoint rate increase: Worst results.

- With a **outgroup**: Worst results

Results

- **Complexity**: Polynomial in the number of chromosomes and local alignments.

- Computation **time**: Unknown.

- Unambiguous atoms and adjacencies: Find correctly.

- **Ambiguous** and **new** atoms and adjacencies: Very bad results.

- When **reuse breakpoint** rate increase: Worst results.

- With a **outgroup**: Worst results

Conclusion

- Polynomial-time algorithm
- Strong constraints
- Weight
- Horizontal transfer