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The problem

Recovering the evolutionary history of a set of 
genomes that are related to an unseen common 

ancestor genome 

Operations: speciation, rearrangements, deletion, insertion, duplication.
 
Genomes: linear and circular
 

=> Polynomial-time algorithm to find the most parsimonious 
evolutionary history in a specific model.
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Model
Infinity sites model: No breakpoint is used twice.

Evolutionary distance: The substitution rate is the same for all sites in a 
species, but is allowed to vary between species.

Parsimonious: Number of rearrangements,  speciation and duplication

Speciation Duplication then speciation
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Some operations
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Operations
 Duplications:

Chromosome duplication

Tandem duplication

Reverse tandem duplication
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Operations
 Duplications
 Rearrangements:

 2-breakpoints (inversion, fusion, reciprocal translocation, ...)
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Operations
 Duplications
 Rearrangements

 2-breakpoints (inversion, fusion, reciprocal translocation, ...)

 3-breakpoints (transposition, transposition with inversion, …)
 With duplication: tandem segmental duplication and duplicative 

transposition.

 Insertion/Deletion:
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Polynomial-time 
Algorithm
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Example: 3 genomes with only one 
linear chromosome

Genome F
TGGCTACTGTAGCCTAGGTATCTATGTT...

Genome G
GCATGCCATTGTAGCCGATCGATATGC...

Genome E
AGTGCGGAGTGCGCGAGTTGAAGTGT...
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Creation of the dot plot
Aim: Decompose genomes in atoms
Technique: Local alignment
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Creation of the dot plot
Aim: Decompose genomes in atoms
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Genome = sequence of atoms

Genome F
0 1 2 3 3 4 5 -10 -9 -8 1 2 3 3 4 5 -10 -6 11

Genome G
0 1 -8 1 2 3 3 4 5 -10 -6 11

Genome E
0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5
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Creation of atom trees

Genome F
0 1 2 3 3 4 5 -10 -9 -8 1 2 3 3 4 5 -10 -6 11

Genome G
0 1 -8 1 2 3 3 4 5 -10 -6 11

Genome E
0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5

Atom tree T4

Aim: Represent information specific of each atom
Technique: Neighbor Joining [Saitou and Nai - 1987], 

distance D of local alignments.
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Creation of species tree
Aim: Represent the relation between species
Technique: Neighbor Joining, distance = min(D(x,y))
Hypothesis: The substitution rate is the same for all 
sites in a species.
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Creation of the duplication tree
Aim: Add duplications in the species tree.
Technique: Reconcile the atom trees with the species tree 

with a personal algorithm.
Hypothesis: The substitution rate is the same for all sites in a 

species.
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Aim: Add duplications in the species tree.
Technique: Reconcile the atom trees with the species tree 

with a personal algorithm.
Hypothesis: The substitution rate is the same for all sites in a 

species.

Creation of the duplication tree
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Creation of the master breakpoint 
graph

Aim: Define rearrangement
Hypothesis: No breakpoint is used twice.

Genome F
0 1 2 3 3 4 5 -10 -9 -8 1 2 3 3 4 5 -10 -6 11

Genome G
0 1 -8 1 2 3 3 4 5 -10 -6 11

Genome E
0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5
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Decomposition

Each component correspond to a rearrangement.
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Each component correspond to a rearrangement.

2-breakpoints 
rearrangement

3-breakpoints 
rearrangement

DuplicationTrivial

Decomposition
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Creation of the adjacencies graph
Aim: Find the possible places for each rearrangement
Technique: Use master breakpoint graph and atom 

trees

Genome F
0 1 2 3 3 4 5 -10 -9 -8 1 2 3 3 4 5 -10 -6 11

Genome G
0 1 -8 1 2 3 3 4 5 -10 -6 11

Genome E
0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5

Adjacencies graph for 1 rearrangement
with iso-adjacencies subtrees and
tethers.
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Creation of the switchpoint zone
Aim: Find the possible places for each rearrangement
Technique: The switchpoint zone is the intersection 

of tethers. 

Switchpoint zone for the 2-breakpoints rearrangement
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Creation of the adjacencies tree
Aim: Place each rearrangement
Technique: Random choice with the respect of each 

switchpoint zone.

Adjacencies tree
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Creation of the sibling graph

Aim: Deduce the sequence of ancestral genomes
Technique: Use a sibling graph

A sibling graph
Atom ends
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Creation of the sibling graph

Aim: Deduce the sequence of ancestral genomes
Technique: Use a sibling graph

A sibling graph
Atom ends

Child adjacency edges
Artificial sibling nodes

Sibling edges
Parent adjacency edges
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The evolutionary tree
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Experimentation
● Real genomes: 

– 5 chromosomes X (human, chimp, rhesus, mouse, rat).
– Difficulties to assess.

● Simulated genomes (100 experiments):
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Results
- Complexity: Polynomial in the number of 
chromosomes and local alignments.

- Computation time: Unknown.

- Unambiguous atoms and adjacencies: Find 
correctly.

- Ambiguous and new atoms and adjacencies: 
Very bad results.

- When reuse breakpoint rate increase: Worst 
results.

- With a outgroup: Worst results
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Conclusion
- Polynomial-time algorithm

- Strong constraints

- Weight

- Horizontal transfer 
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