

#### **EXPression ANalyzer and DisplayER**

Adi Maron-Katz Igor Ulitsky Chaim Linhart Amos Tanay Seagull Shavit Rani Elkon Tom Hait Dorit Sagir Eyal David Roded Sharan Israel Steinfeld Yossi Shiloh Ron Shamir

Ron Shamir's Computational Genomics Group

Rani Elkon's Group

# Schedule

- Data, preprocessing, grouping (10:15-10:45)
- Hands-on part I (10:45-11:00)
- Coffee Break (11:00 11:15)
- Grouping analysis (11:15-11:40)
- Hands-on part II (11:40-13:00)
- Coffee Break (13:00 13:15)
- Enrichment analysis (13:15-13:40)
- Hands-on part III (11:40-13:00)
- Coffee Break (13:00 13:10)
- Expander new features GSEA/ChIP-Seq/RNA-Seq (13:10-13:30)
- Hands-on part IV (13:30-14:00)

#### EXPANDER – an integrative package for analysis of gene expression and NGS data

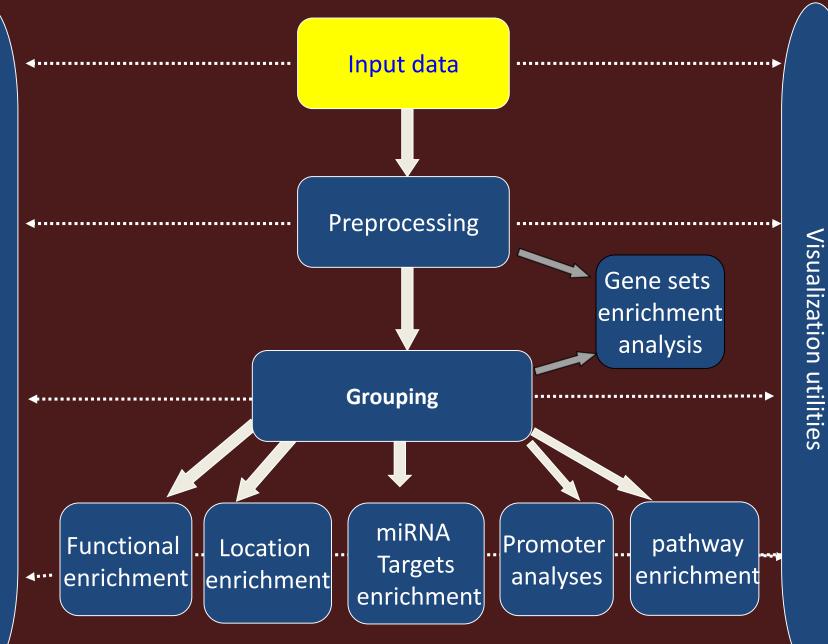
#### • Built-in support for 18 organisms:

human, mouse, rat, chicken, fly, zebrafish, C.elegans, yeast (s. cereviciae and s. pombe), arabidopsis, tomato, listeria, leishmania, E. coli (two strains), aspargillus, rice. And v.vinifera (grape)

- Demonstration on human CAL51 cell line experiments\*:
  - RNA-Seq data, which contains expression profiles measured in several time points after IR-induction.
  - P53 ChIP-Seq data after 2 hours of IR-induction.

\*Data from Rashi-Elkeles, Warnatz and Elkon et al, 2014, Science Signaling, DOI: 10.1126/scisignal.2005032

# **EXPANDER** status


- 691 citations since 2003
- 67 citations since 2015
- 16,544 downloads since 2003
- 1427 since 2015

# What can it do?

#### Low level analysis

- Data adjustments (missing values, merging, divide by base, log)
- Normalization
- Probes & condition filtering
- High level analysis
  - Group detection (supervised clustering, differential expression, clustering, bi-clustering, network based grouping).
  - Ascribing biological meaning to patterns via enrichment analysis

Links to public annotation databases



# EXPANDER – Data

Expression matrix (probe-row; condition-column)

- One-channel data (e.g., Affymetrix)
- Dual-channel data, in which data is log R/G (e.g. cDNA microarrays)
- '.cel' files
- RNA-Seq counts OR absolute/relative intensities data
- **ChIP-Seq data:** in BED or GFF3 formats
- □ <u>ID conversion file</u>: maps probes to genes
- Gene groups data: defines gene groups
- Gene ranks data: defines gene ranking for GSEA
- □ Network information (e.g. PPI network) .sif format

# First steps with the data – load, define, preprocess

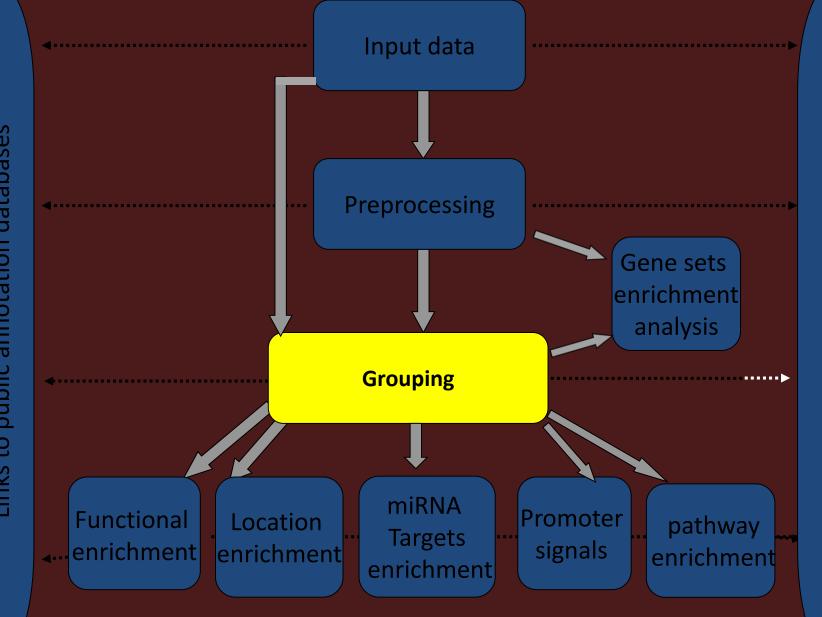
- Load dialog box , "Data menu", "Preprocessing menu"
- Data definitions
  - Defining condition subsets
  - Data type & scale (log)
  - Define genes of interest
- Data Adjustments
  - Missing value estimation (KNN or arbitrary)
  - Flooring
  - Condition reordering
  - Merging conditions
  - Merging probes by gene IDs
  - Assigning genes to ChIP-Seq peaks
  - Divide by base
  - Log data (base 2)

#### Data preprocessing

- Normalization = removal of systematic biases
  - Quantile = equalizes distributions
  - Lowess (locally weighted scatter plot smoothing) = a non linear regression to a base array
- Visualizations to inspect normalization:
  - box plots
  - Scatter plots (simple and M vs. A)

 $M = \log_2(A1/A2)$ A = 0.5\*log<sub>2</sub>(A1\*A2)

### Data preprocessing


#### Probe filtering

Focus downstream analysis on the set of "responding genes"

- Fold-Change
- Variation
- Statistical tests: T-test, SAM (Significance Analysis of Microarrays)
- It is possible to define "VIP genes".
- □ <u>Standardization</u> : Mean=0, STD=1 (visualization)
- Condition filtering
- Order of operations







Links to public annotation databases

Visualization utilities

#### Supervised Grouping





a) Under normality assumption: t-test, SAM
b) No normality assumption (RNA Seq data):
Wilcoxon rank sum test , Negative binomial
(edgeR/DESeq2)

Similarity group (correlation to a selected probe/gene)

□ Rule based grouping (define a pattern)

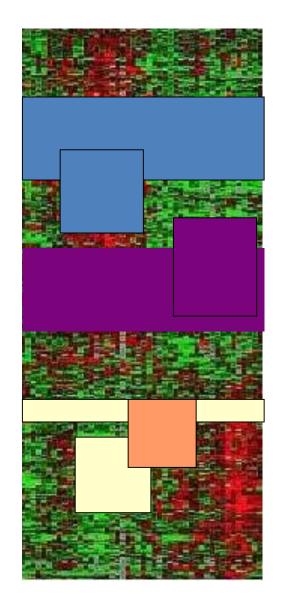
#### **Unsupervised grouping - cluster Analysis**

Partition into distinct groups, each with a particular expression pattern

- co-expression  $\rightarrow$  co-function
- co-expression  $\rightarrow$  co-regulation

Partition the genes attempts to maximize:

- Homogeneity within clusters
- Separation between clusters


#### **Cluster Analysis within Expander**

- Implemented algorithms:
  - CLICK, K-means, SOM, Hierarchical
- Visualization:
  - Mean expression patterns
  - <u>Heat-maps</u>
  - <u>Chromosomal positions</u>
  - Network sub-graph (Cytoscape integration)
  - PCA
  - Clustered heat map

# Biclustering

Clustering seeks global partition according to similarity across <u>ALL</u> conditions >> becomes too restrictive on large datasets.

- Relevant knowledge can be revealed by identifying genes with common pattern across a <u>subset</u> of the conditions
- Novel algorithmic approach is needed: *Biclustering*



# **Biclustering II**

\* Bicluster = subset of genes with similar behavior under a subset of conditions

Computationally challenging: has to consider many combinations

#### **Biclustering methods in EXPANDER:**

ISA (Iterative Signature Algorithm) - Ihmels et.al Nat Genet 2002

SAMBA = Statistical Algorithmic Method for Bicluster Analysis ( A. Tanay, R. Sharan, R. Shamir *RECOMB 02*)

#### Drawbacks/limitations:

- Useful only for over 20 conditions
- Parameters
- How to asses the quality of Bi-clusters

#### **Biclustering Visualization**

| File Options |                    |              |     | Cond44                                   | Iuster 11                             | Gene Symbol<br>VSC4<br>PO4 | Gene ID |
|--------------|--------------------|--------------|-----|------------------------------------------|---------------------------------------|----------------------------|---------|
| Bic num      | Bic Score          | # Conditions |     | YHL028W<br>YOR273C<br>YOR313C<br>YLR034C |                                       | SPS4 3.2<br>SMF3 4         |         |
| 1            | 230.475<br>495.917 | 7            | 37  | YGR143W                                  | 9                                     | 3KN1 1.6                   |         |
| 2            | 495.917            | 6            | 76  | YEL065W<br>YIL119C                       | F F                                   | GIT1 0.0                   |         |
| 3            | 248.93             | 7            | 38  | YIL119C<br>YLR142W<br>YOR153W            |                                       | PUT1 -1.6                  |         |
| 5            | 461.604            | 7            | 68  | YPL058C                                  | F                                     | PDR12 -3.2                 |         |
| 6            | 177.526            | 7            | 22  | YML120C<br>YMR145C                       |                                       | NDI1 L                     | *       |
| 7            | 116.431            | 5            | 34  | YPR167C                                  | i i i                                 | MET16<br>MEP3              |         |
| 8            | 374.292            | 9            | 27  | YPR138C<br>YOL119C                       |                                       | MEP3<br>MCH4               |         |
| 9            | 331.779            | 10           | 46  | YKL183W<br>YPL250C                       |                                       | OT5<br>CY2                 |         |
| 10           | 320.373            | 6            | 55  | YMR189W                                  |                                       | GCV2                       |         |
| 11           | 417.158            | 7            | 75  | YKR039W<br>YMR058W                       |                                       | GAP1<br>FET3               |         |
| 12           | 286.944            | 6            | 55  | YOR317W                                  | F                                     | FAA1                       |         |
| 13           | 144.321            | 12           | 13  | YPL265W<br>YNL111C                       |                                       | DIPS<br>CYB5               |         |
| 14           | 201.665            | 10           | 23  | YML116W                                  | e e e e e e e e e e e e e e e e e e e | ATRI<br>ARO9               |         |
| 15           | 435.368            | 7            | 68  | YHR137W<br>YDR380W                       | A                                     | AR010                      |         |
| 16           | 680.887            | 8            | 81  | YCL025C<br>YLR169W                       | A                                     | NGP1<br>N/A                |         |
| 17           | 148.6              | 10           | 12  | YDR029W                                  |                                       | N/A                        |         |
| 18           | 200.601            | 14           | 19  | YCLX09W<br>YOL070C                       |                                       | N/A<br>N/A                 |         |
| 19           | 206.593            | 6            | 44  | YOL150C                                  | i i                                   | N/A                        |         |
| 20           | 372.519            | 10           | 53  | YÖR315W<br>YPR045C                       |                                       | N/A<br>N/A                 |         |
| 21           | 575.098            | 5            | 107 | YNL056W                                  | 1                                     | N/A                        |         |
| 22           | 387.311            | 6            | 71  | ÝME033VÝ<br>YOR314W                      |                                       | N/A<br>N/A                 |         |
| 23           | 213.658            | 4            | 56  | YOL114C<br>YDL180W                       | 1                                     | N/A                        |         |
| 24           | 196.952            | 14           | 15  | YDL180W<br>YBR242W                       |                                       | N/A<br>N/A                 |         |
| 25           | 458.704            | 12           | 45  | YHR029C                                  |                                       | NA<br>NA                   | n n     |
| 26           | 522.565            | 12           | 42  | YDL089W                                  | ľ                                     | WA                         | Cond57  |
| 27           | 179.189            | 7            | 27  |                                          |                                       |                            |         |

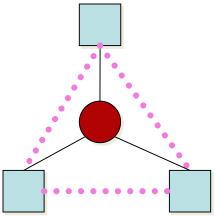
#### Network based grouping

Goal: to identify modules using gene expression data and interaction networks

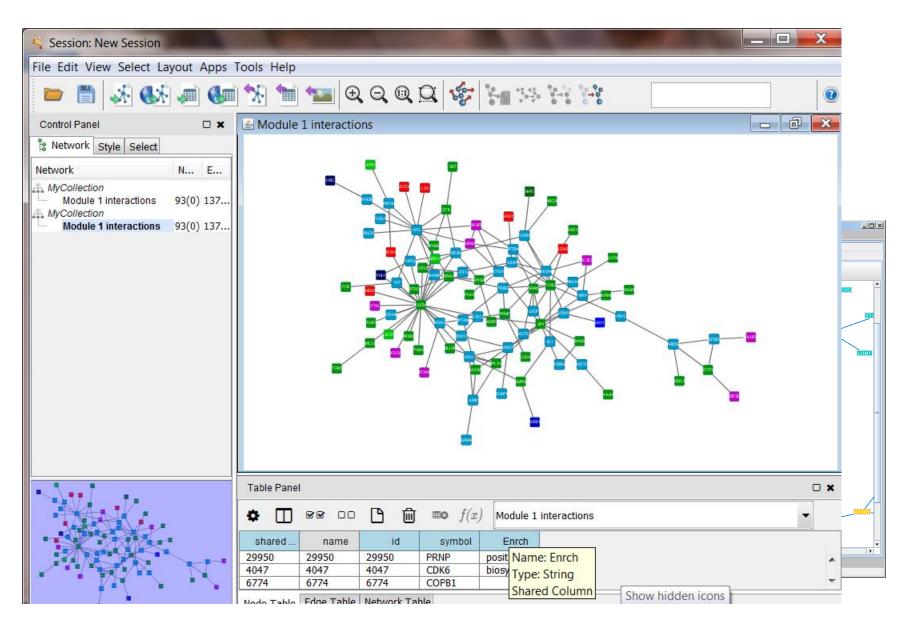
GE data + Interactions file (.sif)

MATISSE (Module Analysis via Topology of Interactions and Similarity SEts)

I. Ulitsky and R. Shamir. BMC Systems Biology 2007)

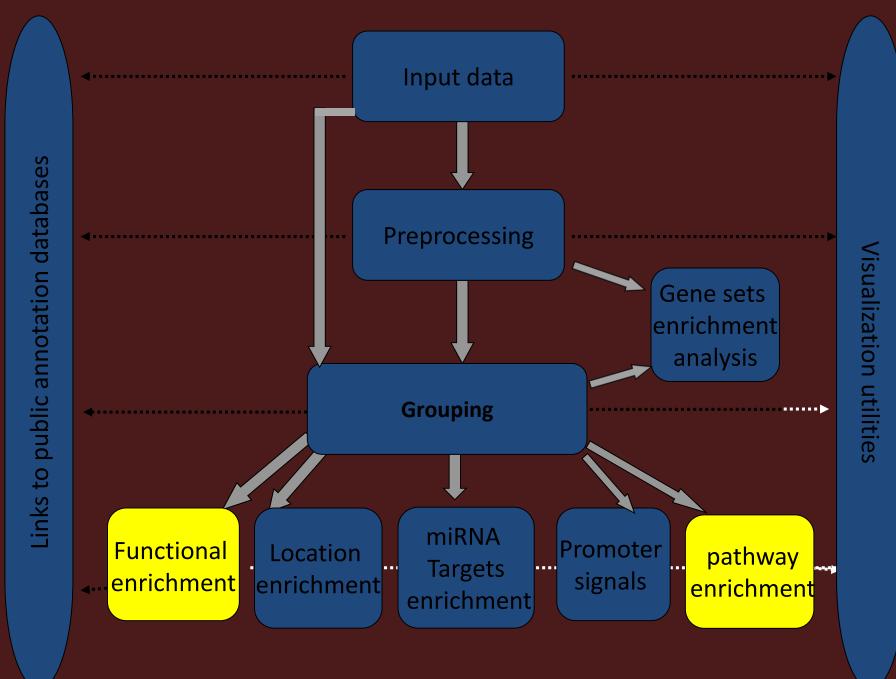

**DEGAS (DysrE**gulated **G**ene set **A**nalysis via **S**ubnetworks ) I. Ulitsky et. Al. Plos One 2010

# Motivation


- Detect functional modules, i.e. groups of
  - interacting proteins
  - co-expressed genes
- Integrative analysis can identify weaker signals
- Identifies a group of genes as well as the connections between them

# Front vs Back nodes

- Only variant genes (front nodes) have meaningful similarity values
- These can be linked by non regulated genes (back nodes).
- Back nodes correspond to:
  - Post-translational regulation
  - Partially regulated pathways
  - Unmeasured transcripts




#### Network based clustering visualization



# Hands-on (3-5)





Functional enrichment analysis - Ascribing functional meaning to gene groups

- Gene Ontology (GO) annotations for all supported organisms
- <u>TANGO</u>: Apply statistical tests that seek overrepresented GO functional categories in the groups

#### **Functional Enrichment - Visualization**

#### 🛃 xpander5 - Default Session

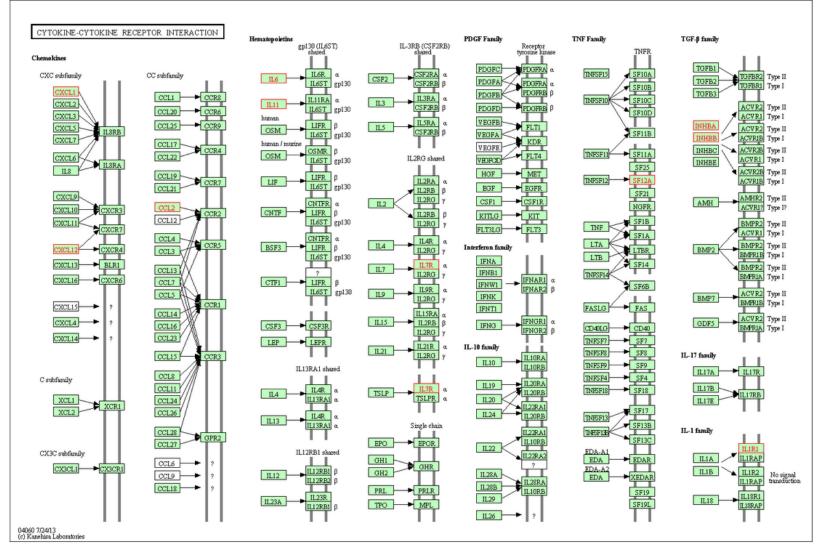
File Data Preprocessing Grouping Group Analysis Visualizations Options Help

| multicellular organismal development - GO:00                         | Diagrams                      | Enrichment Table                                          |        |             |                  |                |
|----------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------|--------|-------------|------------------|----------------|
| positive regulation of cellular process - GO:00                      | Set                           | Enriched with                                             | #genes | Raw p-value | Corrected p-Val. | Frequency in s |
| immune response - GO:0006955                                         | Cluster_1                     | immune response - GO:0006955                              | 13     | 3.509E-12   | 0.0010           | 9.02           |
| protein dimerization activity - GO:0046983                           | Cluster_1                     | response to external stimulus - GO:0009605                | 12     | 1.798E-10   | 0.0010           | 8.33           |
| cellular developmental process - GO:0048869                          | Cluster_1                     | defense response - GO:0006952                             | 11     | 1.825E-9    | 0.0010           | 7.63           |
| structural constituent of cytoskeleton - GO:000                      | Cluster_1                     | taxis - GO:0042330                                        | 6      | 1.67E-7     | 0.0020           | 4.16           |
| defense response - GO:0006952                                        | Cluster_1                     | chemokine activity - GO:0008009                           | 4      | 1.471E-6    | 0.0050           | 2.77           |
| nuclear part - GO:0044428                                            | Cluster_3                     | nuclear part - GO:0044428                                 | 15     | 7.072E-7    | 0.0040           | 12.19          |
| regulation of developmental process - GO:005<br>nucleus - GO:0005634 | Cluster_3                     | regulation of cellular process - GO:0050794               | 28     | 1.083E-6    | 0.0040           | 22.76          |
| response to external stimulus - GO:0009605                           | Cluster_3                     | nucleus - GO:0005634                                      | 24     | 3.038E-6    | 0.0080           | 19.51          |
| negative regulation of biological process - GO:                      | Cluster_4                     | regulation of cellular process - GO:0050794               | 40     | 1.472E-11   | 0.0010           | 34.18          |
| chemokine activity - GO:0008009                                      | Cluster_4                     | regulation of progression through cell cycle - GO:0000074 | 13     | 1.879E-9    | 0.0010           | 11.11          |
| regulation of progression through cell cycle - G                     | Cluster_4                     | multicellular organismal development - GO:0007275         | 28     | 7.478E-9    | 0.0010           | 23.93          |
| response to stress - GO:0006950                                      | Cluster_4                     | transcription factor activity - GO:0003700                | 18     | 8.693E-9    | 0.0010           | 15.38          |
| regulation of cellular process - GO:0050794                          | Cluster_4                     | anatomical structure development - GO:0048856             | 26     | 1.032E-8    | 0.0010           | 22.22          |
| anatomical structure development - GO:00488                          | Cluster_4                     | apoptosis - GO:0006915                                    | 15     | 1.831E-8    | 0.0010           | 12.82          |
| taxis - GO:0042330                                                   | Cluster_4                     | positive regulation of cellular process - GO:0048522      | 16     | 2.187E-8    | 0.0010           | 13.67          |
| cytoplasmic part - GO:0044444                                        | Cluster_4                     | cellular developmental process - GO:0048869               | 26     | 3.548E-8    | 0.0020           | 22.22          |
| actin cytoskeleton - GO:0015629                                      | Cluster_4                     | negative regulation of biological process - GO:0048519    | 16     | 4.0E-7      | 0.0020           | 13.67          |
| myeloid cell differentiation - GO:0030099                            | Cluster_4                     | regulation of developmental process - GO:0050793          | 9      | 7.271E-7    | 0.0040           | 7.69           |
| contractile fiber part - GO:0044449                                  | Cluster_4                     | response to stress - GO:0006950                           | 14     | 8.002E-7    | 0.0040           | 11.96          |
| muscle contraction - GO:0006936                                      | Cluster_4                     | nucleus - GO:0005634                                      | 28     | 8.377E-7    | 0.0040           | 23.93          |
| cytoskeletal part - GO:0044430                                       | Cluster_4                     | protein dimerization activity - GO:0046983                | 8      | 1.309E-6    | 0.0040           | 6.83           |
| transcription factor activity - GO:0003700                           | Cluster_4                     | myeloid cell differentiation - GO:0030099                 | 6      | 1.804E-6    | 0.0080           | 5.12           |
| apoptosis - GO:0006915                                               | Cluster_5                     | muscle contraction - GO:0006936                           | 11     | 6.271E-20   | 0.0010           | 26.19          |
|                                                                      | Cluster_5                     | actin cytoskeleton - GO:0015629                           | 10     | 1.116E-13   | 0.0010           | 23.8           |
|                                                                      | Cluster_5                     | contractile fiber part - GO:0044449                       | 7      | 6.862E-12   | 0.0010           | 16.66          |
|                                                                      | Cluster_5                     | cytoskeletal part - GO:0044430                            | 10     | 1.587E-9    | 0.0010           | 23.8           |
|                                                                      | <ul> <li>Cluster_5</li> </ul> | structural constituent of cytoskeleton - GO:0005200       | 6      | 2.653E-9    | 0.0010           | 14.28          |
|                                                                      | Cluster_5                     | cytoplasmic part - GO:0044444                             | 17     | 2.612E-8    | 0.0020           | 40.47          |
| Analysis Info:<br>Analyzed Gene Groups: CLICK 1.1                    |                               |                                                           |        | F           |                  |                |
| Background Set Selection: all genes                                  |                               |                                                           |        |             | <b>•</b> •       |                |
| Threshold p-Value: 0.01                                              |                               |                                                           |        |             | Can be           | saves as       |
| Max Size of Class to consider: 3000                                  |                               |                                                           |        |             |                  |                |
|                                                                      |                               |                                                           |        |             | tabular          | tyt filo       |
| Annotation sub-types: Process,Function                               |                               |                                                           |        |             | labuidi          | .uxu me        |
| Number of iterations: 1000                                           |                               |                                                           |        | L           |                  |                |
| Number of enriched sets: 4                                           | <b>•</b>                      |                                                           |        |             |                  |                |
| Data Sheet 1 CLICK 1.1 CLICK 1.1 GO Enrich.1 CLICK 1.1 GO Enrich.2   |                               |                                                           |        |             |                  |                |

Currently working on: Data Sheet 1

\_ 8 ×

### Pathway analysis

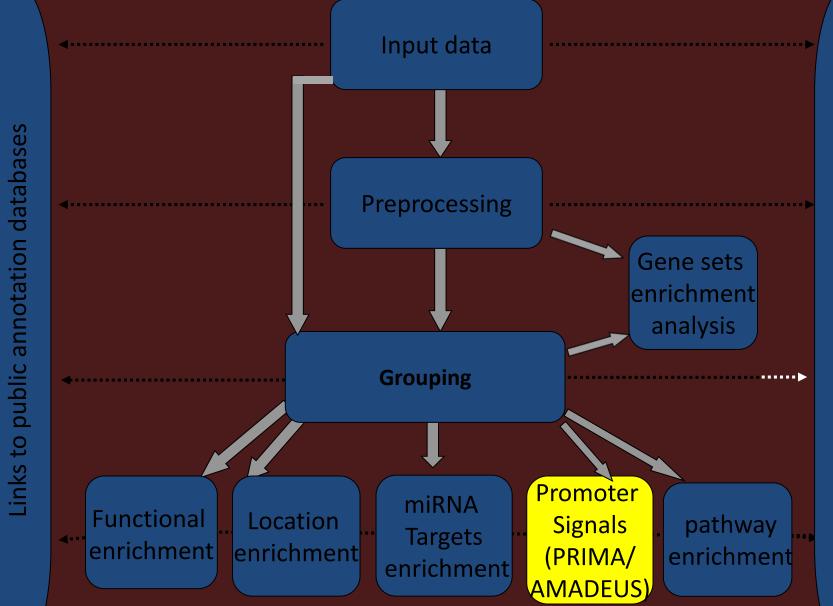

- Searches for biological pathways that are overrepresented in gene groups
- KEGG: Kyoto Encyclopedia of Genes and Genomes (mainly metabolic),all 18 orgs
- WikiPathways various biological pathways(~20 species, 1765 pathways) – open resource
- Statistical hyper-geometric (HG) cumulative distribution score + multiple testing correction

C 👬 🗋 www.genome.jp/kegg-bin/show\_pathway?hsa04060+6347+6387+3625+3624+2919+3575+51330+3589+3554+3569

Cytokine-cytokine receptor interaction - Homo sapiens (human)

[Pathway menu | Organism menu | Pathway entry | Download KGML | Show description | User data mapping ]

Homo sapiens (human) ▼ Go 100% ▼




Input data Normalization/ Filtering Visualization utilities Gene sets enrichment analysis Grouping (Clustering/ Biclustering/ Network based clustering) miRNA Promoter **Functional** Location **Targets** signals enrichment enrichment ·····<mark>enrichment</mark>···· (PRIMA/ .... .... **4**••• (TANGO) AMADEUS) FAME

#### miRNA Enrichment Analysis

 Goal: to predict micorRNAs (miRNAs) regulation by detecting miRNAs whose binding sites are over/under represented in the 3' UTRs of gene groups.

 FAME = Functional Assignment of MiRNAs via Enrichment



Visualization utilities

# Inferring regulatory mechanisms from gene expression data

Assumption:

*co-expression* → transcriptional *co-regulation* → *common cis-regulatory promoter elements* 

- Computational identification of *cis*-regulatory elements over-represention
- PRIMA PRomoter Integration in Microarray Analysis (Elkon, et. Al, Genome Research, 2003)
- **AMADEUS** novel motif enrichment analysis

# **PRIMA – general description**

- Input:
  - Target set (e.g. co-expressed genes)
  - Background set (e.g. all genes on the chip)
- Analysis: Detects TFs with high target set prevalence
- TF binding site models TRANSFAC DB
- Default: From -1000 bp to 200 bp relative the TSS

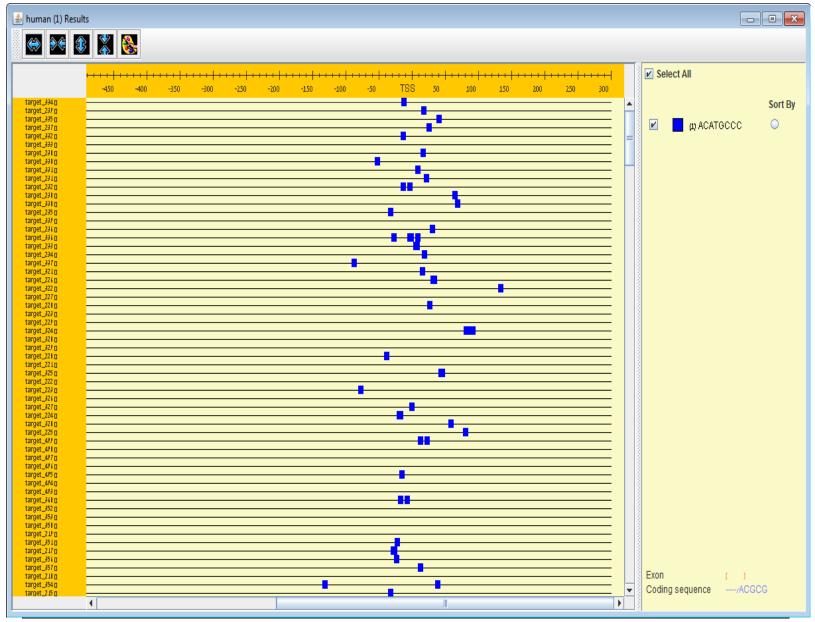
#### **Promoter Analysis - Visualization**



|                                    |                                                                                                                                                                                                                                                            | ✓ Select All                |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                    | -1000 -950                                                                                                                                                                                                                                                 |                             |
| 388 (RHOB)                         | ที่ที่ที่ที่ที่มีการที่สุดการที่สุดการที่สุดการที่สุดการที่สุดการที่สุดการที่สุดการที่สุดการที่สุดการที่สุดการที่                                                                                                                                          |                             |
| 467 (ATF3)<br>8553 (BHLHB2)        | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     |                             |
| 3726 (JUNB)                        | GGGTTTTAGGATGGGGGACAGAGAATACAGATGACTAAGAGGTTACCATCGAGGGGGGAGCAGCAGCAG                                                                                                                                                                                      | M00807[EGR]                 |
| 8870 (IER3)                        | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     | M00716[ZF5]                 |
| 1958 (EGR1)<br>10221 (TRIB1)       | CCT GCCCAGGCGGGCCCAGC <mark>CGCTCCTCCCCCGCAC</mark> T CCCGGTT CGCT CT CACGGT CCCT GAGGT GGG<br>GGCCCT GGCT CAGGAAGCT CTTT CT GCGAGT CACCGCGAAGGGGCGGCCCCGGGAGCCT GGAGAAGCT A                                                                               |                             |
| 3164 (NR4A1)                       | T G G G G T G G C AT G C C A A G C G A T G C A G G C A G G G C C C G C A G A C C A G G C C A G G C C T G T C C T C                                                                                                                                         | M00695[ETF]                 |
| 7071 (KLF10)<br>9792 (SERTAD2)     | A G G C A G G A C G C T T C C A G A G G T C T A G T C C A G G G G G G G G G G G G G G G G C T A C C T T T G A A A C A G C T<br>C A G T G G A A C C A T C T A G G C C T C T T C C C T A G T G C T T A A A T T C T C A C C A T T T G G G C A T A C A C A C A | M01068[UF1H3BETA]           |
| 2354 (FOSB)                        | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     |                             |
| 9903 (KLHLŹ1)                      | 66666CT66AAAAAAAAAAAAAAAACCCAAGT6TTCTCT6CAAAGCAGCAGTCCT <u>66T66T6AAATA</u> 66666T                                                                                                                                                                         | 🗹 📃 M00189[AP-2]            |
| 3280 (HES1)<br>1969 (EPHA2)        | ACGCCGGCCGGCT GAT GT CAAACT GCAGCT CGGCT GGT GT AGCT CT T AAAG <mark>GGCCCGCGGGGCG</mark> CCGGG<br>T GCCACAGT T GCT CTT CCT GGACT GGT CAAAT GGT GAT T GGCCAACAGGCAGCCGT GGGT GG                                                                            | M00196[Sp1]                 |
| 2077 (ERF)                         | T CAGAT CT GCGCT GT GATTT CCT GT TT CCCAGAGCCT CAGGCT T CAT CCTT CCCT CCC                                                                                                                                                                                  |                             |
| 29970 (SCHIP1)<br>4092 (SMAD7)     | T T AAAAAAT AAT T T T T GGACAT GCT AAAT AT T C T GAGAGGT GT T T AGAAGT AGAT T CT AT AT CCT T AG<br>AGCT GGGT C GAGGCGAGCAGCCCAT GC GGGGGAGCCT C GGC GGCCAGCCGGCCAGGGGAAGGGAA                                                                               |                             |
| 1844 (DUSP2)                       | T GCT AGCCCT GGACTTT GCT GCCCGGCGGGGCT GGACAGGGAGGCCT AGGAT GGGGGGGGGCCAGTT CT                                                                                                                                                                             | M01104[MOVO-B]              |
| 602 (BCL3)                         | GCAGCACCGGCCTCG <u>GTCGCGCTGACTCTGGC</u> CTGGTGTCCGTGTCTCTTGCTATCTCTCTCTCTC                                                                                                                                                                                | M00720[CAC-binding_protein] |
| 1959 (EGR2)<br>1960 (EGR3)         | G G T G T G T G A G A G G G <mark>C A G C G G G G G C G G G A G T</mark> G T A G C G G A A G T G G A G G G A N N N N N N N N N N N N N                                                                                                                     |                             |
| 9021 (SOCS3)                       | GCCCCCTTCTCGGCCACCTTTCCAGCTCCGGAGACAGCCATTCCCGCAGATCCCTGGCGTGCCTATTC                                                                                                                                                                                       | M00803[E2F]                 |
| 1746 (DLX2)<br>4616 (GADD459)      | CTATTAGCAATAATACCTTTAAGTTTATGTAGCTTCTCTTTGAAGCAACAAGGAAAACCCGTTTCAAT<br>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                   |                             |
| 150094 (SNF1LK)                    | TAGGCT CGAT CTAGAAT CTAACT CCCAAAT GGGT CCT CAGGCTT AAAAAAT ACCTT CGCCCACAGCCT                                                                                                                                                                             |                             |
| 3397 (ID1)                         | TAGCTAGACCAGTTTGTCGTCTCCATGGCGACCGCCGCGCGCG                                                                                                                                                                                                                |                             |
| 5292 (PIM1)<br>3400 (ID4)          | CCGGCCCTTTGACACACATCCCTTCCCAGAAATCAGGATTCGCTGGTGCTTTTGCATTTCTAAAATGG<br>CATTAATGGCCTAAATTAAGTTACAGGTATGAATTTTACATAAAACAGATTAATATTATATGTCATAA                                                                                                               |                             |
| 677 (ŻFP36L1)                      | GGAACAAACCCTT GGT CGGCGGGGCCGGT AAACAACT CGGGAGCGAGCGGGCT AGGCCAGT CGCAGCC                                                                                                                                                                                 |                             |
| 25976 (TIPARP)<br>4665 (NAB2)      | T AACAAAGGCTT AGAAT CAT AAT GT CT AT GAT T AT T                                                                                                                                                                                                            |                             |
| 221749 (C6orf145)                  | TACACAGGAAACATATGCGTTCATTAACTAGCAAGTGTATATAAAAACATCAT <u>AGACAAAGCAAAAG</u>                                                                                                                                                                                |                             |
| 26039 (\$\$18L1)                   | CGCT CCCCAGCCACCCGGCT GCGT GAAC <mark>AGCCCCCCAGCG</mark> AGCGCACGGCCT AC <mark>CCCCCGCGCT C</mark> CGG                                                                                                                                                    |                             |
| 23135 (JMJD3)<br>11007 (CCDC85B)   | CCCT GGGGGCAGT GT CAT CAGCAGCCACAGAAGCT T GCGGAACAT T GCAT CAT GGAGACT GGGGGGCT A                                                                                                                                                                          |                             |
| 51339 (DACT1)                      | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     |                             |
| 6615 (SNAI1)<br>23529 (CLCF1)      | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     |                             |
| 80176 (SPSB1)                      | TATTCT GAGTT CAAACAAAGCT AAACCAAACT GATTTT CAGCACCGT AAAAT GAGAGACAT CAAACTT                                                                                                                                                                               |                             |
| 56672 (C11orf17)                   | AGAGCT GCGCT GAGGGATT AT GAGAGACCCT ACAACTT CT CAGGCGCCCCCT GCCCCGGGGGCCAGGA                                                                                                                                                                               |                             |
| 54877 (ZCCHC2)<br>29950 (SERTAD1)  | CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     |                             |
| 54880 (BCOR)                       | CGCCCAGGACGT GCGCCCGGGT CGGGCGT GCGCAGCCAACT CGGCCCGAGCT NNNNNNNNNNNNN                                                                                                                                                                                     |                             |
| 84919 (PPP1R158)<br>415116 (PIM3)  | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                     |                             |
| 148479 (PHF13)                     | TACTTACCTTTTCCCCCCACTTTCGAATATTAAAAATGTTCCCGTCAGACCGCCTTTTGGTCACCGCA                                                                                                                                                                                       |                             |
| 51274 (KLF3)                       | CT GCGCAAAT GCCGCTTTTTAGCT CCAGCGGCGGGGGCCT GGCCCGT GGGAGTTTT GCCCCCAGGGGTCT                                                                                                                                                                               |                             |
| 114789 (SLC25A25)<br>64651 (AXUD1) | ACAGGGGAT AGGCCAGGCT T GCT CGAGGCCCAAGCACT AGGCCT T GGT AACCCCCCCT CGCT ACGCAAA                                                                                                                                                                            |                             |
| 91748 (C14orf43)                   | AAT CAT AT <u>T CT GCT G</u> CCCCT CCCT CCT CT CT CCCT GAGAAAGT GAGGGAT GCACCT GGTT CT CAGGT 🕴                                                                                                                                                             |                             |
| 132864 (CPEB2)<br>84848            | CCCGGCCG <mark>CCGCCGC</mark> TTCCTCTTCCTCCCCGTTCCTGGCGCATCAGCAGACCATGCAGGATGAGCTGC<br>CGGGCGGGTGAAC <u>CCAAGGTGGGGT</u> GGAAGGCTCCAACCCGCCCAATCTGAGCCCGAGGCCTGCTGAG                                                                                       |                             |
| 284023                             | T GGGGCCAT CACG <mark>AT GT GT GGGT GT</mark> CCAGGCCT CCGGAAGGAAAGGAT T CCCAGCAT T CCT AAAGCCA                                                                                                                                                            |                             |
|                                    |                                                                                                                                                                                                                                                            |                             |

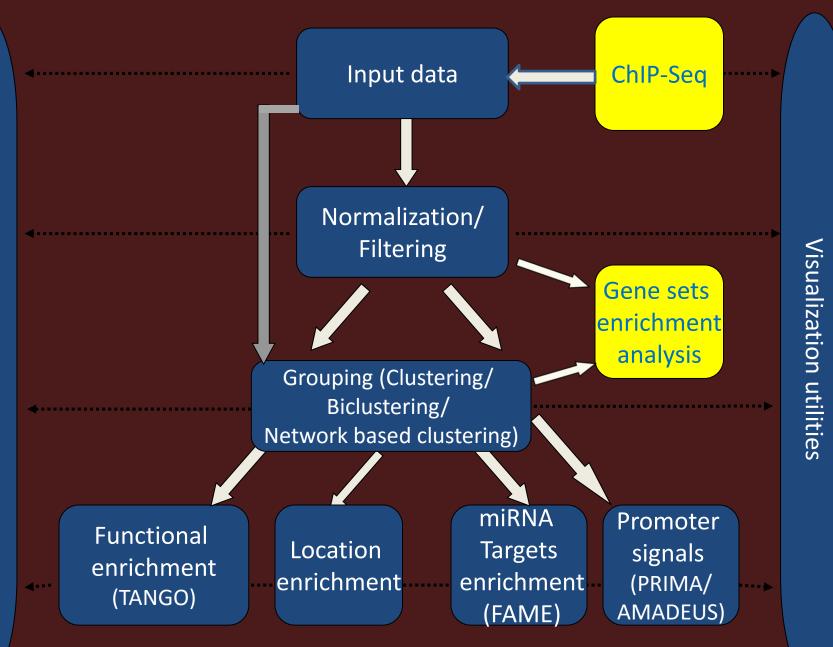


Amadeus


A Motif Algorithm for Detecting Enrichment in multiple Species

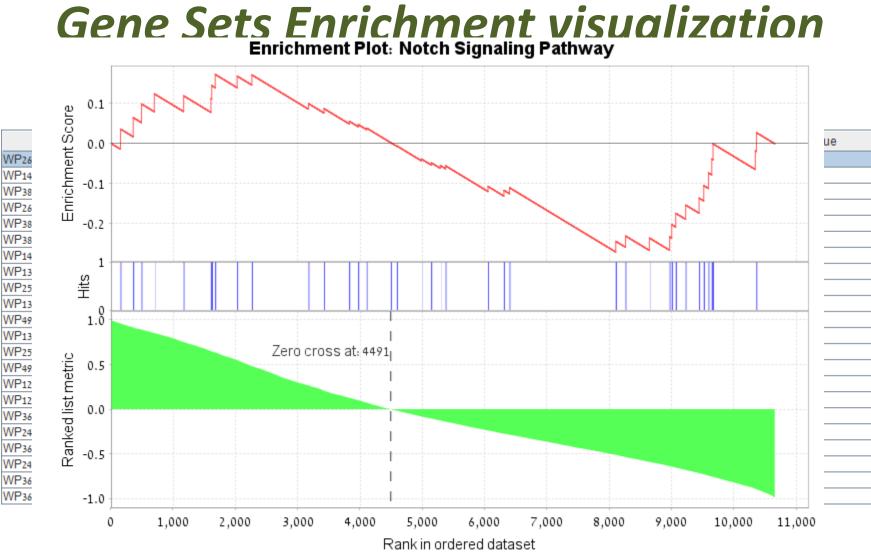
- Supports diverse motif discovery tasks:
  - 1. Finding over-represented motifs in one or more given sets of genes.
  - 2. Identifying motifs with **global spatial features** given **only** the genomic **sequences**.

#### • Possible Gene-sets:


- 1. Identified gene sets clusters vs. all genes promoters.
- 2. ChIP-Seq peaks sequences using Expander built-in FASTA sequences generation.

#### **AMADEUS on ChIP-Seq peaks**




# Hands-on (6-8)





### Gene Sets Enrichment analysis

- Goal: Determine whether an a priori defined set of genes shows concordance with a biological pattern (e.g. differences between two phenotypes)
- Gene set sources:
  - ✓ MSigDB (Broad molecular signature database)
  - ✓ KEGG
  - ✓ Wiki pathways
- Gene rank sources
  - ✓ Phenotype labels
  - ✓ Imported
  - ✓ Selected condition
- Significance estimated with permutations
- FDR correction for multiple comparisons



ES 📕 Hits 🛕 Ranking Metric

WP38 WP<sub>26</sub> WP38 WP38 WP14 WP13 WP25 WP13 WP49 WP13 WP25 WP49 WP12 WP12 WP36 WP24 WP36 WP24

### ChIP-Seq enrichment analysis

- Searches for over-representation of genes closest to ChIP-Seq data peaks
- Uses hyper geometric test
- Multiple testing correction (Bonferroni)
- Enrichment results visualization (same as other group analysis results)

### **ChIP-Seq visualization**

- Peaks to genomic region distributions
- Closest gene to peak chromosome visualization
- Peaks enrichment in genomic regions
- Peaks annotation table including closest gene and genomic region (e.g., 5UTR, Exon etc)



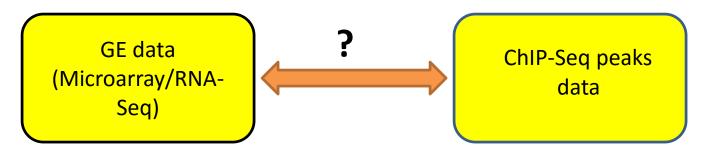
#### **Peaks Distribution**

|           | 70            |           |                   |               |        |               | NA              |            |
|-----------|---------------|-----------|-------------------|---------------|--------|---------------|-----------------|------------|
|           |               |           |                   |               |        |               |                 |            |
|           | 60            |           |                   |               |        |               |                 | 1.00       |
| De els ID | Observation D | 0         | Orac Orachal      | Transmitte    | Oheand | Distance TOO  | On a Trans      | lata a thu |
| Peak ID   | Chromosome P  | . Gene ID | Gene Symbol       | Transcript ID | Strand | Dist from TSS | Seq Type        | Intensity  |
|           | chr1: 118625  | 388581    | FAM132A           | ucoo1adl.2    | -      | -4255         | Upstream of the |            |
|           | Chr1: 183892  | 163688    | CALML6            | ucoo1aih.1    | +      | -7238         | Upstream of the |            |
|           | chr1: 215902  | 6497      | SKI               | ucoo1aja.4    | +      | -937          | Upstream of the |            |
|           | Chr1: 359766  | 7161      | TP73              | uco10nzj.2    | +      | -9468         | Upstream of the |            |
|           | chr1: 371273  | 57470     | LRRC47            | ucoo1akx.1    | -      | 154           |                 | 0.0        |
|           | Chr1: 613422  | 8514      |                   | ucoo1aly.2    | +      | 28473         |                 | 0.0        |
|           | chr1: 647438  | 54626     |                   | ucoo1amx.3    | -      | 5190          |                 | 0.0        |
|           | Chr1: 661881  | 80835     | TAS1R1            | ucoo1ant.3    | +      | 3580          |                 | 0.0        |
|           | chr1: 666245  | 9903      | KLHL21            | UC001anz.1    | -      | 377           |                 | 0.0        |
|           | Chr1: 832649  | 50651     |                   | ucoo1apb.3    | +      | -57792        |                 | 0.0        |
|           | chr1: 924144  |           |                   | ucoo9vmq.3    | -      | 328           |                 | 0.0        |
|           | chr1: 104902  | 378708    | APITD1            | ucootare.3    | +      | 214           | 5UTR            | 0.0        |
|           | chr1: 108046  | 54897     |                   | UC009VMX.2    | -      | -50285        | Intergenic      | 0.0        |
|           | chr1: 116190  | 57540     |                   | ucootasi.1    | +      | 58305         | Intergenic      | 0.0        |
|           | chr1: 119682  | 90231     |                   | ucoo1atk.3    | -      | 17825         | Intergenic      | 0.0        |
|           | chr1: 122671  | 55187     |                   | ucoo1atv.3    | +      | -22727        | Intergenic      | 0.0        |
|           | chr1: 126783  | 9249      | DHRS3             | UC001aUC.3    | -      | -762          | Upstream of the | 0.0        |
|           | chr1: 127006  | 343066    | AADACL4           | ucoo1auf.3    | +      | -3818         | Upstream of the | 0.0        |
|           | chr1: 153729  | 23254     |                   | UC0018VS.4    | +      | -54575        | Intergenic      | 0.0        |
|           | chr1: 155407  | 114827    |                   | UC001aWa.1    | +      | -32915        | Intergenic      | 0.0        |
|           | Chr1: 161611  | 23013     |                   | ucoo1axk.1    | +      | -12989        | Intergenic      | 0.0        |
|           | chr1: 164782  | 1969      | EPHA <sub>2</sub> | ucoo1aya.2    | -      | 3743          | Intron          | 0.0        |
| Gend      | 50            |           |                   |               |        |               |                 |            |
|           | 60            |           |                   |               |        |               | Intergenic      |            |
|           | 70            |           |                   |               |        |               |                 |            |

Genome Regions

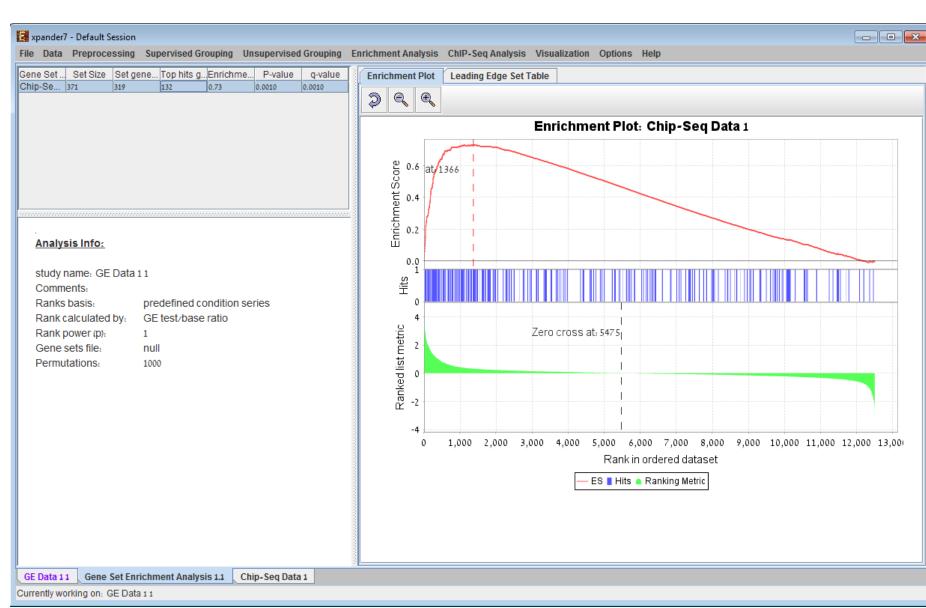
#### **Custom enrichment analysis**

- Loads an annotation file supplied by the user
- Searches for annotations over-representation
- Uses hyper geometric test
- Multiple testing correction (Bonferroni)
- Enrichment results visualization (same as other group analysis results)

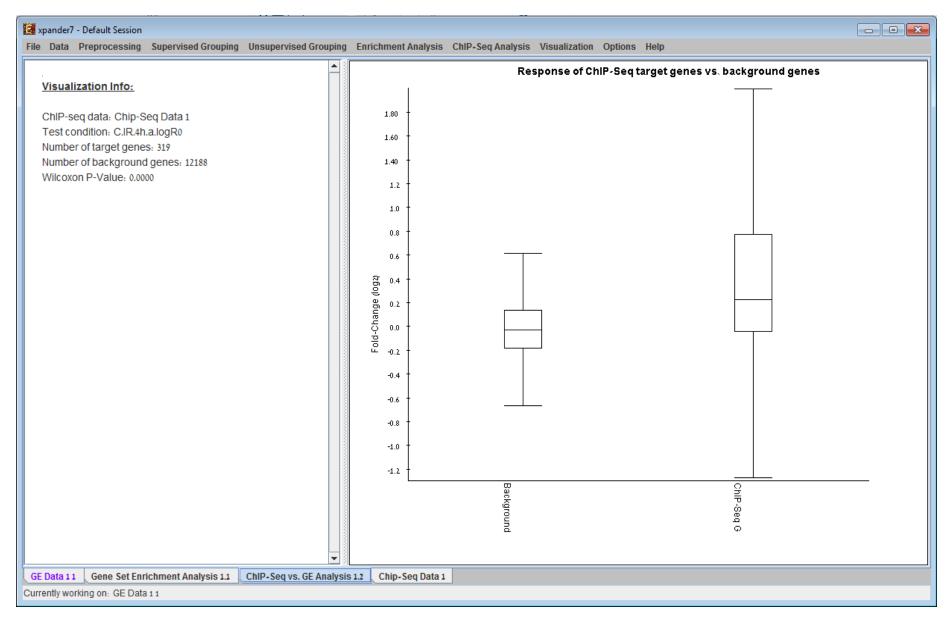

### RNA-Seq edgeR/DESeq2

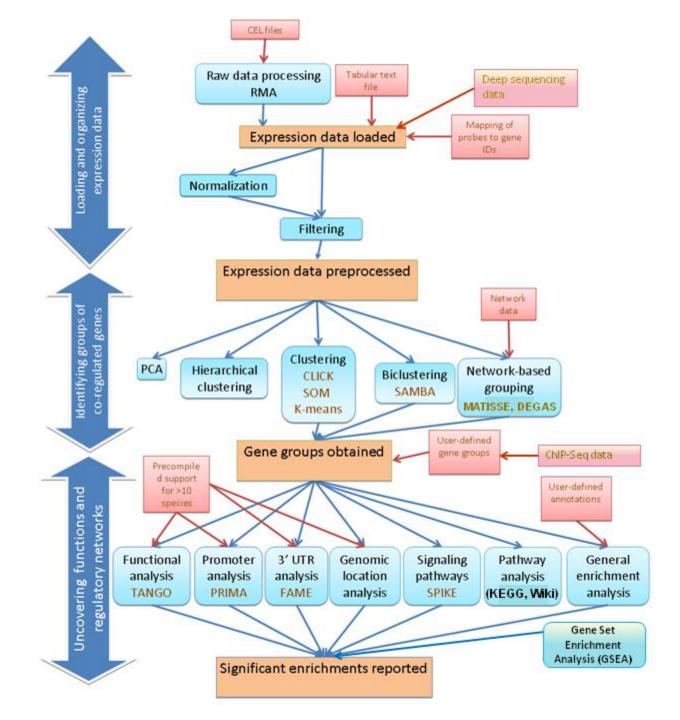
- RNA-Seq counts data
- Perform differential expression between two groups of conditions

#### Analysis wizard


- Allows performing multiple analysis steps at a push of a button
- Incorporates most of the tools available in EXPANDER
- All parameters are set in advance
- Standard default values are provided
- After performing analysis, all corresponding visualizations are automatically generated

#### Integration between different technologies





- ChIP-Seq vs. GE analysis:
  - GSEA ChIP-Seq target genes as a single set
  - ChIP-Seq enrichment of GE's clusters
  - ChIP-Seq target genes distribution in GE
  - Expander enrichment tools (e.g., TANGO, PRIMA)
     select ChIP-Seq target genes as a single cluster

#### GSEA – ChIP-Seq vs. GE



#### Rank distribution – ChIP-Seq vs. GE





# Hands-on (New features)

