Expander 6.2 Online Documentation

Introduction	
Starting EXPANDER	2
Input Data	:
Tabular Data File	:
CEL Files	
Working on similarity data no associated expression data	7
Working on Gene Groups with no associated expression data	8
Preprocessing GE Data	1(
Viewing Data Plots	14
Differential Expression Analysis	1{
Defining a group according to a rule	16
Defining a group according to similarity to a selected probe	17
Clustering GE Data	17
Hierarchical Clustering and Visualization	
Biclustering GE Data	22
Network Based Grouping of GE Data	
Group Enrichments Analysis Tools	
Functional Analysis	
Promoter Analysis	34
Location Enrichment Analysis	4′
miRNA Targets Enrichment Analysis	
Pathway Enrichment Analysis	
General Enrichment Analysis	
Network Based Group Analysis	5(
Gene Set Enrichment Analysis (GSEA)	57
Matrix Visualizations	
PCA Transformation	
Analysis Wizard	
Additional Options	
File Formats	
Sample Input Files	6
Supplied Files	
Settings	
R External Application	
Manually installation of R packages	
FAQ	
Copyrights Information	
References	8′

Introduction

EXPANDER (EXpression Analyzer and DisplayER) is a java-based tool for ar expression data. It is capable of (1) preprocessing (2) visualizing (3) clustering and (5) performing downstream analysis of clusters and biclusters such

enrichment and promoter analysis (i.e. analysis of gene groups for enrichment factor binding sites in their promoters).

EXPANDER incorporates several conventional gene expression analysis a custom ones that have been developed in the computational genomics gro University, and provides them with an easy-to-operate user interface.

EXPANDER versions are available for Windows OS and for Linux/Unix O the pre-installation of the Java Runtime Environment (JRE) 5.0 or later (Expan first version that fully supports java 1.7). The Java Runtime Environment can t http://java.sun.com/javase/downloads/index.jsp.

The CEL file preprocessing and the newly added SAM filter utilities require the p of one of the recent versions of R, a free software environment for statistical corr graphics. For installation instructions, please refer to <u>R External Application</u> section

Starting EXPANDER

Double click on the **Expander.bat** file, which is located under the Expander direc (alternatively, in Linux, open a Terminal window, cd into the Expander directory, command: './Expander.bat').

When running on Linux/Unix OS, make sure that you have rwx permissions for the directory and for the directory in which your data is located. Also make sure that permissions for all *.exe files that are under your Expander directory.

Upon running the program, the main menu bar appears:

File	Data	Preprocessing	Supervised Grouping	Unsupervised Grouping	Group Analysis	Visualizations	Ontions		_ []] :
HC.	Data	reprocessing	Supervised of outpilling	onsupervised of outpilly	or oup Analysis	VISUAIIZAUUTIS	options	Tieth	
xpai	nder is	a gene expressio	n analysis and visualizat	tion tool, developed at the c	computational gen	omics group, Tel	Aviv Unive	rsity	

Input Data

Expander operates on the following types of data:

a) **Gene expression data** – For most of EXPANDER's steps for analysis of gene data, the technique used for obtaining the expression estimates doesn't make a Whatever technique (e.g., **expression arrays, RNA-Seq**) was used, the input exposed be summarized in a matrix (tab-delimited txt file; see <u>File Formats</u> sectior rows correspond to probes/genes and columns – to samples.

Values can be either relative intensities data, expected as log 2 (R/G) values dat microarrays) OR absolute intensities data, expected as positive expression level density oligonucleotide data). Oligonucleotide data can be loaded with/without de Affymetrix data can also be loaded from CEL files (If R is installed).

When analyzing **RNA-Seq** data, one way to obtain gene expression matrix is to (<u>http://tophat.cbcb.umd.edu/tutorial.html</u>) to align the sequenced reads to the rel genome, and then use Cufflinks (<u>http://cufflinks.cbcb.umd.edu/howitworks.html</u>) (<u>http://www-huber.embl.de/users/anders/HTSeq/doc/count.html#count</u>) to obtair transcript) expression estimates from TopHat output.

If one wishes to perform functional analysis or promoter analysis, an **ID convers** be loaded along with the data file. The conversion file maps each probe ID (first data file into a corresponding conventional gene ID that is used in the GO ann fingerprint files that are supplied with EXPANDER. The conversion file can be middle of the session too, by Data >> Load Conversion File.

b) Similarity data - a pre-calculated similarity matrix

c) **Gene groups data** – contains predefined groups of genes. In this c conventional gene IDs that are used by EXPANDER in the GO annotation anc files are expected.

For details regarding the Gene ID convention that is used for each organisr <u>Supplied Files</u> section.

For details regarding the data files formats see the File Formats section.

Loading gene expression data:

Tabular Data File

To load tabular expression data, select: *File >> New Session*. From the su *Expression Data >> Tabular Data File*.

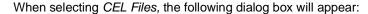
When selecting Tabular Data File, the following dialog box will appear:

🖺 Load Tabular Data			x
Organism: human Expected gene IDs: Entrez			
Data name: GE Study Data			
Raw data file:	-	Browse	
IDs conversion file:	-	Browse	
\bigcirc Use probe IDs as gene IDs			
Data type: Absolute Intensities 💌 Data scale: Original Values (unscaled) 💌			
File contains detection calls (A, M, P flags)			
Set missing values to 40.0			
OK Cancel Advanced			

Data type and scale are to be determined according to the input file. If the file cc values, these values will be estimated upon loading the data either by settin arbitrary value (if the 'Set missing value to _____' option is selected) or by utilizir Nearest Neighbors) method (if the 'Estimate missing values with KNN' option the file contains Affymetrix detection calls data, the relevant check box must be may change / erase the default floor value, to which all entries that are below th set (this option is available only for absolute intensities data).

<u>Advanced Input Dialog</u>: Upon pressing the 'Advanced' button after filling the 'field, an 'Advanced Input Dialog' appears. This dialog box can be used in order data load of files that are not in the required format. The first few rows and colur are displayed in a table, demonstrating the way the data is read by the prograi the current input values.

File is Tab delimited Space delimited Use row number T as header.							
Start reading data from row number 2							
		First 💌	Column specif	ies gene IDs	š.		
		Second 🔻	column specif	ies dene svi	mbols.		
		.to-tili syttibol	ls (requires loa	a of IDS con	version file)		
	Ign	ore columns i	with names tha	it contain th	e strings:		
		or	or	(ca	se sensitive)		
				(ou	00 0011011107		
1	2	3	4	5	6	7	
AffylD	Symbol	ser1/t0	ser1/t2	ser2/t4	ser2/t6	ser2/t8	4
1007_s_at		105.265	63.896875	112.695	150.5448	86.05	
1053_at 👘	RFC2	30.19	18.05	31.185	47.8044	30.04	
121_at	PAX8	238.915	143.253125	234.33	377.6472	219.735	
1294_at	UBE1L	119.495	53.6125	110.175	144.7908	79.285	
1316_at	THRA	30.19	18.05	31.185	47.8044	29.77	
1431_at	CYP2E1	30.19	18.05	31.185	47.8044	29.385	
1438_at	EPHB3	77.255	52.975	47.25	84.4116	49.955	
431_at 438_at Data	CYP2E1 EPHB3	30.19	18.05	31.185	47.8044	29.385	
Disregarded Probe ID Gene Symbol							
Condition name							
Error							
2.101							


CEL Files

To load expression data from CEL files, select: *File >> New Session*. From the s *Expression Data >> CEL Files*.

The load of CEL requires installation of R software (see <u>R External Application</u> with specific packages, as detailed below. An open internet connection is also r_1 operation.

Expander supports CEL files of three chip types:

- 1. 3' Gene Expression requires Bioconductor "affy" package
- 2. **Whole-Transcript Gene Expression** (Gene 1.0 chips) requires the prior i cdf package for the used chip (see links below).
- 3. Alternative Splicing (Exon 1.0 chips) requires the prior installation of a cdf p used chip (see links below). * Please note that we estimate the overall exp transcript, not exon-by-exon. Therefore, this becomes 'gene data' rather th splicing data'.

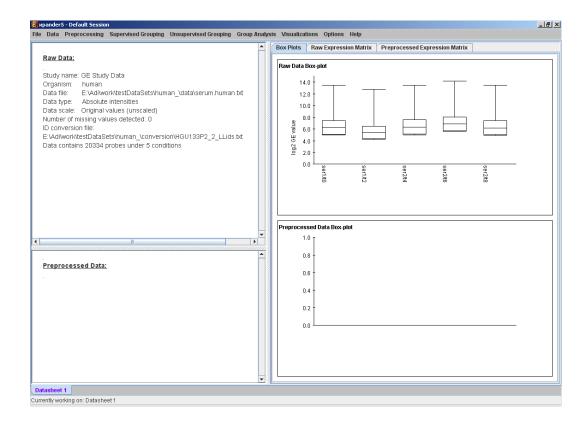
Load CEL files	×						
Organism: Chip type: 3' Gene Expression 💌							
Data name:							
Files location:	Browse						
Save data into file:	▼ Browse						
Retrieve detection calls (A, M, P flags)							
Normalization type: 🖲 RMA 🛛 GC-RMA							
CDF							
Use Bioconductor default							
O Use R package:	Browse						
OK Cancel							

Please choose the relevant organism and chip type. Then browse to the folder files are located (*Files location*), and choose where to save the expression file the CEL files preprocessing.

<u>Preprocessing and normalization method</u>: The default method in Expander is F for 3' gene expression arrays, you may select GC-RMA instead (taking into content bias). Before using GC-RMA, please make sure you have the "gcrm installed (see <u>R External Application</u> section).

<u>CDF environment choice</u>: You may use the default Bioconductor CDF environ chips or browse to an alternative CDF package which you have already insta whole transcript and alternative splicing chips (for which there is no default Biod environment), you will need to supply an alternative CDF package (see links below

Note: GC-RMA requires the probe sequence information of the chip. If you det the default Bioconductor CDF environment, and have GC-RMA as the preproce you must have the suitable probe package installed in addition to the CDF altern


Link for downloading CDF environment packages (for 2nd option):

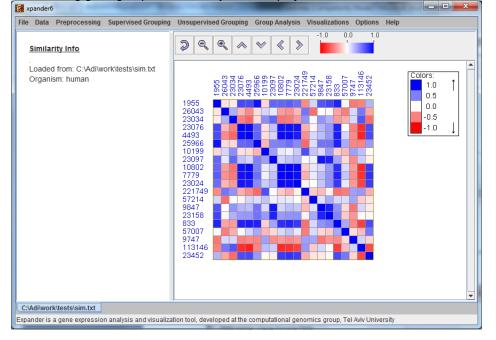
http://www.bioconductor.org/packages/release/data/annotation/

If Expander cannot find your R software, a window will appear, asking you location. Please browse to the location of your R software. In Windows, R.exe fil located in the 'bin' folder of R software. In Linux, you may type 'which R' in the cr find R path. If you have a few versions of R installed, please make sure to point version in which the Bioconductor "affy" package has been installed.

Once the CEL files preprocessing is done, a corresponding tabular data file is gi 'Load Study' dialog will appear, as in loading <u>Tabular Data</u>.

After loading a gene expression data set, a 'Session Data' display tab is addwindow (see example below). It contains information regarding the raw data chart, and an expression matrix visualization of the raw data. If detection calls e file, their statistics for each probe appear in 3 columns in the heat maps (expres in a scale between 0 and 1, corresponding to the relative part of each of the det M and A). The detection calls statistics for each condition are displayed in a s two tables (one for the raw data and another for the preprocessed data) and an percent.

Working on similarity data no associated expression data


To start working on similarity data (no expression data associated) select File>>l Session>> Similarity Data...

The following dialog box will appear:

🛃 Load Simila	rity Data	x
Organism:	Expected gene IDs:	
Data name:	Gene Groups Data]
File Name:		Browse
	OK Cancel	

For details regarding the data files formats see the File Formats section.

After loading gene groups, a 'Similarity Data' display tab is added to the main win

Currently similarity data can only be clustered using the Hierarchical clustering p selecting *Unsupervised Grouping>>Hierarchical Clustering>>Cluster...* The resul be used to generate groups (for further details see <u>Hierarchical Clustering</u>).

Working on Gene Groups with no associated expression data

To start working on gene groups (no expression data associated) select *File>*: From the submenu select *Gene Groups*.

The following dialog box will appear:

📴 Load Gene Groups	×	<
Organism: human Expected gene IDs: Entrez		
Data name: Gene Sets Data		
File Name: E:\Adi\work\tests\geneGroupsHSerum.txt	▼ Browse	
🖲 Tab delimited 🛛 🔾 Space delimited		
OK Cancel		

For details regarding the data files formats see the File Formats section.

After loading gene groups, a 'Session Data' display tab is added to the mail example below). It contains information regarding the data file, and a table different groups (serial number, name and size). Group names can be modified corresponding cell in the table. Upon clicking on a row in the table, the corres pane appears on the right. It contains a list of the genes in the group and a chromosomal positions. If a network file has been loaded (via *Data>>Load Net* graph, induced by the group is displayed as well.

ναιά ΡΙ	eprocessing	Supervised Of Ou	bing Unsupervised Grouping	Group_1	s visudiizdu	ons options
Gene s	ets data:			Set content	Positions	
				Gene ID		Gene Symbol
Name: 0	Gene Sets D	ata		54899	PXK	Jene Gymbol
	m: human			84962	JUB	
0	ets loaded fr	om filo:		875	CBS	
				57761	TRIB	3
E: VAdi W	ork\tests\gei	neGroupsHSeru	m.txt	5885	RAD2	21
				468	ATF4	
Sets ta	ble:			120	ADD3	3
				8087	FXR1	
ID	Name	Size		8502	PKP4	-
	Group_1	153		5359	PLSC	R1
	Group_2	161		9249	DHR	83
	Group 3	90		9768	KIAA	
	Group_4	86		3156	HMG	
	Group_5	17		27250	PDCI	
	Group_6	12		5106	PCK	-
				10144	FAM1	
				22836	RHO	
				5156	PDG	
				1612	DAP	(1
				3434	IFIT1	
				2744	GLS	250
				9770	RASS	
				6310	ATXN	
				51317 5493	BHC: PPL	00
				9702	KIAA	1002
				22882	ZHX2	
				379	ARF4	
				6502	SKP2	
				4281	MID1	•
				10150	MBN	2
				8324	FZD7	
				22841		1FIP2
			8 <u>-</u>	22041		

Preprocessing GE Data

The following preprocessing operations can be performed using EXPANDER:

- 1) **Flooring** (*Preprocessing* >> *Floor Data*): setting all expression values that are b threshold (set by the user) into that threshold. This can be done either by setting itself, or by setting the percentile that should be used as floor value.
- 2) Merging conditions (*Preprocessing* >> *Merge conditions*): merging a selected s profiles (columns) in the dataset into one profile, in which each entry holds the of the merged entries.
- 3) Merging probes according to gene ID (*Preprocessing* >> *Merge Probes* automatically shrinks the matrix so that all rows of probes from the same gene *a* one average row, identified by the corresponding gene ID.
- 4) **Normalization**: required in order to remove systematic variation, i.e. variatic reasons other than biological differences between RNA samples. Expanormalization only for absolute intensities data, since it is assumed that the rela data (e.g. cDNA microarrays) is already normalized, as it is input after perfo (log2R/G).

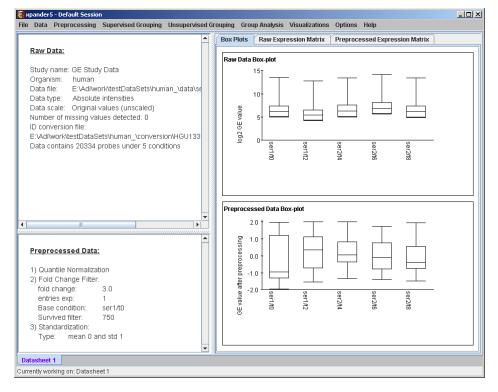
Normalization can be performed using the following schemes:

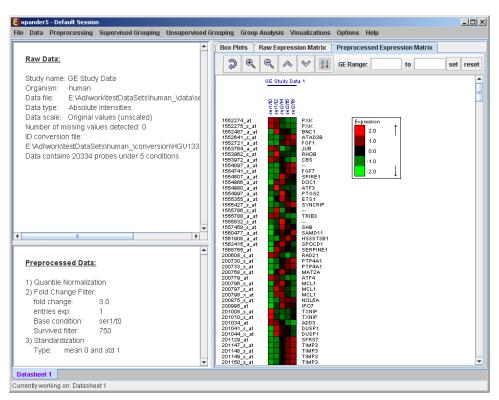
- a) **Quantile normalization** (*Preprocessing >> Normalization >> Quantile*), in w data is used.
- b) Non-linear baseline normalization (*Preprocessing >> Normalization > Baseline*), which uses a baseline array (can be selected by the user). In normalization function is calculated using pseudo Loess regression of the M vs. The subset of genes that are used to evaluate the normalization function car genes' (recommended when most genes in the dataset are expected to expressed) or a 'rank invariant set' of genes (recommended when there can be a of differentially expressed genes).

For more details regarding the normalization schemes see the References section

- 5) Condition filtration: the conditions used in the analysis can be manually filtere Preprocessing >> Filter Conditions. This will bring up a dialog box in which the u the required conditions from a list.
- 6) **Gene (probe) filtration**: can be performed in order to filter out some of expressed genes, and perform downstream analysis on a smaller informative genes.

Probe filtration can be performed using the following schemes:


- a) **t-Test** (*Preprocessing >> Filter Probes >> t-Test*): When using this method, o demonstrate differential expression between two condition subsets are selected.
- b) SAM Significance Analysis of Microarray (*Preprocessing >> Filter Prc* selects probes that demonstrate differential expression between conditions sub choose 2 or more subsets (multi-class tests are supported). This method uses p get an 'empirical' estimate for the FDR of the reported differential genes (for <u>References</u> section). Before using SAM, please make sure you have **R softwa** the "samr" package installed (see <u>R External Application</u> section).
- c) Fold Change (Preprocessing >> Filter Probes >> Fold Change): when usin only genes that are over/under expressed by at least n fold in at least k arrays and k are determined by the user). The fold change can be calculated in re selected baseline array (b) the minimal expression value of the gene OR (c) value when working on relative intensities (depending on the user's selection).
- d) Variation (Preprocessing >> Filter Probes >> Variation): In this method, the genes are selected (k is determined by the user). Variance is used to measure relative intensities data, and Coefficient of Variation is used to measure variation intensities data.
- e) **Detection calls** (*Preprocessing >> Filter Probes >> Detection calls*): i probes/genes are filtered according to the number of expression signals for whic call is 'P' (Present). It can only be operated if the data file contains detection info
- f) Load Probe Subset (Preprocessing >> Filter Probes >> Load Probe Subs set is loaded from an external txt file (for details regarding the format pleas Formats section).
- Divide by Base (Preprocessing >> Divide by Base) Divides each entry in a proby the corresponding entry in the profile of a selected base condition. This can conditions or for subsets of the conditions.
- 8) Log data (Preprocessing >> >> Log Data) Performs log2 operation on each en


9) Standardization: When expression values between different genes are very general expression patterns are similar (high Pearson Correlation values), we v see this similarity when looking on a pattern display. Since the absolute values are different, a manipulation is required, in order to view the patterns on the sa manipulation is called standardization.

Standardization can be performed using the following schemes:

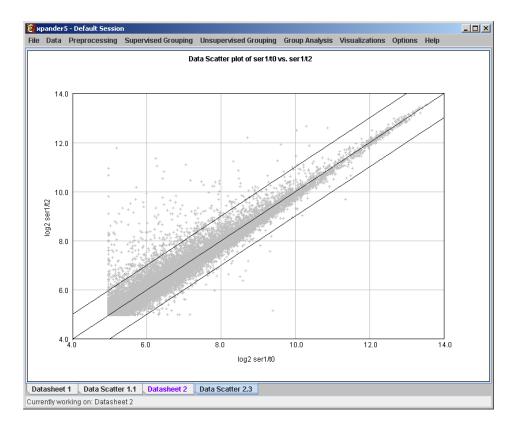
- a) **Mean 0 and Variance 1** (*Preprocessing >> Standardization >> Mean 0 anc* normalizes each expression pattern to have a mean of 0 and a variance of 1. appropriate in most cases when working on genes.
- b) Fixed norm (Preprocessing >> Standardization >> Fixed Norm) no expression pattern to have a fixed norm i.e. expression levels are divided by the expression vector (the root of sum of squares of that vector). This method is ap different mean values or variances are expected for different patterns (e.g. where conditions and expecting larger variance in later phases of a response.

After performing a preprocessing operation, the information regarding the operat the 'Preprocessed Data' section in the 'Session Data' tab. In addition, the 'Prep box plot' and 'Preprocessed Expression Matrix' are automatically updated accord values in the data.

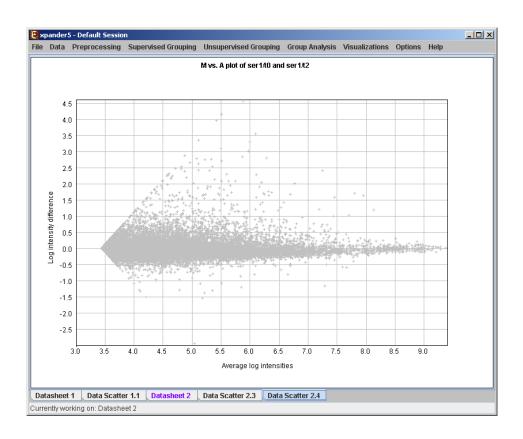
Upon selecting *Preprocessing* >> *Undo* the data is changed to be as it was b recent preprocessing operation was performed, and the corresponding informat from the 'Preprocessed Data' section. The 'Preprocessed Data box plot' and Expression Matrix' are automatically updated accordingly.

All the above operations can be performed before running further analysis or generating displays. When attempting to perform further preprocessing or analysis results and visualizations have been generated, the following dialog box

E Confirm operation	X
This operation may modify the data, making it inconsistent wit	n previous results, please select one of the following:
Open an additional data sheet and continue (keep previous	results)
○ Remove previous analysis results	
ОК Са	ncel


Upon choosing to open an additional data sheet, a new data set view tab called is added to the main frame. The title of this tab is highlighted (colored in purple), it is now the active data sheet (i.e. all further operations refer to this data she data sheet is automatically changed according to the selected (front) visualizatio

Preprocessed gene expression data can be saved to a file at any time *Preprocessing* >> *Save Preprocessed Data.* The data is written in the same for input GE data.


Viewing Data Plots

Expander provides two types of scatter plots visualizations that can be *Preprocessing >> Normalization >> View Scatter Plots*.

Simple plot - Displays a scatter plot of two arrays (selected by the user), in whi (xi,yi) represents the expression value (log expression for un-logged data) of the array vs. the other. For normalized data, points should be located around the y= on the scatter plot).

M vs. A plot (available only for absolute intensities data) - Displays a scatte each point (Ai,Mi) represents the log intensity difference of the i th probe in (selected by the user) vs. the average log value of these intensities.

Differential Expression Analysis

The goal in this analysis is to detect groups of genes that demonstrate differential exp between two/more condition groups.

- a) **t-Test** (*Supervised Grouping* >> *Differential Expression* >> *t-Test*): W method, genes can be assigned into one of two groups (up-regulated and dc depending on the definitions of t-test parameters.
- b) SAM Significance Analysis of Microarray (Supervised Grouping Expression >> SAM): this method detects probes that demonstrate differen between conditions subsets. You may choose 2 or more subsets (multi-c supported). The probes are then assigned into two groups (up-regulated and d if 2 condition groups are tested or into one group of differentially expressed o uses permutations to get an 'empirical' estimate for the FDR of the reported dif (for details see the <u>References</u> section). Before using SAM, please make su software along with the "samr" package installed (see <u>R External Application</u>

After performing differential expression grouping analysis, a solution visualizatic to the main window. It contains the following views:

Information regarding the algorithm, number of groups (can be either 1 or 2), grouped elements (non-differential), and numerical measures of the groups quali

a) Overall average homogeneity - calculated as the average value of similarity element and the center of the group to which it has been assigned, weighted a size of the group.

- b) Overall average separation calculated as the average similarity between midifferent groups, weighted according to their sizes.
- c) Groups table contains the number, name (label), size and homogeneity of e

Mean Patterns of the groups with error bars (±1 STD).

Upon selecting a group, the corresponding pane is displayed on the right. It cc probes, p-values/q-values, fold-change, probe patterns, expression matrix (hear chromosomal locations of the genes. Similarity matrices for probes within the clu for conditions are also displayed in this tab, if the relevant options in the displaselected (see the <u>Settings</u> section). If a network file has been loaded (vi Network), the sub-graph, induced by the cluster is also displayed in the group pa

In order to allow comparison between groups and patterns, the displayed expre are automatically standardized to have mean = 0 and STD = 1.

A differential expression solution can be saved using the *Supervised Grouping Expression >> Save Solution*, and reloaded using the *Grouping Supervised Differential Expression >> Load Solution*.

Defining a group according to a rule

This can be done by selecting *Supervised Grouping* >> *Rule-based Grouping*. The fc dialog box will appear:

🖲 Rule-ba	sed Grouping	X
Name:		
	New]
	Edit	
	Remove	
Minimal g	proup size: 10	
	OK Cancel	

Upon pressing the "New" button, the following dialog box will appear, to allow defining rule:

Define Group		
Name:		
ser1/t0		
ser1/t2	Up (+) >>	
ser2/t4		
ser2/t6	Steady (=) >>	
ser2/t8		
	Down (-) >>	
	All (+,-,=) >>	
	00(1,5,7) **	
	<< Remove	
D	d a	
Down regulate	d < Up regulated >	
	OK Cancel	
	Calicer	

In the dialog box, name the new group and select the conditions of interest. For each define weather the expression level should be up-regulated, down-regulated or steac the up-regulation threshold and the down-regulation threshold). These thresholds should be defined. A condition can also be added by pressing the "All" button. In this case a set will be defined for each of the options of that condition (i.e. a definition of a group usin button can result in more than one group). The visualization for this operation is simil clustering results visualization (described below).

Defining a group according to similarity to a selected prob

This can be done by selecting *Supervised Grouping* >> *Group by Pattern Similarity. i* box allows setting the similarity measure (Pearson correlation, Spearman correlation distance) and reference probe ID as well as the expected group size. The visualizatic operation is similar to the clustering results visualization (described below).

Clustering GE Data

The goal of clustering is to partition the genes into distinct sets such that assigned to the same cluster should have similar expression patterns, while gen different clusters should have non-similar expression Usually there is no one solution that is the 'true' mathematical solution for this good clustering solution should have two merits:

- (1) High homogeneity (average similarity between genes from the same cluster).
- (2) High separation (average distance/dissimilarity between genes from different

After operating one of the clustering algorithms a clustering results view apper contains information about the solution and its quality including the method a that were used to obtain it, number of clusters, number of singletons (probes assigned to any cluster), overall homogeneity and separation, as well as homogeneity of each cluster. This summary can be used to compare different sc

In order to apply a clustering algorithm to the data, select the required algo *Unsupervised Grouping* >> *Clustering* menu (options are: **KMeans**, **CLICK**, **S** also use the agglomerative hierarchical clustering algorithm by extracting a pa

existing hierarchical tree, by selecting *Unsupervised Grouping* >> *Hierarchica Generate Groups* (For details about building such a tree, please go to <u>Hierarchic</u>

Currently similarity data can only be clustered using the Hierarchical clustering p selecting *Unsupervised Grouping>>Hierarchical Clustering>>Cluster...* The resul be used to generate groups (for further details see <u>Hierarchical Clustering</u>).

An existing clustering solution can be loaded from a file by selecting *Unsuper* >> *Clustering* >>*Load Solution* (For details regarding the clustering solution file the <u>File Formats</u> section). The **CLICK** algorithm is not designed to find clusters of 15 probes, so it might fail in clustering small datasets.

Fill the required input data in the algorithm input dialog box and press th The parameters required for each method are as follows:

Algorithm	Required parameters
KMeans	Expected number of clusters.
SOM	Grid width, grid length (width*length >= number of clusters) and number of iterations.
CLICK	Homogeneity value (0-1): allows the user control over the homogeneity of the resulting clustering, i.e. the average similarity between elements in the same cluster. This parameter serves as a threshold in various steps in the algorithm, including the definition of cluster kernels, singleton adoptions and kernel merging. The default value for this parameter is the estimated homogeneity of the true clustering. The higher the value assigned to this parameter the tighter the resulting clusters.
Hierarchical	Distance threshold (if extracting by distance): 0-1 the minimal tree distance that is regiored for two nodes to be assigned to the same group
tree partition	 It is also possible to partition the tree according to manual node selection that is performed on the hierarchical view (see <u>Hierarchical Clustering</u>).

Details about the algorithms can be obtained through the relevant articles in t section.

After clustering is performed, a clustering solution visualization tab is adde window. It contains the following views:


Information regarding the clustering algorithm, number of clusters, number c elements (singletons), and numerical measures of the clustering quality, includin

- d) Overall average homogeneity calculated as the average value of similarity element and the center of the cluster to which it has been assigned, weighted a size of the cluster.
- e) Overall average separation calculated as the average similarity between midifferent clusters, weighted according to their sizes.

f) Clusters table - contains the number, name (label), size and homogeneity c The name of a cluster can be changed by editing the corresponding cell in the ta

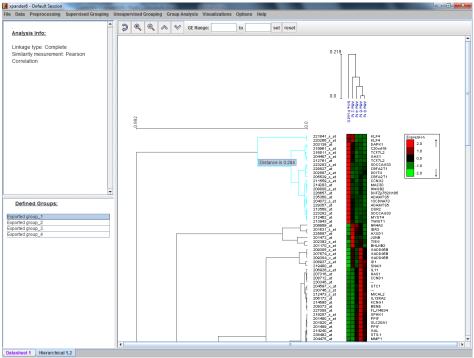
Mean Patterns of all clusters with error bars (±1 STD).

Upon selecting a cluster (from the clusters table or from the mean patte corresponding cluster pane is displayed on the right. It contains a list of probes, | expression matrix (heat map) and the chromosomal locations of the genes. Sirr for probes within the cluster as well as for conditions are also displayed in relevant options in the display settings are selected (see the <u>Settings</u> section). I has been loaded (via Data>>Load Network), the sub-graph, induced by the displayed in the cluster pane.

After performing group analysis (for details see the <u>Group Analysis Tools</u>), if ϵ been detected in the selected cluster, the corresponding histogram and analy are added to the single cluster view.

In order to allow comparison between groups and patterns, the displayed expre are automatically standardized to have mean = 0 and STD = 1.

A clustering solution can be saved using the *File* >> *Export to text* op corresponding clustering view as the selected tab), and reloaded using the *Grouping* >> *Clustering* >> *Load Solution*.


Hierarchical Clustering and Visualization

This tool uses the agglomerative algorithm to calculate a dendrogram tree for patterns (probe patterns) and/or profiles (condition profiles). The type of linka which the distance between a new node and the rest of the nodes is calculate algorithm can be set via an input dialog (for details regarding the algorithm <u>References</u> section). Note that it does not generate a partition of the probes to distance measurement used in the algorithm is (1-Pearson Correlation)/2.

To perform hierarchical clustering, select *Unsupervised Grouping* >> *Hierarch* Upon selecting this option, a dialog box appears in which the 'linkage type' para the algorithm can be set. After pressing 'OK', the algorithm will be operated bot patterns and on the condition profiles.

The resulting trees are displayed next to an expression matrix so that the prob vertically on the left and the condition tree appears horizontally above the ma next to each tree indicates the range of distance values between vectors corres leaves. The tool tip indicates the distance value corresponding to the cursor I tree.

If condition attributes file has been loaded for the analyzed dataset, a matrix reithese attributes will be displayed below the expression matrix

rently working on: Datasheet 1

Upon clicking on the vertical tree, a corresponding sub tree is highlighted (select be defined as a group by right clicking on the same location and selecting the "E option from the right click menu. The sub tree is then added as a group of the bo of the display.

Upon selecting one of the groups that have been previously defined and added t the bottom left panel, the corresponding sub tree is selected.

A previously selected sub tree can be removed from the list by right clicking on tl corresponding group in the bottom left panel and selecting remove group.

Manually selected groups can then be defined as a grouping solution by selectin Unsupervised Grouping>>Hierarchical Clustering>>Generated Groups>> From subtrees.

Biclustering GE Data

Biclustering is clustering of both genes and conditions of the data into subgrou necessarily disjoint. It enables the user to detect genes that are co-regula subgroup of the conditions, and does not force genes to belong exclusively to o useful when working on datasets which contain a large number of conditions.

Expander incorporates two Biclustering algorithms: ISA (Iterative Signature , SAMBA algorithm (for details see the <u>References</u> section). Before using ISA sure you have **R software along with the "eisa" package** installed (se <u>Application</u> section).

In order to apply the ISA algorithm to the data select *Grouping>>Bi-Cluster*, operation does not require parameter input.

In order to apply the SAMBA algorithm to the data select *Grouping>>Bi-Cluste* The following dialog box will appear:

SAMBA
🗹 Use default parameters
SAMBA Parameters
Try covering all probes
Use option files of type: valsp_3ap 🔻
Overlap prior factor (0-1): 0.1
Responding probes to hash: 100
Maximal memory for hashing: 100 MBs
Hashing kernel size - Minimal 4 Maximal 4
OK Cancel

It enables the configuration of some of the parameters for the algorithm. The specifies the different parameters that can be set via this dialog box:

	Field	Description
--	-------	-------------

Field Code Changed

Use default parameters	When checked, biclustering parameters (described below) are set automatically (this option is recommended unless the user is familiar with the parameters). The user can select one out of 6 options. The following table describes								
		n select one out ges and disadvar			table describes				
	Option name	fast performance	less memory required:	Flexible	Robust- can handle normalization problems and non gene- expression data				
Option files type	valsp_1	+	+	-	-				
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	valsp_2	0	0	0	-				
	valsp_3	-	-	+	-				
	valsp_1ap	+	+	-	+				
	valsp_2ap	0	0	0	+				
	valsp_3ap	-	-	+	+				
	We recommend the valsp_3ap option (set as default), since it is very flexible, and produces good results also for data that was not normalized properly or for non gene-expression data.								
Always cover all genes	When checked, the solution will cover each gene at least once (each gene will be included in one or more biclusters).								
Always cover all conditions	When checked, the solution will cover each condition at least once (each condition will be included in one or more biclusters). Un checking this option will cause a reduction in the number of biclusters, and the algorithm will run faster.								
Overlap prior factor	Can take values between 0 and 1, describes extent of overlap that is permitted between two different biclusters in the same solution. The higher this parameter is, the more strict the algorithm will be regarding adding a new bicluster (will require less overlap between the new bicluster and the existing ones).								
Number of responding genes to hash	Can take values between 1 and the number of genes in the dataset. Default value is set to 100 (recommended unless data set size < 100). Has impact over the hashing stage in the algorithm.								
Maximum hash size (in MB)		ne maximum mer Igorithm (the who ory).							
Maximum hash size	are tested a 7. The defau	eter determines the nd scored in the ult value is 4. In d significantly incre ter results).	hashing stage latasets with m	. It can take nany conditic	values from 1 to				

Minimum hash size	This parameter determines the minimal size of condition kernel in the hashing stage. It can take values from 1 to 7 and must be <= Maximum hash size. The default value is 4.
----------------------	---

Upon clicking 'OK' in the dialog box, the SAMBA algorithm is operated on the da

After biclustering is performed a biclustering solution visualization tab is adde window. It contains the following views:

- a) Information regarding the biclustering algorithm, and number of resulting biclu
- g) Biclusters table contains the following information for each bicluster: serial r score, number of probes genes and number of conditions. The name of a biclust changed by editing the corresponding cell in the table. The score is given by the algorithm and is size-dependent, thus, it is not recommended to use it to compar two biclusters of different sizes. The table can be filtered to display a subset of the score is given by the subset of the score is given by the subset of the score is given by the score is given b

by clicking on the 'Filter' ($\stackrel{\text{term}}{\longrightarrow}$) button in the toolbar. Filtering can be performed ε Score, number of probes and number of conditions.

Upon selecting a bicluster (from the biclusters table), the corresponding pane i the right. It contains a list of probes, probe patterns, expression matrix (heat chromosomal locations of the genes. Similarity matrices for probes within the clu for conditions are also displayed in this tab, if the relevant options in the displaselected (see the <u>Settings</u> section). If a network file has been loaded (vi Network), the sub-graph, induced by the cluster is also displayed in the cluster p

					1	Bicluster 10			
₩ 🤉						Bicluster Probes Bi	cluster Matrix		
ID	Name	Score	#Conditions	#Probes		Probe ID	Gene Symbol	Gene ID	
	Bicluster 1	177.338	14	18	-	1048963			_
	Bicluster 2	889.455	7	160		IMAGE:1031194			
	Bicluster 3	875.295	6	167		IMAGE:123516	PAH		
	Bicluster 4	450.434	10	48		IMAGE:126412	RNF14		_
	Bicluster 5	814.524	7	162		IMAGE:126670			
	Bicluster 6	542.194	7	73		IMAGE:128118			
	Bicluster 7	959.569	6	169		IMAGE:137297			_
	Bicluster 8	848.217	5	163		IMAGE:139969	FLI1		
	Bicluster 9	340.634	9	38		IMAGE:1467481	DHX36		_
	Bicluster 10	379.073	6	83		IMAGE:1493306	UNKL		
	Bicluster 11	480.022	7	106		IMAGE:1541992			
	Bicluster 12	538.371	10	88		IMAGE:1544288			_
	Bicluster 13	715.825	8	118		IMAGE:1556803			
	Bicluster 14	482.278	5	116		IMAGE:1560850	DGAT2L4		_
	Bicluster 15	829.933	8	152		IMAGE:1560996			
	Bicluster 16	790.118	7	161		IMAGE:1579647	HEYL		
	Bicluster 17	316.389	9	35		IMAGE:1583782			
	Bicluster 18	276.496	8	33		IMAGE:1583985	ETV1		
	Bicluster 19	292.406	9	58		IMAGE:1584372	ADAM23		
	Bicluster 20	381.596	10	42		IMAGE:1584403	TRIM46		_
	Bicluster 21	300.948	9	48		IMAGE:1639207	TFCP2L4		
	Bicluster 22	411.167	6	81		IMAGE:1642634	POLG2		
	Bicluster 23	782.179	7	129		IMAGE:1649948			
	Bicluster 24	636.074	8	123		IMAGE:1690915			
	Bicluster 25	1720.18	7	219		IMAGE:180841	CNKSR2		
	Bicluster 26	363.036	5	90		IMAGE:1869155			
	Bicluster 27	498.412	9	72		IMAGE:1874802	SSPN		_
	Bicluster 28	533.486	7	103		IMAGE:194399	GAB1		
	Rieluctor 20	412 202	6	111		IMAGE:1947276	SLC8A3		
						IMAGE:196435	0200/10		
						IMAGE:23221	C6orf65		
Biclusterin	<u>g info:</u>					IMAGE:258118			
						IMAGE:275176			
Maximal mer	nory allocated for I	hashing stage: 100				IMAGE:276361			
Take log inp					- 3				
	nel size in the hash	ina atogo: 4					GE patterns		
						2.0 1			
	all probes input: fa					d:8 			_
Permitted ov	erlap between two	biclusters: 0.1				2.0 1.0 -1.0 -2.0			-
Minimal num	ber of responding	probes per conditio	n: 100				ź ź :	ć i	Ŧ
	el size in the hash					0 2		2 <u>n</u>	8
	GE Study Data 1				L I	Hela_Tu	Hela_Tu	Hela_Me	rHela_Me
matrix data.	oc oraciy bara T				3	<u>الــــــــــــــــــــــــــــــــــــ</u>) O	æ

					B	cluster	47						
🖶 🔉					3		er Probes	Biclus	ter Ma	trix			
ID	Name	Score	#Conditions	#Probes]			_
	Bicluster 41	2099.65	34	75	▲	2			\sim	GE Range: -2	to 2	set	rese
	Bicluster 25	1720.18	7	219]	J			
	Bicluster 47	1586.45	20	82					в	icluster 47			
	Bicluster 141	1542.26	21	86	= 3		_		01.00.10		-		
ì	Bicluster 116	1484.26	7	198			8	4001	1000	22228884466755	1		
	Bicluster 32	1125.68	6	196	- 3		3	8888	8888	888888888888888888888888888888888888888			
	Bicluster 150	1110.27	26	61	1	1292535					ZNF587	Expression	
	Bicluster 66	1101.52	9	160	- 3	IMAGE: IMAGE:	1011715				AHI1	2.0	
	Bicluster 68	981.181	8	150		IMAGE:	115443					1.0	
	Bicluster 49	965.321	17	86	1	IMAGE: IMAGE:					SPAG5 ANLN		
	Bicluster 7	959.569	6	169		IMAGE:	128947				HMMR	0.0	
	Bicluster 67	894.695	7	161	1	IMAGE: IMAGE:					ANLN AURKA	-1.0	
	Bicluster 2	889.455	7	160	3	IMAGE:						-2.0	
	Bicluster 46	886.571	12	94		IMAGE:	1456207				FZR1		
	Bicluster 3	875.295	6	167	3	IMAGE: IMAGE:					UBE2C TUBA1		
	Bicluster 128	853.995	29	48		IMAGE:	1536451				MHC2TA		
	Bicluster 37	849.422	9	111	8	IMAGE: IMAGE:					TPX2		
	Bicluster 8	848.217	5	163		IMAGE:	1636876						
	Bicluster 15	829.933	8	152	8	IMAGE: IMAGE:					GPI		
	Bicluster 38	817.888	14	83		IMAGE:2	200402				C20orf129		
	Bicluster 5	814.524	7	162	8	IMAGE:	2017403				RGS3		
	Bicluster 16	790.118	7	161		IMAGE: IMAGE:					C2orf18 GTSE1		
	Bicluster 142	788.21	12	72	8	IMAGE:					TTK		
	Bicluster 23	782.179	7	129		IMAGE:					AURKA TUBB		
	Bicluster 65	762.669	6	136		IMAGE:	2327739				NUSAP1		
	Bicluster 136	740.051	15	71		IMAGE:					TPX2 AURKB		
	Bicluster 60	733.977	20	58		IMAGE:2	246808				NALP2		
	Bicluster 36	727.001	6	128		IMAGE: IMAGE:	258761				DEPDC1B		
	Picluctor 44	720 704	20	RA	•	IMAGE:2	291057				CDKN2C		
						IMAGE: IMAGE:					CDCA8 TOP2A		
						IMAGE:	310406				IL6		
Biclusterir	ng info:					IMAGE:					CKS2 TOP2A		
						IMAGE:	430973				CDCA2		
Maximal me	mory allocated for h	ashing stage: 100				IMAGE:					SGOL2 CENPF		
Take log in						IMAGE:4	452363				KIF23		
		na otoac: 4				IMAGE:	455128				CONF		
	rnel size in the hashi					IMAGE:	50787				SRD5A1		
	g all probes input: fal					IMAGE: IMAGE:					MKI67 C9orf140		
Permitted o	verlap between two	biclusters: 0.1				IMAGE:	51532				ARL6IP		
Minimal nur	nber of responding p	probes per conditio	n: 100			IMAGE:	590774				MAPK13		
	nel size in the hashi				1.8	IMAGE:0					HMMR DEPDC1		

Data Sheet 1 SAMBA 1.1 Currently working on: Data Sheet 1

2		Group Analysis Vi	sualizations Options	Help	_
					Bicluster 1
ID					Bicluster Probes Bicluster Matrix Probes Similarity Conditions Similarity
	Name	Score	#Conditions	#Probes	-1.0 0.0 1.0
	Bicluster 1	177.338	14	18)
	Bicluster 2	889.455	7	160	
	Bicluster 3	875.295	6	167	
	Bicluster 4	450.434	10	48	
	Bicluster 5	814.524	7	162	00000000000000000000000000000000000000
	Bicluster 6	542.194	7	73	11122278 1122278 1122278 1122278 1122278 1122278 1122278 1122278 1122278 1122278 1122278 1122278 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112228 112227 11227 11277 11277 11277 11277 112777 112777 112777 1127777 1127777 1127777 11277777 11277777777
	Bicluster 7	959.569	6	169	122200442066666666666
	Bicluster 8	848.217	5	163	MMAGEEE
	Bicluster 9	340.634	9	38	
	Bicluster 10	379.073	6	83	
	Bicluster 11	480.022	7	106	IMAGE:123278
	Bicluster 12	538.371	10	88	IMAGE: 1603379
	Bicluster 13	715.825	8	118	IMAGE:1893899
	Bicluster 14	482.278	5	116	IMAGE:2018976
	Bicluster 15	829.933	8	152	IMAGE:430007
	Bicluster 16	790.118	7	161	IMAGE:455275
	Bicluster 17	316.389	9	35	IMAGE:512751
	Bicluster 18	276.496	8	33	IMAGE:756554
	Bicluster 19	292.406	9	58	IMAGE:773240
	Bicluster 20	381.596	10	42	IMAGE:781089
	Bicluster 21	300.948	9	48	IMAGE:784016
	Bicluster 22	411.167	6	81	IMAGE:795395
	Bicluster 23	782.179	7	129	IMAGE:810600
	Bicluster 24	636.074	8	123	IMAGE:823614
	Bicluster 25	1720.18	7	219	IMAGE:825695
	Bicluster 26	363.036	5	90	IMAGE:85194
	Bicluster 27	498.412	9	72	IMAGE:884364
	Bicluster 28	533.486	7	103	
	Bicluster 29	412.202	5	111	
	Bicluster 30	555.611	6	121	
	Bicluster 31	211.995	10	20	
	Richtetar 27	1125.68	8	106	

Currently working on: Data Sheet 1

After performing group analysis (for details see the <u>Group Analysis Toc</u> enrichment has been detected in the selected bicluster, the corresponding analysis information are added to the single bicluster view, and a column is expression matrix display for each enrichment class, stating for each probe, whe to that class.

A biclustering solution can be saved using the *Grouping* >> *Bi-Clustering* >> and reloaded using the *Grouping* >> *Bi-Clustering* >> *Load Solution*. For a solution file, please refer to the <u>File Formats</u> section:

Network Based Grouping of GE Data

The goal here is to detect groups of genes that demonstrate similar expressio are also highly connected in a given interactions network.

In order to operate these tools, an interactions network in .SIF format needs to t can be done either by selecting Data>>Load network or via the dialog boxes of t

In order to perform network based grouping Expander incorporates two algor and Degas (for details see the <u>References</u> section). The DEGAS algorithm is the expression dataset compares two groups of heterogeneous samples (as studies). The groups detected by these tools are referred to as "modules" an also genes that exist in the network, but are not present in the filtered GE data "Back nodes").

To use the more advanced, stand-alone versions of MATISSE and DEGA flexibility), please refer to the Matisse home page.

In order to apply the Matisse algorithm to the data select *Grouping*>>*Network* : following dialog box will appear:

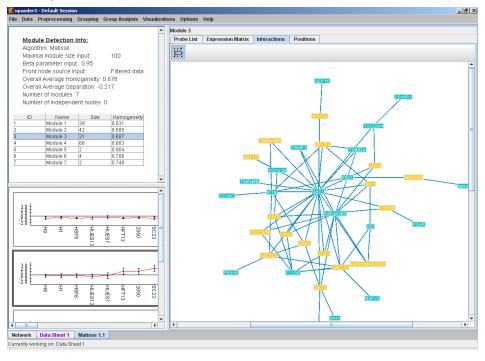
Matisse	×
Beta 0.95	
Maximal module	size 100
ОК	Cancel

It enables the configuration of some of the parameters for the algorithm:

Field	Description
Beta	The fraction of gene pairs that are expected to be strongly co- expressed in each module
Maximal module size	The maximum size for a detected module.

Upon clicking 'OK' in the dialog box, the Matisse algorithm is operated on the da

In order to apply the Degas algorithm to the data select *Grouping>>Network* following dialog box will appear:


🛃 Degas	X
Condition Groups	
Control conditions:	Select
Case conditions :	Select
Network file	Browse
Dysregulation direction DIFF <	
Dysregulation significance threshold 0.05	
Dysregulation ratio 1.3	
Optimization algorithm CUSP	
Maximal number of modules 1	
ОК Са	ancel

It enables the configuration of some of the parameters for the algorithm:

Field	Description
Case conditions	The case conditions
Control conditions	The control conditions
Dysregulation direction	This parameter will determine which direction of dysregulation will be sought (up/down-regulation/both).
Dysregulation significance threshold	This threshold will be used to identify which genes are differentially expressed in each 'case' sample compared to the controls
Dysregulation ratio	The minimal threshold for the ratio between the gene expression in any of the case conditions and the average expression in the control conditions. Above this threshold a case condition is designated as dysregulated.
Optimization algorithm	The algorithm used to identify dysregulated pathways (DPs). See the DEGAS manuscript for details. CUSP is the recommended option
Maximal number of modules	After DEGAS identifies a significant DP, it removes it from the input data and attempts to identify additional DPs. This parameter specifies the total number of DPs that will be sought.

Upon clicking 'OK' in the dialog box, the Matisse algorithm is operated on the da

After running network-based clustering, the solution is displayed in a new tab, v to the main window. The view is similar to the clustering results display. In the nodes (genes that appear In the network, but not in the GE data) are marked in y

	Module 3	
Module Detection Info:	Probe List Expression Matrix Interactions Positions	
Algorithm: Matisse	Probe ID Gene Sy	mbol Gene ID
Maximal module size input: 100	7277 TUBA4A	7277
Beta parameter input: 0.95	3398 ID2	3398
Front node source input: Filtered data	8851 CDK5R1	8851
Overall Average Homogeneity: 0.678	3417 IDH1	3417
Overall Average Separation: -0.217	5050 PAFAH1B3	5050
Number of modules: 7	5335 PLCG1	5335
	1778 DYNC1H1	1778
Number of independent nodes: 0	1345 COX6C	1345
	5660 PSAP	5660
ID Name Size Homogeneity	53826 FXYD6	53826
Module 1 39 0.631	51669 TMEM66 84060 DKFZP56400523	51669 84060
Module 2 42 0.685	84060 DKFZP56400523 55183 RIF1	55183
Module 3 31 0.687 Module 4 68 0.683	2661 GDF9	2661
Module 4 68 0.683 Module 5 2 0.904	54919 HEATR2	54919
Module 5 2 0.904 Module 6 4 0.786	7157 TP53	7157
Module 7 2 0.748	51660 BRP44L	51660
module / 12 0.740	1937 EEF1G	1937
	2213 FCGR2B	2213
	2175 FANCA	2175
	7088 TLE1	7088
	56165 TDRD1	56165
	56955 MEPE	56955
381	51631 LUC7L2	51631
	2151 F2RL2	2151
28	10657 KHDRBS1	10657
2050 2050 HUE HUE HUE	60492 CCDC90B	60492
8023 2050 HFT13 HUES7 HUES13 HSF6 HSF6 H9	1107 CHD3	1107
- <u>01</u> 07 ω -	2137 EXTL3	2137
	85358 SHANK3	86358
	25920 COBRA1 84708 LNX1	25920
204 -	84708 LNX1	84708
	GE pat	terne
2.0 t + + + + + + + + + + + + + + + + + +	3.8 -	
SC23 2050 HFT13 HUES7 HUES13 HSF6 HSF6 H9	281	
6 8 9 13	28	
	HANSE3 HANSE3 SM3 SM2 SM2 SM2 SM2 SM2 SM2 SM2 SM2 HANSE3 SM2 SM2 SM2 HANSE3 HUES7 HUES7 HUES7 HUES7 HUES7 HUES7 HUES7 HUES7 HUES7	UE03 BEEWO HUWECV HUWECE PEL SC31 SC31 SC31 SC31 SC31 SC31 SC31 SC31
	HANSE4 HANSE3 SM2 SM2 SM2 SM2 SM2 SM2 SM2 SM2 HANSE2 SM2 HANSE4 HANSE4 HUES7 HUES7 HUES7 HUES7 HUES7 HUES7 HIES7 HIES7 HI	JEG3 BEWO HUVECE HUVECE PEL SC31 SC31 SC31 SC31 SC31 SC31 SC31 SC31
I I	II 3.5 ° 0.0 0	1 m

After performing group analysis (for details see the <u>Group Analysis Toc</u> enrichment has been detected in the selected module, the corresponding analysis information are added to the single module view, and a column is expression matrix display for each enrichment class, stating for each probe, whe to that class.

A network-based grouping solution can be saved using the *Grouping* >> *Ne Solution*, and reloaded using the *Grouping* >> *Network* >> *Load Solution*. For solution file, please refer to the <u>File Formats</u> section:

Group Enrichments Analysis Tools

The following analysis can be performed on gene sets, clusters, biclusters, modules, similarity based groups, or the filtered dataset (the analyzed set of set). Before operating any of the group analysis operation (not including enrichment analysis"), the data files for the relevant organism should be downlo for a specific organism are supplied as one single zip file that you need to dow Expander download page, section "Organism specific data" (can be reache Expander: Help >> Open download page, or from updates.html file in your Expander, you extract the file into "Expander/organisms" directory. The relevant dim built by the extraction, inside your "Expander/organisms" directory. For extracting human data, you should have "Expander/organisms/human" directory.

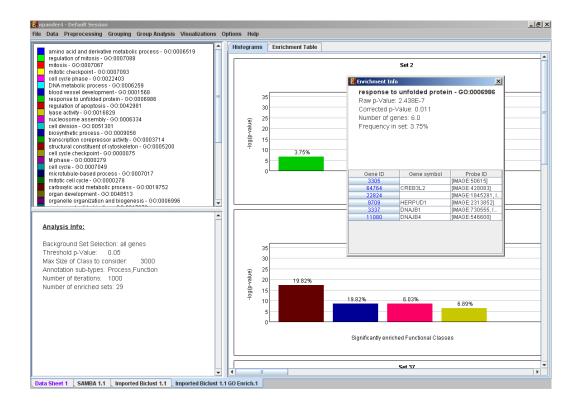
Functional Analysis

This tool performs basic statistical analysis on the distribution of functions of ger cluster. The functions of the genes are determined according to annotation file can be downloaded from the EXPANDER download page (see the <u>Supplied Fil</u> perform this analysis, Expander utilizes the TANGO software, which performs h enrichment tests and corrects for multiple testing by bootstrapping and estimatin p-value distribution for the evaluated sets.

Before operating functional analysis the annotation files for the relevant orgar downloaded from the download page (more details at introduction of <u>Group Ar</u> To perform the analysis, select *Group Analysis* >> *Functional Analysis* >> following dialog box will appear:

Functional Analysis	×
Perform Analysis On: CLICK 1.	1 🔻
Focus on: 🗹 Process 🗹 Func	tion 🗌 Location
Ignore classes over the size of:	3000
Number of iterations in algorithr	n: 1000
Background set	
O All Genes	
Original Data	
O Filtered Data	
O From File	Browse
p-1	value threshold: 0.05
	OK Cancel

The following table specifies the different parameters that can be set via th


Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Include back nodes	Include genes that are part of the module' but not included in the GE data (Relevant only if the analysis is performed on modules, detected by network based algorithm)
Focus on	Can be used to select annotation subtypes that are of interest (Process, Function and Location). And the analysis will focus on these types only.
Ignore classes over the size of	This parameter states the level in the GO tree at which annotations are too general (class size indicates how general it is) and are thus no longer interesting.
Number of iterations in algorithm	The number of random sampling performed by the algorithm. Increasing this parameter, will increase runtime and will provide higher resolution on corrected p-Values. I.e., corrected p-Values will range between 1/<#iterations> and 1.
Background set	Determines the set of genes that will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file

	(see the Files Format section for details regarding the format of an external background set).
Corrected p-value threshold	A functional class will be considered significantly enriched in a cluster/bicluster if its corrected p-value is lower than this threshold. The value in this field should be at least 1/1000, since the TANGO algorithm performs 1000 bootstraps in order to estimate the corrected p- value.

Upon clicking 'OK' in the dialog box, the TANGO algorithm is operated.

After functional analysis is performed a functional analysis solution visualization the main window. It contains general information regarding the analysis, a holding all detected enrichments (set ID, functional class, p-value, etc.) and a r panel along with a color index (mapping each color to a corresponding functio multi-histogram panel contains one histogram for each probe/gene set/gi enrichment has been detected. Each histogram contains a column for each sig frequent than would be expected by random) functional class. The definition depends on the user's selection of threshold p-value i.e., a functional class significantly enriched in a cluster/bicluster if its corrected p-value is lower th threshold p-value.

The height of the column is proportional to the significance of this enrichment log(raw p-value)). The frequency in set (frequency of genes of a functional c examined set, in %) is written on top of the column. Upon clicking on a column, displayed containing the class name, raw p-value, corrected p-value, and a list the cluster/bi-cluster that belong to the class. Upon clicking on one of the gene I a relevant web page with information regarding this gene is displayed. The shows the cluster number, size and homogeneity.

	-	Histograms Enri	chment Table			
amino acid and derivative metabolic process - GO:0006519 regulation of mitosis - GO:0007088		Set	Enriched with	#genes	p-value	Frequency in set
mitosis - GO:0007067		2	response to unfolded protein - GO:0	6	2.438E-7	3.75
mitotic checkpoint - GO:0007093		6	response to unfolded protein - GO:0	5	1.97E-7	6.84
cell cycle phase - GO:0022403		7	response to unfolded protein - GO:0	8	3.045E-10	4.73
DNA metabolic process - GO:0006259		8	response to unfolded protein - GO:0	7	8.562E-9	4.29
blood vessel development - GO:0001568		13	amino acid and derivative metabolic	10	6.185E-7	8.47
response to unfolded protein - GO:0006986	=	13	response to unfolded protein - GO:0	5	1.225E-6	4.23
regulation of apoptosis - GO:0042981		14		23	4.637E-18	19.82
lyase activity - GO:0016829		14	biosynthetic process - GO:0009058	23	2.47E-9	19.82
nucleosome assembly - GO:0006334		14	ligase activityl, forming carbon-oxyg	7	2.604E-9	6.03
cell division - GO:0051301		14	Ivase activity - GO:0016829	8	3.57E-7	6.89
biosynthetic process - GO:0009058		15	regulation of apoptosis - GO:0042981	15	6.065E-8	9.86
transcription corepressor activity - GO:0003714		23	transcription corepressor activity - G		4.006E-7	5.42
structural constituent of cytoskeleton - GO:0005200		24	cell cycle arrest - GO:0007050	6	8.751E-7	4.87
cell cycle checkpoint - GO:0000075 Miphase - GO:0000279		36	organ development - GO:0048513	18	1.629E-7	14.06
cell cvcle - GO:0000279		36	organ morphogenesis - GO:0009887		7.85E-7	7.81
microtubule-based process - GO:0007017		37	mitotic cell cycle - GO:0000278	21	1.222E-22	18.91
mitotic cell cycle - G0:0000278		37	mitosis - GO:0007067	19	1.783E-22	17.11
carboxylic acid metabolic process - GO:0019752		37	cell cycle - GO:0007049	28	3.417E-20	25.22
organ development - GO:0048513		37	cell division - GO:0051301	17	4.073E-18	15.31
organelle organization and biogenesis - GO:0006996	_	37	microtubule-based process - GO:00		3.442E-12	10.81
		37		6	1.539E-10	5.4
		37	cell cycle checkpoint - GO:0000075	5	1.202E-6	4.5
	_	38	organ development - GO:0048513	20	1.298E-11	24.09
Analysis Info:		38	response to wounding - GO:0009611		9.471E-10	14.45
		38	wound healing - GO:0042060	7	2.943E-8	8.43
Background Set Selection: all genes		38	cell motility - GO:0006928	10	6.856E-8	12.04
Threshold p-Value: 0.05		38		7	2.706E-7	8.43
		38	blood vessel development - GO:000	7	2.706E-7	8.43
Max Size of Class to consider: 3000		39	structural constituent of cytoskeleton	6	1.828E-7	7.31
Annotation sub-types: Process,Function		40	cell motility - GO:0006928	9	1.17E-7	15.0
Number of iterations: 1000		41	M phase - GO:0000279	27	1.241E-37	36.0
Number of enriched sets: 29		41	mitosis - GO:0007067	25	1.567E-36	33.33
		41	mitotic cell cycle - GO:0000278	27	1.942E-36	36.0
		41	cell cycle - GO:0007049	32	3.511E-30	42.66
		41	cell division - GO:0051301	22	4.338E-29	29.33
		41	microtubule-based process - GO:00		9.605E-14	16.0
		41		7	1.548E-13	9.33
		41		6	5.662E-9	8.0
		41	nucleosome assembly - G0:0006334		1.76E-8	10.52
		42	DNA metabolic process - GO:0006334		2.027E-7	19.29
		42	nucleosome assembly - GO:0006334		3.393E-10	10.93
		44	DNA metabolic process - GO:0006334		2.0E-8	18.75
		44		19	2.0E-0 2.214E-7	29.68
	-	44		19	2.214E-7	18.75

Annotation files are currently supplied with EXPANDER for yeast, human, n zebrafish, c-elegans, Arabidopsis, chicken and E. coli, and are updated on a remore information, refer to the <u>Supplied Files</u> section).

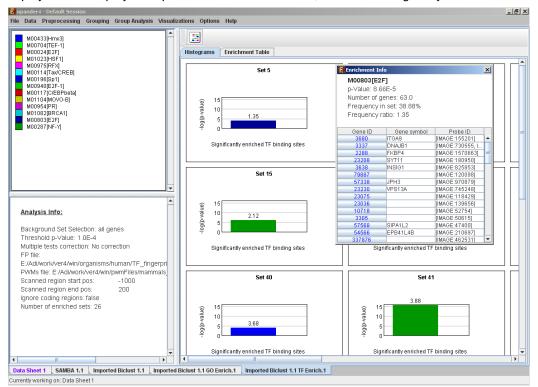
The results of this analysis can be exported to a text file by selecting *File>>Expc* the corresponding view is the selected tab.

Promoter Analysis

<u>PRIMA</u>

This tool identifies TFs whose binding sites are significantly over-represented ir promoters (i.e. cluster or bicluster). To perform this analysis Expander utiliz (PRomoter Integration in Microarray Analysis) software which performs a statisti the distribution of transcription factor motifs in the promoters of genes within ¢ bicluster. To achieve this, PRIMA uses preprocessed TF fingerprint files, downloaded from the EXPANDER download-page (see the <u>Supplied Files</u> se updated on a regular basis. For details regarding the PRIMA software see t section.

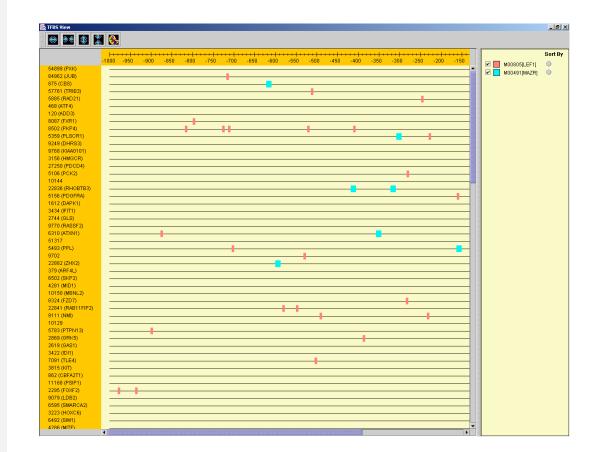
Before operating promoter analysis, the TF fingerprint file for the relevant orgar downloaded from the download page (more details at introduction of <u>Group Anal</u> perform the analysis select *Group Analysis >> Promoter Analysis >> PRIMA*. dialog box will appear:


Promoter Analysis		>
Perform Analysis On:	CLICK 1.1	
Fingerprints file:	fp.Masked.fp1000.txt 🔻	
PWM file:	expander_pwmsIndSet_0.25_Hs_v27.11200_mammals_298.bd	t 🕶
Promoter sequences	file: Hs_Proms_v27.all.txt ▼	
Consider hits from	1000 to 200 Ignore coding regions	
Background set		
) All Genes		
Original Data		
O Filtered Data		
O From File	▼ Browse	
p-value thr	reshold: 1.0E-4 Multiple tests correction: None 💌	
Save results as:	Brows	se
	OK Cancel	

The following table specifies the different parameters that can be set via this dial

Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Include back nodes	Include genes that are part of the module' but not included in the GE data (Relevant only if the analysis is performed on modules, detected by network based algorithm)
Fingerprints file	Automatically set according to the selection of the organism.
PWM file	Automatically set according to the selection of the organism.
Promoter sequences file	Contains the gene sequences that are used for the TF binding sites display. Automatically set according to the selection of the organism.
Hits range	Determines which regions of the gene are to be analyzed. The possible range depends on the investigated organism (i.e. on the information provided in the TF fingerprint files), and is specified in the <u>Supplied Files</u> section.
Background set	Determines the set of genes that will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file (see the Files Format section for details regarding the format of an external background set).
Threshold p-value	A TF's binding site will be considered significantly enriched in a cluster if its corrected p-value is lower than this threshold.
Multiple tests correction	Can be set to Bonferroni or None (when set to Bonferroni the corrected p-values are the ones that are compared to the threshold p-value).
Save results as	When filled, the program results are saved in stated txt file.

After promoter analysis is performed, a promoter analysis solution visualization the main window. It contains general information regarding the analysis, a holding all detected enrichments (set ID, TF binding site, p-value, etc.) and a r panel along with a color index (mapping each color to a corresponding TF bin multi-histogram panel contains one histogram for each probe/gene set/gi enrichment has been detected. Each histogram contains a column for each sig frequent than would be expected by random) TF binding site. The definition depends on the user's selection of threshold p-value. i.e., a TF binding site significantly enriched in a cluster/bicluster if its corrected p-value is lower th threshold p-value. The height of a column is proportional to the significance of this enrichment log(p-value)), and the frequency ratio (frequency in set divided by frequency in written on top of the column. Upon clicking on a column, a dialog box is displaye


TF accession number in TRANSFAC DB [TF name], p-value, % of covered cluster, relative frequency (frequency in cluster divided by frequency in backgro list of the genes in the cluster which contain the motif in their promoters. Upon of the gene lds in the table, a relevant web page with information regardin displayed. The display tool tip shows the cluster number, size and homogeneity.

M00704[TEF-1]	Set M0080 M0102 M0102 M0102 M0103	Enriched with 33(E2F) 6 33(E2F) 6 33(H5F1) 1	4 2		Enrichment factor
M00704[TEF-1] Hist M00024[E2F] Hist M01023[H5F1] 6 M000714[Tex0cReE] 6 M01048[801] 7 M00117[CEEPbela] 7 M01017[CEEPbela] 7 M01048[RCA1] 8	Set M0080 M0102 M0102 M0102 M0102	03[E2F] 6 23[HSF1] 1	3 8	.66E-5 1	.352
M00024(E2F) Hist M01023(HSF1) 5 M0103(HSF1) 6 M01014(E2F-1) 7 M01014(E2F-1) 7 M01017(CEEPbeta) 7 M01014(E2F-1) 8 M01012(E2F-1) 8	Set	03[E2F] 6 23[HSF1] 1	3 8	.66E-5 1	.352
M01023[H9F1] 5 M00278[FRV] 5 M00114[Tax02REB] 6 M0148[FRV] 7 M0148[FRV] 7 M0196[FRV] 7 M01017[C/EBPbeta] 7 M0114[M0VC-B] 8 M010854[FR1] 8	Set	03[E2F] 6 23[HSF1] 1	3 8	.66E-5 1	.352
M00114[Tav/CREB] 3 M00198[Sp1] 6 M00191[Sp1] 7 M00117[/CBPbeta] 7 M0114[Tav/CREP] 7 M0117[/CBPbeta] 7 M0114[Tav/CREP] 8 M010854[PR] 8 M0108FCA11 8	M0080 M0102 M0102 M0102	03[E2F] 6 23[HSF1] 1	3 8	.66E-5 1	.352
M00198[Sp1] b M00198[Sp1] 7 M00170[CBFDeta] 7 M0110[MOV0-B] 7 M00540[FR] 8 M0108[RPCA1] 8	M0102 M0102 M0019	23[HSF1] 1	4 2		
M00940[E2F-1] / / M00117[C/EBPbeta] 7 M01104[M0V0-B] 7 M00954[PR] 8 M01082[BRCA1] 8	M0102 M0019				3.001
M00117[C/EBPbeta] 7 M01104[M0V0-B] 7 M00954[PR] 8 M01082[BRCA1] 8	M0019		2 8		2.201
M01104[MOVO-B] 7 M00954[PR] 8 M01082[BRCA1] 8		96[Sp1] 7	6 9	.6E-8 1	.418
M00954[PR] 8 M01082[BRCA1] 8	M0110	34[MOVO-B] 5	5 4	.94E-5 1	.533
M01082[BRCA1] 8	M0102	23[HSF1] 2	2 1	.21E-5 2	2.277
Monopoliticati (12	M0028	37[NF-Y] 3	4 2	.25E-5 1	.723
	M0011	17[C/EBPbeta] 1			2.952
M00287[NF-Y] 13	M0028	37[NF-Y] 3		.52E-8 2	2.277
15	M0028	37[NF-Y] 3			2.122
19	M0028	37[NF-Y] 1			2.775
22	M0028	37[NF-Y] 2			2.286
23		37[NF-Y] 2			.984
37		87[NF-Y] 2			2.435
40		33[Hmx3] 1			3.682
41		37[NF-Y] 3			3.882
42		24[E2F] 9			1.147
▼ 42		40[E2F-1] 1			3.208
42		87[NF-Y] 2			2.939
44		87[NF-Y] 2			3.072
Analysis Info: 46		37[NF-Y] 3			3.122
47		87[NF-Y] 3			3.527
Background Set Selection: all genes		82[BRCA1] 8			1.219
52		87[NF-Y] 1			3.359
		03[E2F] 3			.546
Multiple tests correction: No correction	M0095				3.926
FP file: 90		75[RFX] 7			1.668
E:/Adi/work/ver4/win/organisms/hum 96		04[TEF-1] 1			2.349
PWMs file: E:/Adi/work/ver4/win/pwm		87[NF-Y] 1			2.593
Scanned region start pos: -1		37[NF-Y] 1			3.617
		37[NF-Y] 2			1.054
0 100		14[Tax/CREB] 1 37[NF-Y] 3			2.571
Ignore coding regions: false 141 Number of enriched sets: 26	MUU28	37[NF-Y] 3	6 [1	.04E-15 3	3.469

After performing promoter analysis, TF binding sites can be viewed by se

Analysis >> Promoter Analysis >> View Binding Sites OR by pressing the toolba After selecting the gene group (cluster/bi-cluster etc.) to be viewed, a sep displayed, containing a line to represent each of the genes in the group, rectangle, to represent each binding site. A color index appears on the right, color to the corresponding TF (PWM). A check box next to each of the entri index allows hiding any of the PWMs, and a radio button next to each of the entri index allows sorting the genes in the display according to the number corresponding TF. The toolbar contains tools for vertical and horizontal zooming file had been selected via the promoter analysis input dialog, the actual set displayed when the zoom factor (scale) allows it.

AMADEUS

Another option for performing promoter analysis, is finding enriched *de nov* AMADEUS integrated software in Expander. *Amadeus* is a software for discovery. It seeks for motifs which are enriched in a target set of genes co background set. These sets can be extended to any kind of sequences (e.g., Ch

In order to perform motifs enrichments analysis, select *Group Analysis* >> *Pro* >> AMADEUS.

The following dialog box will appear:

🛃 Amadeus Motif Analysis 💽
Perform analysis on: CLICK 1.1
Motifs file: transfac.dat
Promoter sequences file: Hs_MaskedProms_v68.protein.19301.txt -
Consider hits from -1000 to 200 Motif length: 8
Background set
O All genes
Original data
◯ Filtered data
From file Browse
p-value threshold: 1.0E-4
OK Cancel

The following table specifies the different parameters that can be set via this dial

Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Motifs file	A matrix table of known motifs in TRANSFAC format.
Wours me	The automatic default is transfac.dat, a public release of TRANSFAC.
Promoter sequences file	Contains the promoter sequences in fasta format. Automatically set according to the selection of the organism. Can be set to any set of sequences (e.g., ChIP-seq peaks).
Motif Length	The length of the motif to be searched for.
Hits range	Determines which sections of the sequences are analyzed. The range depends on the organism (i.e. the average length of a promoter sequence, on the information provided in the TF fingerprint files), and is specified in the <u>Supplied Files</u> section. It can be set manually.
Background set	Determines the set of genes, whose promoter sequences will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file (see the Files Format section for details regarding the format of an external background set).

P-value threshold A motif will be considered significantly enriched a cluster if its corrected p-value is lower than thi threshold.

After AMDEUS anaylsis is performed, an Amadeus motif solution visualization the main window. It contains general information regarding the analysis, a holding all detected enrichments (set ID, Motif binding site, p-value, etc.) and a repanel along with a color index (mapping each color to a corresponding Motif bir multi-histogram panel contains one histogram for each probe/gene set/grenrichment has been detected. Each histogram contains a column for each significantly be expected in the background set) motif binding site. The depends on the user's selection of p-value threshold. i.e., a motif binding site significantly enriched in a cluster/bicluster if its corrected p-value is lower than value threshold.

The height of a column is proportional to the significance of this enrichment log(p-value)), and the frequency ratio (frequency in the target set divided by frebackground set) is written on top of the column. Upon clicking on a column, a displayed containing:

motif binding site, p-value, % of promoters containing the motif in the cluster, rela (frequency in the cluster divided by frequency in background set), motif log(position weight matrix and a list of the genes in the cluster which contain the promoters. Upon clicking on one of the gene ids in the table, a relevant v information regarding this gene is displayed. The display tool tip shows the c size and homogeneity. TF motif fingerprint files and promoter sequence files are currently supplied wi for yeast, human, mouse, rat, fly, zebrafish, c-elegans, arabidopsis and ch updated on a regular basis (for more information, refer to the <u>Supplied Files</u> sect

The results of this analysis can be exported to a text by selecting *File>>Export tc* corresponding view is the selected tab.

Location Enrichment Analysis

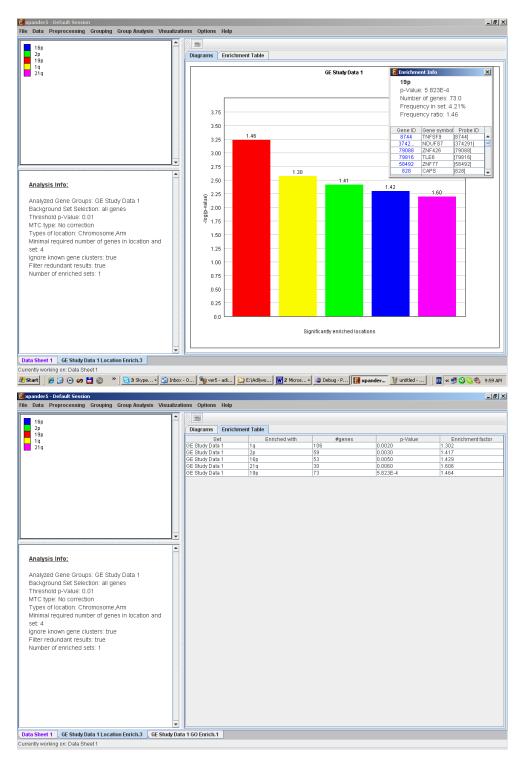
This tool performs basic statistical analysis on the distribution of chromosom genes within each group. The locations of the genes are specified in organisr files, which can be downloaded from the EXPANDER download-page (see the section).

Before operating location analysis, the location data for the relevant organ downloaded from the download page (more details at introduction of <u>Group Ar</u> In this analysis, hyper-geometric enrichment tests are performed, and the res requested) corrected for multiple testing using the Bonferroni correction.

To perform the analysis, select *Group Analysis* >> *Location Analysis* >> *Dete* The following dialog box will appear:

Cocation Analysis	x				
Perform Analysis On: Filtered data 💌					
Focus on: Chromosomes Arms Background set					
Il Genes					
🔾 Original Data					
○ Filtered Data					
From File Browse					
p-value threshold: 1.0E-4 Multiple tests correction: Bonferroni					
Minimal overlap between location and set: 4					
✓ Ignore clusters of similar genes ✓ Filter redundant results					
OK Cancel					

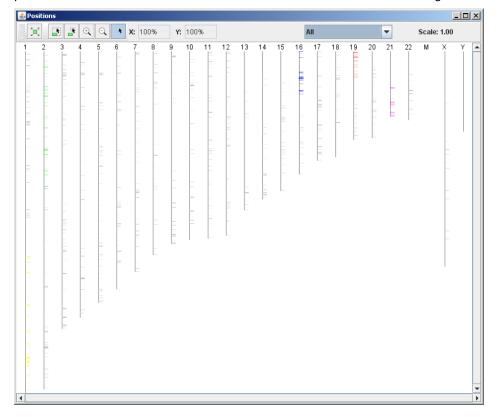
The following table specifies the different parameters that can be set via the


Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Include back nodes	Include genes that are part of the module' but not included in the GE data (Relevant only if the analysis is performed on modules, detected by

	network based algorithm)
Focus on (Chromosomes, Arms*, Bands*)	Location types to perform analysis on.
Background set	Determines the set of genes that will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file (see the Files Format section for details regarding the format of an external background set).
p-value threshold	A category/attribute will be considered significantly enriched in a cluster/bicluster if its corrected p-value is lower than this threshold.
Multiple tests correction	Can be set to Bonferroni or None (when set to Bonferroni the corrected p-values are the ones that are compared to the threshold p-value).
Minimal overlap between category and set	The minimal number of genes from a group (cluster/bi-cluster/module etc.) expected to be categorized/attributed by an attribute in order for its enrichment to be accepted.
Ignore clusters of similar genes*	If selected, genes from known homology clusters are not included in the analysis.
Filter redundant results	If selected, the results are filtered, so that out of two enrichments of overlapping areas in the same group, only one is selected (the most significant one).

* If relevant data exists

After the analysis is performed an enrichment analysis solution visualization tab main window. It contains general information regarding the analysis, a sort-abl all detected enrichments (set ID, enrichment category, p-value, etc.) and a r panel along with a color index (mapping each color to a corresponding location histogram panel contains one histogram for each probe/gene group in which ϵ been detected. Each histogram contains a column for each significant (more would be expected by random) location. The definition of significant depends selection of threshold p-value i.e., a category is considered significantly cluster/bicluster if its corrected p-value is lower than the preset threshold p-value


The height of the column is proportional to the significance of this enrichment log(raw p-value)), and the frequency ratio (frequency in set divided by background) is written on top of the column. Upon clicking on a column, a displayed containing the location, corrected p-value, and a list of the genes in are mapped to this location. Upon clicking on one of the gene lds in the table, page with information regarding this gene is displayed.

After performing location enrichment analysis, the locations can be viewed by s Analysis >> Location Analysis >> View Locations OR by pressing the toolbar but selecting the gene group (cluster/bi-cluster etc.) to be viewed, a separate fram

the set

containing an image of all chromosomes on which the positions of the genes ir marked. If the gene is located on an area that was identified to be enriched in position is marked in the same color to this area the enrichment results histogram

The results of this analysis can be exported to a text file by selecting *File>>Expc* the corresponding view is the selected tab.

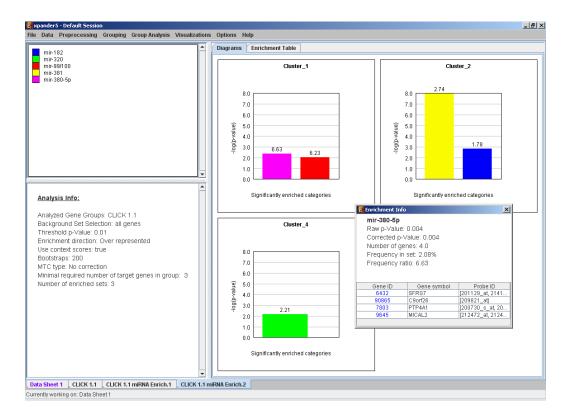
miRNA Targets Enrichment Analysis

This tool performs a statistical analysis on the distribution of miRNA target gene group. The miRNA targets information is supplied in organism-specific data files, downloaded from the EXPANDER download-page (see the <u>Supplied Files</u> sectic analysis, Expander utilizes the FAME algorithm, which performs empirical tests t sampling technique (random permutations) to estimate the empirical p-value dist evaluated groups. This is done while accounting for biases in the 3' UTR sequer

Before operating miRNA enrichment analysis, the location data for the rele should be downloaded from the download page (more details at introduction of <u>(Tools</u>). In this analysis, hyper-geometric enrichment tests are performed, and be (if requested) corrected for multiple testing using the Bonferroni correction.

To perform the analysis, select *Group Analysis* >> *miRNA Analysis* >> *FAME* dialog box will appear:

🗧 miRNA Analysis	×					
Perform Analysis On: Matisse 2.1 💌 🗌 Include back nodes						
Enrichment Direction: Over represented 💌 🗹 Use Context Scores						
Number of iterations in algorithm: 200						
Background set						
Ill Genes						
Original Data						
⊖ Filtered Data						
From File Browse						
p-value threshold: 0.05 Multiple tests correction: FDR						
Minimal overlap between targets and group: 3						
OK Cancel						


The following table specifies the different parameters that can be set via th

Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Include back nodes	Include genes that are part of the module' but not included in the GE data (Relevant only if the analysis is performed on modules, detected by network based algorithm)
Enrichment Direction	Allows to choose between searching for over- represented targets and searching for under- represented targets.
Use context scores	If context scores are used, FAME will assign a higher weight to miRNA-gene pairs for which at least one target site has a high maximal context score (see <u>References</u> section for further details).
Number of Iterations	The number of random permutations used for the empirical tests.
Background set	Determines the set of genes that will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file (see the Files Format section for details regarding the format of an external background

	set).
p-value threshold	A category/attribute will be considered significantly enriched in a cluster/bicluster if its corrected p-value is lower than this threshold.
Multiple tests correction	Can be set to FDR, Bonferroni or None (when set to Bonferroni/FDR the corrected p-values are the ones that are compared to the threshold p-value).
Minimal overlap between targets and group	The minimal number of genes from a group (cluster/bi-cluster/module etc.) expected to be categorized/attributed by an attribute in order for its enrichment to be accepted.

After the analysis is performed an enrichment analysis solution visualization tab main window. It contains general information regarding the analysis, a sort-abl all detected enrichments (group name, enriched miRNA target, p-value, etc. histogram panel along with a color index (mapping each color to a correspondin multi-histogram panel contains one histogram for each probe/gene group in wh has been detected. Each histogram contains a column for each significant (more would be expected by random) miRNA target. The definition of significant de user's selection of threshold p-value i.e., an mRNA target is considered signific in a group of genes if its corrected p-value is lower than the selected threshold p

The height of the column is proportional to the significance of this enrichment log(raw p-value)), and the frequency ratio (frequency in set divided by background) is written on top of the column. Upon clicking on a column, a displayed containing the miRNA name, corrected p-value, and a list of the gene that are mapped to this location. Upon clicking on one of the gene Ids in the ta web page with information regarding this gene is displayed.

	Diagrams	Enrichment	Cable				
mir-182	Diagrams		Enriched with			a Matura	Enrichment facto
mir-320				4	#genes	p-Value	
mir-99/100	Cluster_1		ir-380-5p	3		0.0040	6.637
mir-381	Cluster_1		ir-99/100				
mir-380-5p	Cluster_2		ir-381	26		1.045E-8	2.748
	Cluster_2		ir-182	17		0.0010	1.788
	Cluster_4	n	ir-320	8		0.0060	2.211
Analysis Info: Analyzed Gene Groups: CLICK 1.1 Background Set Selection: all genes Threshold p-Value: 0.01 Enrichment direction: Over represented Use context scores: true Bootstraps: 200 MTC type: No correction Minimal required number of target genes in group: 3 Number of enriched sets: 3							

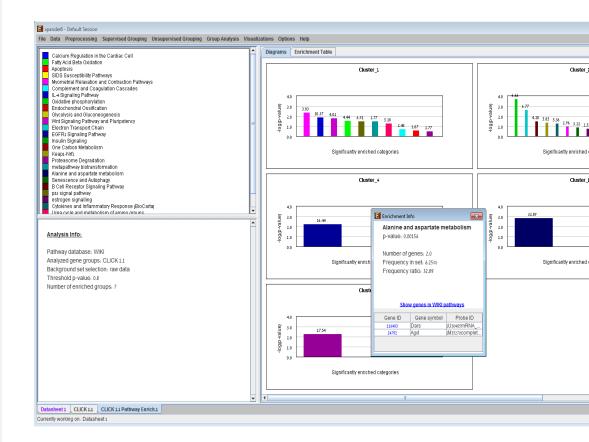
The results of this analysis can be exported to a text file by selecting *File>>Expc* the corresponding view is the selected tab.

Pathway Enrichment Analysis

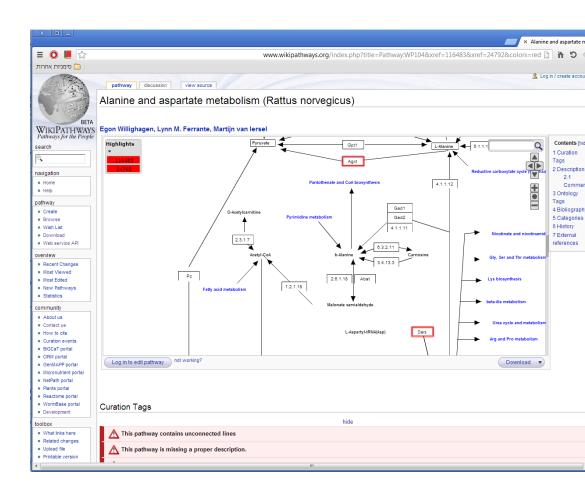
This tool performs a statistical analysis on the representation of KEGG and pathway maps within each group. The KEGG and WikiPathways information organism-specific data files, which can be downloaded from the EXPANDER ((see the <u>Supplied Files</u> section In this analysis, hyper-geometric enrichm performed, and the results can be (if requested) corrected for multiple tes Bonferroni correction.

To perform the analysis, select *Group Analysis >> Pathway Analysis >> Kl Analysis >> Pathway Analysis >> WikiPathways*. The following dialog box will a

🔁 Pathway Analysis	×
Perform analysis on: SAMBA 1.2 🔻	
Background set	
All genes	
🔾 Original data	
⊖ Filtered data	
○ From file	
p-value threshold: 1.0E-4 Multiple tests correction: None	
Minimal representation of group in pathway: 4	
OK Cancel	


The following table specifies the different parameters that can be set via th

Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Background set	Determines the set of genes that will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file (see the Files Format section for details regarding the format of an external background set).
p-value threshold	A category/attribute will be considered significantly enriched in the pathway in a cluster/bicluster if its corrected p-value is lower than this threshold.
Multiple tests	Can be set to Bonferroni or None (when set to


correction	Bonferroni the corrected p-values are the ones that are compared to the threshold p-value).
Minimal overlap between category and set	The minimal number of genes from a cluster/bi- cluster expected to be categorized/attributed by an attribute in order for its pathway analysis to be accepted.

After the analysis was performed a Pathway analysis solution visualization tab is main window. It contains general information about the analysis, a sorted ta all detected pathways (group name, enriched pathway target, p-value, etc histogram panel along with a color index (mapping each color to a correspond The multi-histogram panel contains one histogram for each probe/gene g enrichment has been detected. Each histogram contains a column for each significantly enriched by random) pathway target. The definition depends on the user's selection of threshold p-value i.e., a pathway target significantly enriched in a group of genes if its corrected p-value is lower tha threshold p-value.

The height of the column is proportional to the significance of this enrichment log(raw p-value)), and the frequency ratio (frequency in set divided by background) is written on top of the column. Upon clicking on a column, a displayed containing the pathway name, corrected p-value, link to the relevant web page, and a list of the genes in the group that are included in the correspon Upon clicking on one of the gene lds in the table, a relevant web page w regarding this gene is displayed. Upon clicking on the link to the pathway map web browser displays the page with the relevant genes highlighted in it.

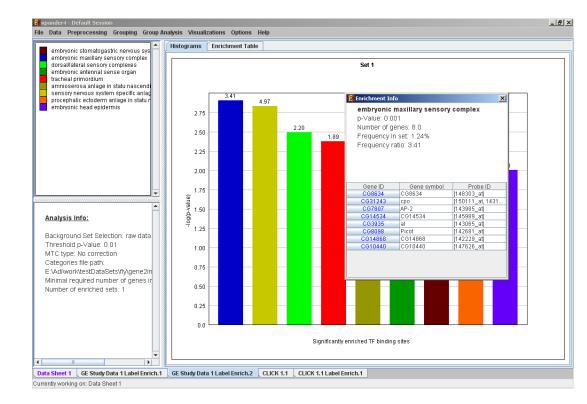
Calcium Regulation in the Cardiac Cell		Diagrams	Enrichment Table				
Fatty Acid Beta Oxidation			Set	Enriched with	#genes	p-value	Enrichm
Apoptosis		Cluster 1		Proteasome Degradation	2	0.311	1.78
SIDS Susceptibility Pathways		Cluster 1			3	0.0283	4.44
Myometrial Relaxation and Contraction Pathways		Cluster_1		Apoptosis	2	0.251	2.07
Complement and Coagulation Cascades		Cluster_1		Jrea cycle and metabolism of a	2	0.0548	5.19
IL⊣ Signaling Pathway Oxidative phosphorvlation		Cluster_1		Nnt Signaling Pathway and Plur	4	0.0164	4.01
Endochondral Ossification		Cluster_1		p53 signal pathway	2	0.0319	6.91
Givcolysis and Gluconeogenesis		Cluster_1		Myometrial Relaxation and Cont	8	0.00449	3.04
Wht Signaling Pathway and Pluripotency		Cluster_1		Complement and Coagulation	2	0.191	2.49
Electron Transport Chain	-	Cluster_1			2	0.0141	10.4
EGFR1 Signaling Pathway		Cluster_1		metapathway biotransformation	5	0.0329	2.78
Insulin Signaling		Cluster_2			2	0.297	1.84
One Carbon Metabolism		Cluster_2		Electron Transport Chain	4	0.0024	6.78
Keap1-Nrf2		Cluster_2			2	0.127	3.22
Proteasome Degradation		Cluster_2		B Cell Receptor Signaling Path		0.033	4.2
metapathway biotransformation		Cluster_2		Cytokines and Inflammatory Re	2	0.0516	5.37
Alanine and aspartate metabolism Senescence and Autophagy		Cluster_2		Oxidative phosphorylation	6	2.13E-4	6.66
B Cell Receptor Signaling Pathway		Cluster_2			2	0.181	2.58
psi signal pathway		Cluster_2		Myometrial Relaxation and Cont		0.11	1.96
estrogen signalling		Cluster_2			2	0.343	1.65
Cytokines and Inflammatory Response (BioCarta)		Cluster_2		Glycolysis and Gluconeogenesis		0.227	2.22
Lirea cycle and metabolism of amino omuns	•	Cluster_2			2	0.227	2.22
		Cluster_2		Keap1-Nrf2	2	0.0438	5.86
	-	Cluster_2		Calcium Regulation in the Card	2	0.274	1.95
nalysis Info:		Cluster_2 Cluster 3		metapathway biotransformation	2	0.524	1.15 6.46
		Cluster_3 Cluster_3		estrogen signalling Myometrial Relaxation and Cont	2	0.0377	6.46
athway database: WIKI		Cluster 3			2	0.27	13.5
2		Cluster_3		Calcium Regulation in the Card		0.00918	4.9
nalyzed gene groups: CLICK 1.1		Cluster 3		metapathway biotransformation		0.0622	2.89
ackground set selection: raw data		Cluster_4			2	0.00633	16.4
hreshold p-value: 0.8		Cluster_s		Vanine and aspartate metaboli		0.00855	32.9
umber of enriched groups: 7		Cluster_6			2	0.00138	21.3
uniber of enficiency groups: 7		Cluster_s			2	0.00379	17.5
sheet 1 CLICK 1.1 CLICK 1.1 Pathway Enrich.1	•						

General Enrichment Analysis

This tool performs basic statistical analysis on the distribution of categories/attri within each group. The categories/attributes of the genes are to be determined k imported as a text (for details regarding the required format, see the <u>File Form</u> this analysis, hyper-geometric enrichment tests are performed, and the resi requested) corrected for multiple testing using the Bonferroni correction.

To perform the analysis, select *Group Analysis* >> *General Enrichment Anal*. *Enrichment*. The following dialog box will appear:

Enrichment Analysis	×
Perform Analysis On: Imported Biclust 1.1 💌	
Load categories from:	
Background set	
Ill Genes	
⊖ Original Data	
⊖ Filtered Data	
From File Browse	
p-value threshold: 1.0E-4 Multiple tests correction: None	
Minimal overlap between category and set: 4	
OK Cancel	


The following table specifies the different parameters that can be set via th

Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Include back nodes	Include genes that are part of the module' but not included in the GE data (Relevant only if the analysis is performed on modules, detected by network based algorithm)
Load categories from	Input field for the file path, holding the gene categories/attributes.
Background set	Determines the set of genes that will be used as background in the analysis. Options are: all genes (of the relevant organism), original input data, filtered data or background set from file (see the Files Format section for details

	regarding the format of an external background set).
p-value threshold	A category/attribute will be considered significantly enriched in a cluster/bicluster if its corrected p-value is lower than this threshold.
Multiple tests correction	Can be set to Bonferroni or None (when set to Bonferroni the corrected p-values are the ones that are compared to the threshold p-value).
Minimal overlap between category and set	The minimal number of genes from a cluster/bi- cluster expected to be categorized/attributed by an attribute in order for its enrichment to be accepted.

After the analysis is performed an enrichment analysis solution visualization tab main window. It contains general information regarding the analysis, a sort-abl all detected enrichments (set ID, enrichment category, p-value, etc.) and a r panel along with a color index (mapping each color to a corresponding catego histogram panel contains one histogram for each probe/gene set/group in wh has been detected. Each histogram contains a column for each significant (morr would be expected by random) category. The definition of significant depends selection of threshold p-value i.e., a category is considered significantly cluster/bicluster if its corrected p-value is lower than the preset threshold p-value

The height of the column is proportional to the significance of this enrichment log(raw p-value)), and the frequency ratio (frequency in set divided by background) is written on top of the column. Upon clicking on a column, a displayed containing the class name, corrected p-value, and a list of the genes ir cluster that belong to the category. Upon clicking on one of the gene lds in the ta web page with information regarding this gene is displayed. The display tool cluster number, size and homogeneity.

xpander4 - Default Session								_ 8 ×
ile Data Preprocessing Grouping Group Analysis Visualizations	Optio	ons Help						
embryonic stomatogastric nervous system		Histograms	Enrichr	nent Table				
embryonic maxillary sensory complex		Set			Enriched with	#genes	p-value	Enrichment factor
dorsal/lateral sensory complexes		1			naxillary sensory complex	8	0.0010	1.24
embryonic antennal sense organ		1			vous system specific anlage tomatogastric nervous system	5	0.0010	0.77
tracheal primordium amnioserosa anlage in statu nascendi		1			tomatogastric nervous system al sensory complexes	14	0.0030	2.17
sensory nervous system specific anlage		1			a anlage in statu nascendi	8	0.0040	1.24
procephalic ectoderm anlage in statu nascendi		1			ectoderm anlage in statu nas		0.0070	3.25
embryonic head epidermis		1			ead epidermis	35	0.0090	5.42
		1		tracheal prin	nordium	19	0.0040	2.94
		1		embryonic a	ntennal sense organ	6	0.0050	0.93
Analysis Info: Background Set Selection: raw data Threshold p-Value: 0.01 MTC type: No correction Categories file path: E:VadiworktestDataSetstlfygene2imago.bt Minimal required number of genes in category and set 4 Number of enriched sets: 1								
Data Sheet 1 GE Study Data 1 Label Enrich.1 GE Study Data 1 Label	Enric	h.2 CLICK 1.1	CLIC	CK 1.1 Label	Enrich.1			
urrently working on: Data Sheet 1								

The results of this analysis can be exported to a text file by selecting *File>>Expc* the corresponding view is the selected tab.

Network Based Group Analysis

This tool allows browsing through signaling data to view the sub-graphs the induced by the analyzed gene groups. It also enables the user to search f enrichment of these groups in highly curated signaling maps. To perform the Expander interfaces with the SPIKE software and database. For further in regarding the SPIKE software see the <u>References</u> section.

To perform the analysis on one/more of the gene groups defined in Expar clusters, bi-clusters, modules, loaded gene sets or filtered data), select G_i >> *Network* >> *SPIKE*>>Gene Groups. The following dialog box will appe

SPIKE SPIKE	×
Perform analysis on	: Filtered Data 💌
✓ Show signaling r	naps
Find enrichment	of maps in groups
ОК	Cancel

The following table specifies the different parameters that can be set via tl box:

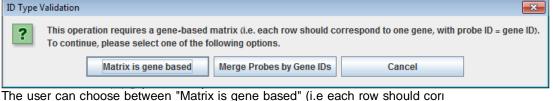
Field	Description
Perform analysis on	The grouping solution on which the analysis will be performed.
Show signaling Maps	For each group display regulatory data induced by the genes included in the group.
Find enrichment of maps in groups	For each group, search for signaling maps that are enriched with genes included in the group.

Pressing OK in the dialog box will launch the SPIKE application. When op first time, the launch takes a few minutes, since it has to build a local data this point on, please refer to page 12 in the <u>SPIKE user manual</u>.

SPIKE can also be operated on a sub-group of genes that is derived from enrichment solution in Expander. I.e. a group of genes that has a commor that was found to be enriched by one of the group analysis operations. In operate SPIKE on such a *group, select: Group Analysis>>Network>>* SPIKE>>Enrichment Derived Sets.

Gene Set Enrichment Analysis (GSEA)

GSEA (Subramanian et al 2005) considers experiments with genomewide expre from samples belonging to two classes, labeled "MUT" or "WT". Genes are ranke the correlation between their expression and the differential expression between distinction or pre-ranked by the user.


Given an *a priori* defined set of genes S, the goal of GSEA is to determin members of S are randomly distributed throughout the ranked list of genes (found at the top or bottom. It is expected that sets related to the phenotypic disti to show the latter distribution.

There are two key elements of the GSEA method in Expander:

Step 1: Calculation of an Enrichment Score. Enrichment score (*ES*) reflects which a set *S* is overrepresented at the extremes (top or bottom) of the entire rai score is calculated by walking down the list *L*, increasing a running-sum sta encounter a gene in *S* and decreasing it when we encounter genes not in *S*. Th the increment depends on the correlation of the gene with the phenotype. T score is the maximum deviation from zero encountered in the random walk. It cc weighted Kolmogorov–Smirnov-like statistic.

Step 2: Estimation of Significance Level of ES. An estimation of the statistic (nominal *P*-value) of the *ES* is done by using an empirical phenotype-based piprocedure that preserves the complex correlation structure of the gene ex Specifically, the phenotype labels are permuted again and the *ES* of the ge permuted data is re-computed, which generates a null distribution for the *I* provided a pre-ranked list of genes then a random shuffling of the ranked list is The empirical, nominal *P* value of the observed *ES* is then calculated relative distribution. Importantly, the permutation of class labels preserves gene-gene cc thus, provides a more biologically reasonable assessment of significance t obtained by permuting genes.

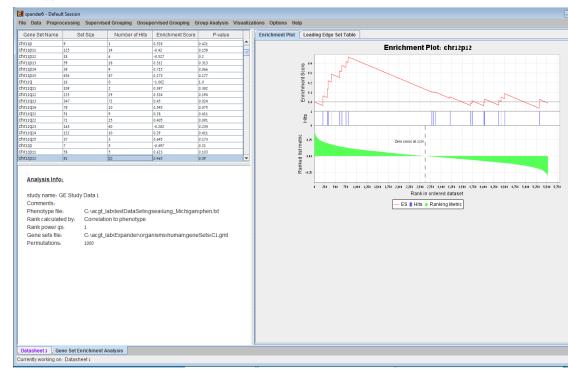
To perform the analysis on the gene expression, select *Group Analysis* >> run The following dialog box "ID Type Validation" will appear:

gene, with probe ID = gene ID) or "Merge Probes by Gene IDs". In case the user chose "Merge Probes by Gene IDs", a dialog box "Averag

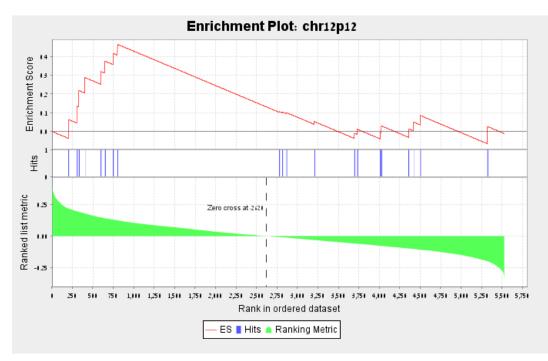
This gives the user the mathematical options for merging the probes. After choosing the preferred merging option or "Matrix gene is based" in "ID Ty dialog box, "Gene Set Enrichment Analysis" dialog box will appear:

Ē	Gene Set Enrichment Analysis		×
	O Load ranks	▼ Browse	
	Rank by labels		
[Phenotypes Labels		
	\bigcirc Use condition subset		
	Condition subset from a	Rank power (p) 1	ie
			1
	Collection Group File:	.vorganisms\human\geneSets\C1.gmt Browse	
		Number of permutations: 1000	
		OK Cancel	

The following table specifies the different parameters that can be set via tl box:


Field	Description
Load ranks	User pre-ranked list of genes file composed of two columns – first with genes and second with values
Use condition subset	Can be used when the matrix is composed of two condition subsets
Condition subset from a File	A file with Tab delimited one row with "MUT" or "WT" for each condition
Rank Power (p)	If p=0 then ES is reduced to standard Kolmogorov–Smirnov statistic. If p=1then ES is a weighted Kolmogorov–Smirnov- like statistic.
Collection Group File*	A file with gene sets to be chosen by the user
Number of permutations	For estimation of the Significance Level of ES

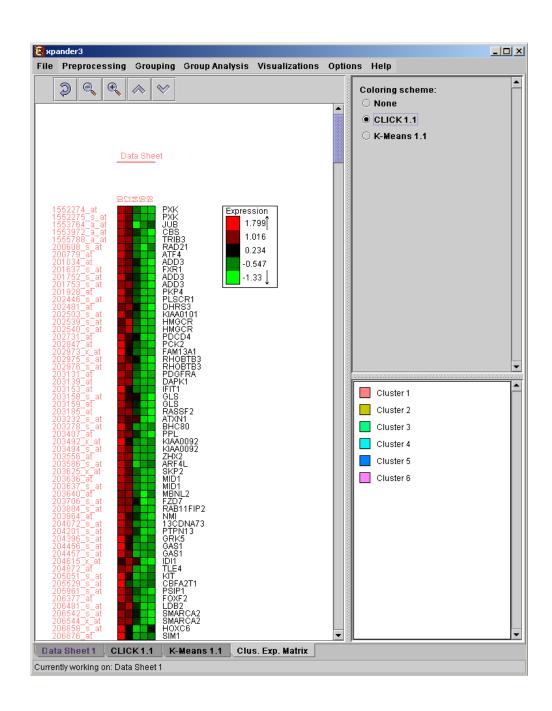
<u>*Collection Group Files</u> The MSigDB gene sets are divided into 7 major collections:


C1.gmt – Positional gene sets C2.gmt – Curated gene sets C3.gmt – Motif gene sets

C4.gmt – Computational gene sets C5.gmt – GO gene sets C6.gmt – Oncogenic signatures C7.gmt – Immunologic signatures For further information, please refer to: <u>http://www.broadinstitute.org/gsea/msigd</u>

After the analysis is performed a gene set enrichment analysis solution visu added to the main window. It contains general information regarding the analy table holding all gene sets (Gene set name, set size, Number of hits, Enrichmer value), an enrichment plot for each gene set selected in the table. The enrichn contains a graph of the enrichment score for each gene in the ranked list, a ba genes in the gene set with the genes in the ranked list and a ranked list metric and a tab - leading edge set table that contains Gene ID, Gene symbol, Ranke (if the gene was hit by a gene in the gene set). The leading edge set table conta that appear before the maximum enrichment score.

	Set Size	Number of Hit	s Enrichment S	core P-value	Enrichment Plot Leading	Edge Set Table		
1r11p	9	1	0.528	0.421	A Gene ID	Gene Symbol	Rank metric	
	125	14	-0.42	0.158	5965		0.219	1
	18	6	-0.527	0.2	3945		0.198	1
	59	18	0.312	0.313	2059		0.191	1
	39	4	0.715	0.066	9412		0.179	1
	456	87	0.273	0.177	4257		0.148	1
	16	0	-1.002	1.0	3845		0.141	1
	109	2	0.397	0.382	2012		0.131	1
	225	29	0.324	0.194	2842		0.125	1
	347	72	0.45	0.024	6513		0.429	0
	78	10	0.545	0.075	100499177		0.407	0
	51	9	0.28	0.411	8772		0.402	0
	71	25	0.405	0.091	7422		0.399	0
	163	40	-0.282	0.234	4860		0.398	0
	122	10	0.29	0.411	3241		0.397	0
	37	3	0.645	0.173	390		0.385	0
1150	7	5	-0.497	0.21	5191		0.379	0
	58	5	0.623	0.103	3875		0.369	0
12p12	81	20	0.465	0.09	3880		0.365	0
					5318		0.36	0
					1591		0.36	0
Analysis Info:					10714		0.358	0
ranal jois into.	*				4862		0.353	0
					6781		0.353	0
study name: G	SE Study Data	1			1476		0.351	0
Comments:					5054		0.35	0
Phenotype file	Cilac	gt_lab\testDataSets	sydseavlund Mich	igan\phen.txt	7360		0.349	0
Rank calculate		ation to phenotype		5	7110		0.345	0
		elation to prienotype	;		2597		0.345	0
Rank power (p)					6286		0.343	0
Gene sets file:	C:\ac	gt_lab\Expander\or	ganisms\human\	geneSets\C1.gmt	9322		0.343	0
	1000	- /	-	-	7518		0.343	0
Permutations:	1000				837		0.34	0
Permutations:					3939		0.334	0
Permutations:							0.33	0
Permutations:								
Permutations:					6699 8693			0
Permutations:					8693		0.329	0
Permutations:					8693 965		0.329 0.329	0
Permutations:					8693 965 7162		0.329 0.329 0.328	0
Permutations:					8693 965 7162 2026		0.329 0.329 0.328 0.328	0
Permutations:					8693 965 7162 2026 3015		0.329 0.329 0.328 0.326 0.326 0.326	0 0 0 0
Permutations:					8693 965 7162 2026 3015 3673		0.329 0.329 0.328 0.326 0.326 0.326 0.325	0 0 0 0
Permutations:					8693 965 7362 2026 3015 3673 9669		0.329 0.329 0.328 0.326 0.326 0.326 0.325 0.325 0.322	0 0 0 0 0 0
Permutations:					9493 945 7462 2026 3015 3473 9489 100059484		0.329 0.329 0.328 0.326 0.326 0.325 0.325 0.325 0.322 0.318	0 0 0 0 0 0 0
Permutations:					8493 945 7442 2024 3015 3473 9689 100509484 4498		0.329 0.329 0.328 0.326 0.326 0.325 0.325 0.322 0.322 0.318 0.317	0 0 0 0 0 0 0 0
Permutations					9493 945 7462 2026 3015 3473 9489 100059484		0.329 0.329 0.328 0.326 0.326 0.325 0.325 0.325 0.322 0.318	0 0 0 0 0 0 0

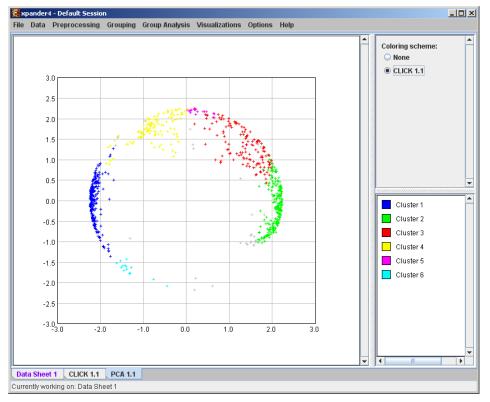

The enrichment plot can be saved as image file by right clicking on the graph->S The results in the tables can be saved as image file by selecting *File>>Save 4* the corresponding view is the selected tab.

Matrix Visualizations

An expression matrix (Heat-map) visualization is integrated in many of EXPANE This visualization is similar to the red-green matrix representation of Eisen et a does is to render the gene-expression data on the screen in color, where green i expression, and red indicates over expression. Color rendering can be configur in one of the following manners: (a) by setting the range (top and bottom value values (default values are set according to the data scale, e.g. 40-1000 for no absolute intensities data) or (b) by setting the percent of values, which are to I as extreme values from each edge (by default set to 5%). The manner configuration (i.e. (a) vs. (b)) can be set via the 'Data Matrix View' tab in the 'Di dialog box, available from *Options* >> *Settings*. The red/green coloring sc changed to blue/yellow (using *Options* >> *Settings* >> *Display* >> 'Data Matrix Vi

A color scale appears next to the matrix (upper right side). The displayed tool probe ID and condition title corresponding to the row and column on which placed, and the expression value in that position. The matrix toolbar contains : out, reset scale (to reset zoom factor), shorten condition title and Elongate condi

Upon selecting *Visualizations* >> *Clustered Expression Matrix*, a clustered exprisualization tab is added to the main window. The probes are ordered in their c a clustering solution has been previously created, its' name appears next to a the top right panel. Upon pressing this button, the order of the probes in the di and probe IDs are colored according to the clusters. The color index at the bott maps each color to the index of the corresponding cluster.



PCA Transformation

This tool transforms the original data from a k (original pattern length) to a space, so that each expression vector is represented by a dot on an XY sca transformation is based on the PCA (Principal Component Analysis) algorithm. tool, select *Visualizations >> PCA*.

If a clustering solution has been previously created, its' name appears next to a the top right panel. Upon pressing this button, the color of each dot in the di

according to the cluster assignment of the corresponding probe. The color inde: right panel, maps each color to the index of the corresponding cluster.

Analysis Wizard

Expander allows performing an automatic analysis on a loaded dataset by analysis wizard to predefine the analysis stages and parameters. To use this tool, go to *Data>> Analysis Wizard*.

Upon selecting this option, the following dialog box will appear, allowing to required preprocessing operations:

📴 Data Preprocessing	y Wizard	×		
Normalization:	Quantile Normalization			
Probes Filter:	Fold Change Filter Define parameters			
Standardize rows to have mean=0 STD=1				
	Cancel Next >> Finish			

For some of the stages, parameters can be defined by pressing the corres "Define parameters" button. Upon pressing the "Next>>" button, the follow box will appear, allowing to define the required grouping operations:

📴 Grouping Wizard	J		×	
Clustering:	CLICK	Define parameters	;	
Bi-clustering	(SAMBA): Def	ine parameters		
Network-based clustering (Matisse): Define parameters				
Cancel	<< Previo	Next >>	Finish	

Upon pressing the "Next>>" button, the following dialog box will appear, a define the required group analysis operations:

📴 Group Analysis Wizard	×
Eunctional Analysis (TANGO):	Define parameters
Promoter Analysis (PRIMA):	Define parameters
miRNA Analysis (FAME):	Define parameters
Location Analysis :	Define parameters
Cancel << Previo	. Finish

Upon pressing the "Finish" button (in any one of the dialog boxes) the enti operations defined by the user is performed by Expander, and the corresp visualizations are generated.

Additional Options

Searching for a gene/probe in the display

A gene can be detected in a display by selecting *Options* >> Search Gene following dialog box will appear:

Gene Sear	ch 🔀
Find gene:	Search By Gene ID 🔻
Search in:	all views 🔻
	OK Cancel

Please type the ID of the gene (can also be symbol/probe ID depending o selection in the "Search By" combo-box) in the corresponding text box. Nc

must type the entire name or ID, not part of it. After pressing the "OK" butt will appear containing text describing the number of items detected in eac searched views (number of "hits" in each view). In addition, the corresponelements will be highlighted in all searched displays.

Defining condition subsets

You may group several conditions under a common subset name, by selecting Condition Subsets. This partition is used for visualization purposes. In the dia the relevant conditions, type a group name and click on the arrows.

	Cond1		
	Cond2		
	Cond3 Cond4	>>	
	Cond5 Cond6	<<	
	Cond7 Cond8	-	
	ame: group		6
Study In	ame. group	3	Ter.
		OK Cancel	

I addition to subset definitions, multiple condition annotations can be loaded u Data>>Load Condition Attributes. The file should be in a tabular (tab delimited), correspond to attributes (first column will contain attribute names) and columns correspc (first row will contain condition labels in the same order as in your expression data) numeric and/or textual.

Saving and loading sessions

A set of analysis operations performed on one data set can be saved by selectin Session. It can later be reloaded by selecting *File* >> *Load* Session. Loadin saved session will bring up all analysis output and visualizations that had bee that session, and the user will be able to continue working where he had previou

Closing views

The user can close all open views by selecting File >> Close All.

Closing a single view can be performed either by selecting *File>>Close* when the is selected OR by right clicking on the tab title of the relevant view and selecting popup menu.

Docking a view into a separate frame

Can be performed either by selecting *Options* >> *Dock into external frame* who view is selected OR by right clicking on the tab title of the relevant view and sele *external frame* from the popup menu.

Upon creating the separate frame, the view will be removed from the main closing the separate frame generated in this manner, the view will be retrieved window.

Accessing the EXPANDER download page

The Expander download page can be accessed directly by selecting *Help* >> C *Page*, while the machine is connected to the Internet.

Printing the display

Each display can be printed by selecting *File >> Print* while its tab is selected.

Exporting display into image files

Each display can be exported into image files of type .jpg, .png or .eps (post-sbe done by selecting *File >> Save As Image*. Upon selecting this option, a dial to the following is displayed. In the dialog box the saved images (sections of th files format, and destination directory name are input.

📴 Save As Image	<u>×</u>
Save views	
 PCA scatter plot Color index panel 	
Files Format: .jpg	•
Directory name:	▼ Browse
	OK Cancel

Exporting detection calls information

The detection calls info of the raw and preprocessed data can be exported in selecting *Data* >> *Export Detection Calls*. Upon selecting this option, the followir displayed. You may export the detection calls and also the statistics of detectior of P, M and A calls per condition), for raw data and for preprocessed data.

Export Detection Calls	×
Export detection calls of:	Export detection calls statistics of:
Raw Data	🖌 Raw Data
✓ Preprocessed Data	✓ Preprocessed Data
Directory name:	▼ Browse
ОК	Cancel

File Formats

Expression data file format:

- 1) Suffix: no limitations.
- 2) Separating token: tab delimiter.
- 3) Format:

1st line: contains a string like 'probeld' and a tab delimiter, followed by 'geneSymbol' and a tab delimiter, followed by the names of all conditions se delimiters. The symbol column is optional – if the file does not contain a symbol specify it in the Advanced Input Dialog box (see Input Data section).

2nd line (**optional**): contains the string '>SERIES', a tab delimiter followed 'SYMBOL ' (if there is a symbol column), a tab delimiter and then all corresponding to the condition (one series assigned for each condition) set delimiters.

Next lines: Each subsequent line consists of the probe ID (an identifier string the each probe in the chip), followed by a string, which represents the gene full na can be left empty by adding an additional tab delimiter), followed by its express tab delimited). If the expression file contains missing values, Expander either with a preset value (0 by default), or estimates them using the KNN (K-Near method, depending on the user selection in the data load dialog box.

*For example see files 'expressionData1.txt' and 'expressionData2 Expander/sample_input_files/ directory.

If the data is not in the above format, it may be possible to load it using the 'Ac box, which appears upon pressing the 'Advanced' button in the Expression Dabox (see Advanced Input Dialog box in Input Data section).

Expression data with detection calls file format:

1) Suffix: no limitations.

- 2) Separating token: tab delimiter.
- 3) Format:

1st line: contains a string like 'probeld' and a tab delimiter, followed by 'geneSymbol' and a tab delimiter, followed by the names of all conditions and de columns alternately, separated by tab delimiters. Each title of condition is follow its detection column.

The symbol column is optional – if the file does not contain a symbol column, p in the Advanced Input Dialog box (see Input Data section).

Next lines: Each subsequent line consists of the probe ID (an identifier string the each probe in the chip), followed by a string, which represents the gene full na can be left empty by adding an additional tab delimiter), followed by its express detection calls values, alternately (all tab delimited). Each expression value is detection value (P, M or A). If the expression file contains missing values, E replaces them with a preset value (0 by default), or estimates them using the K Neighbors) method, depending on the user selection in the data load dialog box.

*For example see files 'expressionWithDetection.txt' in the Expander/sam directory.

If the data is not in the above format, it may be possible to load it using the 'Ad box, which appears upon pressing the 'Advanced' button in the Expression Dabox (see Advanced Input Dialog box in Input Data section).

Gene Sets file format:

1) Suffix: no limitations

2) Format: Each line contains a gene ID, a gene symbol (optional) and the nam set (separated by tabs/spaces). The gene IDs are expected to be of the same cr

in the GO annotation and TF fingerprint files. For details regarding the Gene that is used for each organism, refer to the <u>Supplied files</u> section.

*For example see file 'geneSetsData1.txt' under the Expander/sample_input_ (see Sample input files for more details).

Probes Filter file format:

Each line contains a single identifier. Identifiers can be probe Ids, gene Ids OR (but not a mixture of these identifier types).

ID conversion file format:

1) Suffix: Currently, there are no limitations regarding the file name suffix.

2) Format: Each line contains the probe id as it appears in the data file, a tab sel corresponding gene ID (e.g. Entrez/Locus-Link ids for mouse and human ge codes for yeast). The second field can be left blank, indicating no conversion for

* It is possible that several probe IDs in the data file will be mapped to the same several ESTs from the same gene).

Clustering files format:

1) Suffix: no limitations.

2) Format: Each line contains the probeID, a tab separator and name/numbe The number 0 is reserved for probes that are left unclustered. The file does not I all probes in the data. If a probe does not appear in the file, it is autom unclustered.

*For example see file 'expressionData1Clustering.sol' (a clustering solution fc expressionData1.txt') under the Expander/sample_input_files/ directory (see <u>Files</u> section for more details).

Biclustering files format:

1) Suffix: `.bic`.

2) Format: the file is composed of two parts, presented here.

Part 1 presents a summary of the biclusters found.

- It begins with the string: `[Bick]` in the first line.
- Following lines contain the bicluster's id followed by its' score, separated by (a line for each bicluster).

Part 2 presents the probesets and the conditions contained in each bicluster.

- It begins with the string: `[Bicd]` in the first line.
- Following lines contain the bicluster id, type of element ('0' for condition, '1' element id (name of condition or probe ID), separated by tab delimiters.

Background set files format:

1) Suffix: no limitation.

2) Format: each line should contain one gene ID. The gene IDs are expected to convention used in the annotation and TF fingerprint files for the organism you (please refer to the <u>Supplied Files</u> section).

Gene annotations/categories files format (for the general analysis):

1) Suffix: no limitation.

2) Format: each line should contain one gene ID and an annotation/category ni by a tab delimiter. The gene lds are expected to be of the same conventic annotation and TF fingerprint files for the organism you are working on (plea <u>Supplied Files</u> section).

Sample Input Files

Several sample files are provided under Expander/sample_input_files/. These file

expressionData1.txt – A gene expression data file that was generated us microarray technology. This is a partial dataset extracted from a yeast cell generated by Spellman et al 1998 (see the References section). Gene identifier: yeast ORFs, which are the same identifiers used in the annotation and TF finge are supplied with Expander. Thus, no conversion file is required.

ExpressionData2.txt – A gene expression data file that was generated in technology. This dataset was generated in an experiment that was conducted ir on human cells, and has not yet been published. Affymetrix chips of type HG-Fc for this experiment and thus, the HG-Focus conversion file is required for the ai downloaded from the download page).

ExpressionData3.txt – taken from Murray JI, Whitfield ML, Trinklein ND, Myє PO, Botstein D: Diverse and specific gene expression responses to stresses in c cells. Mol Biol Cell 2004, 15:2361-2374. A corresponding conversion file (from c lds) is available at the same directory under the name Data3Conversion.txt.

expressionWithDetection.txt – A gene expression data file with detection calls, generated in the Affymetrix technology. This dataset was generated in an experi conducted in our laboratory on human cells. Affymetrix GeneChip HGU133 Plus were used for this experiment.

expressionData1Clustering.sol – A clustering solution that was generated b_{i} the dataset in 'expressionData1.txt'.

geneSetsData1.txt - Contains sets of human genes (in Entrez/Locus-Link Ids).

Data3Conversion.txt - A conversion file for expressionData3.txt.

Supplied Files

The following files include gene info files: Gene ID conversion files, GO annotatic fingerprint files, promoter sequences, miRNA target scan files, chromosomal po biological pathway files, taken from the KEGG database*. These files should be into "Expander/organisms" directory.

Orga nism	Size after extracti on	Origin of GO annotations	Origin of sequences used for generating TF-fingerprint files	Origin of miRN A targets data files:	Origin of chromo somal location data files	Origin of pathwa y data files
Huma n	431MB	NCBI - Oct 2009,GOA@ EBI - Nov 2008	Ensembl releas e 53	TargetSc an website version 5	UCSC genome browser Jan 09	KEGG data base Novemb er 09, WikiPat hways March 2013
Baker 's yeast	30.6MB	NCBI - October 2009	SGD database 1.01	-	-	KEGG data base Novemb er 09, WikiPat hways March 2013
S. po mbe	15.7MB	NCBI - November 2008	Sanger GeneD B - October 2008	-	-	KEGG data base Novemb er 09, WikiPat hways March 2013
Listeri a mono cytos enes EGD- e	1.74MB	Blast2GO - February 2009	Not available	-	-	KEGG data base Novemb er 09

Mous e	338MB	NCBI - Oct 2009	Ensembl releas e 53	TargetSc an website version 5	UCSC genome browser Jan 09	KEGG data base Novemb er 09, WikiPat hways March 2013
Rat	280MB	NCBI Oct 2009	Ensembl releas e 56	-	UCSC genome browser Jan 09	KEGG data base Novemb er 09, WikiPat hways March 2013
Fly	218MB	NCBI Oct 2009	Ensembl releas e 53	TargetSc an website version 5	UCSC genome browser Jan 09	KEGG data base Novemb er 09, WikiPat hways March 2013
C- elega ns	278Mb	NCBI - Oct 2009	Ensembl releas e 56	TargetSc an website version 5	UCSC genome browser Jan 09	KEGG data base Novemb er 09, WikiPat hways March 2013
Arabi dopsi s	267MB	NCBI - Oct 2009	TAIR - December 2006	-	-	KEGG data base Novemb er 09, WikiPat hways March 2013
Zebra Fish	254Mb	NCBI - Oct 2009	Ensembl releas e 53	-	UCSC genome browser Jan 09	KEGG data base Novemb

						er 09, WikiPat hways March 2013
Chick en	205Mb	NCBI - Oct 2009	Ensembl releas e 56	-	-	KEGG data base Novemb er 09, WikiPat hways March 2013
Toma to	1.7Mb	EBI - March 2009	-	-	-	-
A.Fu migat us	72.5Mb	EBI - Jan 2010	Kevin Verstrepen's la b (via private communication with Nir Osherov)	-	-	KEGG data base Novemb er 09
E. coli	1.25MB	EBI - April 2008	Not available yet	-	-	-
Rice	170MB	<u>GO</u> DB Dec 2010	Bioinformatics Core database Washington State University	-	-	KEGG data base Novemb er 10
Leish mania	2MB	Zilberstein D. lab Technion - Israel Nov 2011	-	-	-	-

* Users of this product may not download large quantities of KEG

Gene ID conversion files:

Gene ID conversion files for many of the Affymetrix chips can be downloa Expander download page. The files map each Affymetrix Id into the correspo Conversion files are generated and added to the download page according to u you can't find the file you need here, please look it up in the download page, ar it's not there.

Organism	Chip name
Human	HG-Focus
Human	HGU1332
Human	HG-U95E
Human	HG-U133A
Human	HT_HG-U133A
Human	HG-U133Plus2
Human	Hu-35KsubB
Human	HuGene-1_0-ST
Mouse	MGU74Av2
Mouse	MGU430_2
Mouse	MG430A2
Mouse	MoGene-1_0-ST
Rat	RGU34A
Rat	Rat230_2
Rat	Agilent
C-elegans	C. elegans Genome Chip
Arabidopsis	ATH1
Zebra-Fish	GeneChip Zebrafish Genome Array
Chicken	Affymetrix Chicken Genome Chip
E. coli	Affymetrix E. coli Antisense Genome Array
E. coli	Affymetrix E. coli Genome 2.0 Array

Network files :

Organi sm	File name	Network origin
Human	Expander.hsa.RualN ature05.sif	Towards a proteome-scale map of the human protein-protein interaction network by Rual JF et al. <i>Nature</i> . 437(7062):1173-8 (2005)
Human	Expander.hsa.IntAct.s	IntAct database

	if	(http://www.ebi.ac.uk/intact/)
Mouse	Expander.mmu.IntAct .sif	IntAct database
		(http://www.ebi.ac.uk/intact/)
Rat	Expander.rno.IntAct.s if	IntAct database
		(http://www.ebi.ac.uk/intact/)
Worm	Expander.cel.Simonis NatMethods08.sif	Empirically controlled mapping of the <i>Caenorhabditis elegans</i> protein-protein interactome network by Simonis N. et al. <i>Nature Methods</i> 6, 47 - 54 (2009)
Fly	Expander.dme.DroID. sif	DroID database (http://www.droidb.org/)
Yeast	Expander.sce.United. sif	 High-Quality Binary Protein Interaction Map of the Yeast Interactome Network by Yu et al. Science 322(5898):104 – 110 (2008) Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae by Reguly et al. Journal of Biology 5(4):11 (2006) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae by Collins SR et al. Molecular Cell Proteomics 6(3):439-50 (2007)
Arabido psis	Expander.ath.TAIR.sif	TAIR database (http://www.arabidopsis.org/)
E. coli	Expander.eco.Arifuzz aman06.txt	Large-scale identification of protein–protein interaction of Escherichia coli K-12 by Arifuzzaman M et al. <i>Genome</i> <i>Research</i> 16(5):686-91. (2006)

Settings

The Settings are accessible from the *Options* menu, and contain *Display* s *External applications* settings.

The **Display** dialog box contains the following tabs:

Clustering Results View – Contains check boxes that configure the folloparameters:

- A common Y-axis scale for all cluster patterns (vs. cluster specific)
- Visible x axis
- Connect all points in a pattern
- Display similarity matrix for probes (using Pearson correlation)
- Display similarity matrix for conditions (using Pearson correlation)

Group Analysis Results View – Contains a check box that configures wl axis scale of all histograms is common OR cluster specific.

Data Matrix View – Allows selection between:

- Range control and extreme values control when rendering expression r
- The red/green coloring scheme can be changed to blue/yellow.

The *External applications* dialog box allows specification of the location executable (required for CEL files loading). In Windows, R.exe file is likely to the 'bin' folder of R software. In Linux, you may type 'which R' in the command lin path.

R External Application

The CEL file preprocessing and the newly added SAM filter utilities require the of one of the recent versions of R, a free software environment for statistical graphics. R can be installed from: <u>http://cran.r-project.org/</u>.

Upon the first time that Expander uses R external application, a window will pop specify your R software location. Please browse to the location of your I Windows, R.exe file is likely to be located in the 'bin' folder of R software. In I type 'which R' in the command line to find R path. If you have a few versions please make sure to point Expander to a version in which the necessary packa installed.

You may also specify R location from the menu: Options >> Settings >> Externa

To use R utilities, please make sure there are no white spaces in the path of Exp directory (or the CEL files directory, if loading CEL files). For example, if the nam Expander folder is 'Expander 5', change it to 'Expander_5'. If Expander is under Files" it should be moved to another location, because of the space between "Pr "Files". The R software does not cope well with spaces in the path.

Also, please make sure to have 'write' permission to the Expander\Rscripts direc loading CEL files, check also that you have 'write' permission to the *Files locatio*, specified in the 'Load CEL Files' dialog box.

After specifying R software location, a window will pop, asking you to approve automatically installation of R packages when needed.

If you approve automatically installation of R packages then when R utility is use Expander will automatically install the needed R packages for the used R utility.

If you disapprove automatically installation of R packages then please refe installation of R packages" section.

Manually installation of R packages

After installing R, please do the following to install the Bioconductor "affy" package and the "samr" package:

- 1. Run R.
- 2. In the R frame\window type the text: source("http://bioconductor.org/bi
- 3. Press 'Enter'.
- 4. In the R frame\window type the text: **biocLite("affy")**
- 5. Press 'Enter'.

To install the 'samr' package:

- 6. In the R frame\window type the text: install.packages("samr")
- 7. R frame\window type the text: install.packages("impute")
- 8. Press 'Enter'.

To install the 'eisa' package:

- 9. In the R frame\window type the text: **biocLite("eisa")**
- 10. Press 'Enter'.

To install the 'gcrma' package:

- 11. In the R frame\window type the text: **source("http://bioconductor.org/bi**
- 12. Press 'Enter'. In the R frame\window type the text:

13. biocLite("gcrma")

14. Press 'Enter'.

You may install only one of the packages, depending on what you wish to use (tr "samr", follow instructions number 1, 6 and 7).

FAQ

Linux/Unix problems

Click clustering, Samba bi-clustering, Tango and Prima Promoter analysis algor running on Linux/Unix.

CEL Files Loading Problems

How do I install R and the Bioconductor "affy" package? Loading of CEL files or performing SAM filter continue for ever Loading of CEL files fail.

Clustering

When I try to run Biclustering on my data I get a failure notice. How can I save the clustering expression patterns charts?

Grouping Analysis (functional and promoter analysis)

When I run Functional Analysis, Expander gets stuck.

When I load a session with that contains Functional Analysis results, Expander c When I try to run Promoter Analysis no values appear in the Fingerprints file file dialog box.

When I try to run the promoter\functional analysis, I get a failure message box. Promoter\Functional analysis produces no results (the resulting view is empty). How can I save the bar charts produced by Expander, displaying the enrichment Why do certain Transcription Factors have a few accession numbers or\and a fe

Saving sessions

When I try to save a session Expander fails and returns an XStream error messa Others

Can I run Expander on Mac OS?

Click clustering, Samba bi-clustering, Tango and Prima Promoter analysis algor running on Linux/Unix.

Answer: Make sure that you have write permission in the Expander directory, permissions on the files: click.exe, samba.exe, annot_sets.exe and analyzeFi which are under the Expander directory. If the problem still occurs, expanderLog.txt and search for the text: "libstdc++.so.5". If this text appears message indicating it has not been found), please contact your system adr report this problem (this is a system problem). If you do not have a system adr fail to install this library, please contact us (expander@cs.tau.ac.il) and we will tr

How do I install R and the Bioconductor "affy" package?

Answer: please refer to <u>R External Application</u> section.

Loading of CEL files or performing SAM filter continue forever.

Answer: If the operation continues forever (the 'processing, please wait' window please check if there is a folder with a space in its name somewhere in the pa (or the CEL files) directory. For example, if the name of the Expander folder is change it to 'Expander_4'. The R software used for preprocessing CEL files dealing with spaces in the path. If this is the problem, then in the expanderLog Expander directory) there should be a message about arguments being ignored.

Loading of CEL files fail.

Answer: Make sure you have R along with the Bioconductor "affy" package inst version which is specified in the settings "External Applications" tab (from the m *Options >> Settings >> External applications*). If R location is not defined in the s please define it (In Windows, R.exe file is likely to be located in the 'bin' folder of Linux, you may type 'which R' in the command line to find R path). If you are usir package as cdf source, please make sure that the package is a folder located ur library directory and that it is the correct package for your chip. If loading of CEL

please make sure that the *Files location* which you specified in the 'Load CEL Fil is a folder which contains CEL files and that you have write permission to that fol

When I try to run Biclustering on my data I get a failure notice.

Answer: Make sure that the 'Use option files of type' field in the SAMBA input d empty (if it is, please re-download Expander). Also make sure that the followir your Expander directory: ibic.opt, samba.exe.

How can I save the clustering expression patterns charts?

When the clustering results tab is open, please go to File >> Save As Image.

When I run Functional Analysis, Expander gets stuck.

Answer: If you are working with Expander version 4.0 or 4.0.1, please upda version (4.0.2 and on).

When I load a session with that contains Functional Analysis results, Expander c

Answer: If you are working with Expander version 4.0 or 4.0.1 (and the sessic with a version < 4.0), please update to a higher version (4.0.2 and on).

When I try to run Promoter Analysis no values appear in the Fingerprints file file dialog box.

Answer: Fingerprint files are not placed in the right directory. Fingerprint files sh under the 'TF_fingerprints' directory that is under the Expander, name> directory. For example, the human FP file should be p .../Expander/organisms/human/TF_fingerprints/. When downloading the organis zip, it should be extracted into the Expander/organisms/ directory. This will au them in the right place.

Group analysis (enrichment analysis) leads to a failure message box.

Answer: Errors while running group (enrichment) analysis can be caused by problems:

- a) Organism specific data (Fingerprint\annotation files) is not in the right directory. specific data zip should be extracted into the Expander/organisms/ direct download the relevant data by selecting from the menu: *Help >> Download Data*
- b) Data contains elements that do not appear in the background set (this is only rele background set is loaded from an external file).

Group analysis (enrichment analysis) produces no results (the resulting view is e

Answer: This can be caused by one of the following:

a) You are using the wrong conversion file or a conversion file that is not in the does not map the probes to the expected type of gene Ids. The conversion 1 probe ID in your data file to a gene ID that is used in the group analysis. A cc

required when the probe lds in your data file do not match the ones in the enricl example annotation and TF_fingerprint files that we supply).

b) You did not set the organism field in the input dialog to the organism type of y-

c) You are trying to analyze only one set (e.g. the filtered data set) which you are background (in this case the analysis has no meaning since it is trying to detect the cluster/bicluster in comparison to the background set).

d) You set the threshold p-value to be too strict (low).

e) Biological reason i.e., there is nothing to report regarding this specific cluster solution or this gene sets data.

How can I save the bar charts produced by Expander, displaying the enrichment

When the results tab is open, please go to File >> Save As Image.

Why do certain Transcription Factors have a few accession numbers or\and a fe

Answer: The transcription factors (TFs) found enriched by Prima are presented way:

Accession Num. in TRANSFAC DB [TF name]. For example, M00287[NF-Y]

It is possible that a TF will have a few accession numbers in TRANSFAC, w different PWMs (position weight matrices specify the probability for observing e at each position of the binding site, based on a set of empirically validated bind respective TF).

It is also possible that a TF will have a few Entrez gene IDs, since a TF may be few proteins. For example, NF-Y is a trimer, composed of 3 subunits.

Can I run Expander on Mac OS?

Expander is not designed for Mac OS. You can probably use it partially – running its features that require the execution of exe files (CLICK, SAMBA and PRIMA). The exe files are only suitable for Windows and Linux / Unix

When I try to save a session, Expander fails and returns an XStream error mess

If you are using java version 1.7, please switch to version 6. We currently have this problem, that occurs with java1.7 and XStream, which is an external packa using. We will do our best to resolve it in the coming future. In order to Expander.bat files to use a java 6 version do the following:

- Make sure that jave 6 (or 5) is installed on your PC by exploring the "Program Fi (or "Program Files/Java") directory. In it there should be a subdirectory by the na (otherwise please install java6 from <u>http://java.sun.com/javase/downloads/index.</u>)
- 2) In the Expander directory right click on one of the Expander.bat files (the one and select "Edit".

- 3) In the file type the path of the java6 exe file instead of the word java. E.g. C:\Program Files (x86)\Java\jre6 then put the text: "C:\Pr (x86)\Java\jre6\bin\java.exe" (including the quotes ("")) instead of the word java.
- 4) Remove the text "-client" from the file
- 5) Save and close the file

This section will be updated as we get user feedbacks and problems. Please refer all questions/comments to Expander@cs.tau.ac.il.

Copyrights Information

Copyrights © Tel-Aviv University, Israel (2003).

This product uses the FreeHEP Java Library, which is distributed under the FreeHEP copyright holders: CERN, Geneva, Switzerland SLAC, Stanford, Ca University of California Santa Cruz, U.S.A.

This product uses the XStream Java Library, which is distributed under the BSD BSD.txt). Copyright holders: (c) Joe Walnes 2003-2005

This product uses the Caryoscope java component, which is distributed under th (see MIT_Caryoscope.txt). Copyright holders: Copyright 2003-2004, Ihab A.B. A Copyright 2006, Anjalee Sujanani; Stanford University.

A portion of the user interface code is due to Sun Microsystems.Inc. Copyright ' Microsystems, Inc. All Rights Reserved. The following license rules apply to that

'Neither the name of Sun Microsystems, Inc. or the names of contributors m endorse or promote products derived from this software without specific permission.

This software is provided 'AS IS,' without a warranty of any kind. ALL EXPRES: CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING / WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURP(INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ('S LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LI RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTW/ DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE F(REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CON INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARD THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILI' DAMAGES.

You acknowledge that this software is not designed, licensed for use in the design, construction, operation or maintenar nuclear facility.'

References

R: R Development Core Team (2008). R: A language and environment computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900 http://www.R-project.org

affy package for CEL files preprocessing: Gautier, L., Cope, L., Bolstad, B. N R. A. 2004. affy---analysis of Affymetrix GeneChip data at the probe level. Bioin (Feb. 2004), 307-315

gcrma R package: Jean(ZHIJIN) Wu and Rafael Irizarry with contribution MacDonald Jeff Gentry (). gcrma: Background Adjustment Using Sequence package version 2.14.1.

Quantile normalization: Bolstad, B. M. Irizarry, R. A. Astrand, M. and Sc Comparison of Normalization Methods for High Density Oligonucleotide Array I Variance and Bias. Bioinformatics 19(2):185-193, 2003

Non-linear baseline normalization: Schadt, E., C. Li, B. Eliss, and W. H. V extraction and normalization algorithms for high-density oligonucleotide gene e> data. J. Cell. Biochem. 84(S37),120–125, 2002

SAM (Significance Analysis of Microarray):

V. Tusher., R. Tibshirani., and G. Chu. Significance analysis of microarrays appli ionizing radiation response. PNAS, 98: 5116-5121, 2001

R. Tibshirani, G. Chu, T. Hastie and Balasubramanian Narasimhan (). samr: SAI Analysis of Microarrays. R package version 1.26. <u>http://www-stat.stanford.edu/~1</u>

K-Means clustering algorithm: Tavazoie, S., Hughes, J. D., Campbell, M. J., C Church, G. M. Systematic determination of genetic network architecture. Nat Gel 285, 1999

SOM clustering algorithm: Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Dmitrovsky, E., Lander, E. S., and Golub, T. R. Interpreting patterns of gene ϵ self-organizing maps: methods and application to hematopoietic differentiation. Sci U S A, 96, 2907-2912, 1999

CLICK clustering algorithm: Sharan, R. and Shamir, R. CLICK: a clustering applications to gene expression analysis. Proc Int Conf Intell Syst Mol Biol 8, 307

ISA Biclustering algorithm: Bergmann, S., Ihmels, J., Barkai, N.

Iterative signature algorithm for the analysis of large-scale gene expression data Stat Nonlin Soft Matter Phys 2003 Mar; 67(3 Pt 1)

SAMBA biclustering algorithm: Tanay, A. Sharan, R. and Shamir, R. Discover significant biclusters in gene expression data. Bioinformatics, 18(1), 136-144, 20

Matisse network grouping: Ulitsky, I. and Shamir, R. MATISSE: Identificatic modules using network topology and high-throughput data. BMC Systems Biolog (2007)

Degas network grouping:

Ulitsky, I., Karp , R.M. and Shamir, R. Detecting Disease-Specific Dysregulated Pathways Via Analysis of Clinical Expr <u>Proceedings of RECOMB 2008</u>, pp. 347--359, LNBI 4955, Springer, Berlin, (200

Context Scores for miRNA enrichment analysis: Grimson, A., Kai-How Farh,

Johnston, W., Garrett-Engele, F., P Lim, L., P Bartel, D. MicroRNA Targeting Sp Mammals: Determinants beyond Seed Pairing. Molecular Cell, 27:91-105 (2007) **PRIMA algorithm:** Elkon, R., Linhart, C. Sharan, R. Samir, R. and Shiloh, Y. Ge Silico Identification of Transcriptional Regulators Controlling the Cell Cycle in Genome Research, Vol. 13(5), pp. 773-780, 2003.

Spike software and DB: R. Elkon, R. Vesterman, N. Amit, I. Ulitsky, I. Zohar Mass, N. Orlev, G. Sternberg, R. Blekhman, J. Assa, Y. Shiloh and R.Shar database, visualization and analysis tool of cellular signaling pathways. BMC 2008, **9**:11

Spike home page: http://www.cs.tau.ac.il/~spike/

Agglomerative algorithm for hierarchical clustering: Eisen, M. B., Spellma Cluster analysis and display of genome-wide expression patterns. Proc Natl A 95(25), 14863-8, 1998

TF binding site profiles that were used to generate the supplied yeast files: Harbison, C.T., D.B. Gordon, T.I. Lee, N.J. Rinaldi, K.D. Macisaac, T.W. Hannett, J.B. Tagne, D.B. Reynolds, J. Yoo, E.G. Jennings, J. Zeitlinger, D.K Kellis, P.A. Rolfe, K.T. Takusagawa, E.S. Lander, D.K. Gifford, E. Fraenkel, ar Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104, 20(

expressionData1.txt sample input file: Spellman, P. T., Sherlock, G., et al. (identification of cell cycle-regulated genes of the yeast Saccharomyces microarray hybridization. Mol Biol Cell 9(12), 3273-97, 1998

Gene Set Enrichment Analysis: Aravind Subramanian, Pablo Tamayo, Vamsi Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Sc Pomeroy, Todd R. Golub, Eric S. Lander, and Jill P. Mesirov. Gene set enrichme knowledge-based approach for interpreting genome-wide expression profiles. Pt no. 43, 15545–15550, 2005